On defining the distribution $\delta^{(r)}(f(x))$ for summable f

By BRIAN FISHER (Leicester)

In the following we let N be the neutrix, see van der CORPUT [1], having domain $N' = \{1, 2, ..., n, ...\}$ and range N'' the real numbers with negligible functions linear sums of the functions n^{λ} for $\lambda > 0$ and all functions which converge to zero as n tends to infinity.

It follows that if

$$f(n) = f_1(n) + f_2(n),$$

where $f_1(n)$ is a negligible function and the limit as n tends to infinity of $f_2(n)$ exists, then the neutrix limit as n tends to infinity of f(n) exists and

$$N-\lim_{n\to\infty}f(n)=\lim_{n\to\infty}f_2(n).$$

Now let ϱ be a fixed infinitely differentiable function having the properties

- (i) $\varrho(x) = 0$ for $|x| \ge 1$,
- (ii) $\varrho(x) \ge 0$,
- (iii) $\varrho(x) = \varrho(-x)$,

(iv)
$$\int_{-1}^{1} \varrho(x) dx = 1.$$

We define the function δ_n by

$$\delta_n(x) = n\varrho(nx)$$

for n=1, 2,

The following definition was given in [2].

Definition 1. Let f be an infinitely differentiable function. We say that the distribution $\delta^{(r)}(f(x))$ exists and is equal to h on the open interval (a, b) if

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}\delta_n^{(r)}(f(x))\varphi(x)\,dx=\big(h(x),\,\varphi(x)\big)$$

for all test functions φ with compact support contained in the interval (a, b).

The following theorem was proved in [2] and shows that definition 1 is in agreement with the definition of $\delta^{(r)}(f(x))$ given by GELFAND and SHILOV [3].

234 Brian Fisher

Theorem 1. Let f be an infinitely differentiable function and suppose that the equation f(x)=0 has a single simple root at the point $x=x_1$ in the open interval (a, b). Then the distribution $\delta^{(r)}(f(x))$ exists and

$$\delta^{(r)}(f(x)) = \frac{1}{|f'(x_1)|} \left[\frac{1}{f'(x)} \frac{d}{dx} \right]^r \delta(x - x_1)$$

on the interval (a, b).

The next definition is an extension of definition 1 and was also given in [2].

Definition 2. Let f be an infinitely differentiable function. We say that the distribution $\delta^{(r)}(f(x))$ exists and is equal to h on the open interval (a, b) if

$$\underset{n\to\infty}{\text{N-lim}} \int_{-\infty}^{\infty} \delta_n^{(r)} (f(x)) \varphi(x) \, dx = (h(x), \varphi(x))$$

for all test functions φ with compact support contained in the interval (a, b). The following theorem was then proved.

Theorem 2. Let F be an infinitely differentiable function and suppose that the equation F(x)=0 has a single simple root at the point $x=x_1$ in the open interval (a,b). Then if $f=F^s$, the distribution $\delta^{(r)}(f(x))$ exists and

$$\frac{d}{dx}\delta^{(r)}(f(x)) = f'(x)\delta^{(r+1)}(f(x))$$

on the interval (a, b) for r=0, 1, 2, ... and s=1, 2, ... In particular

$$\delta^{(r)}\big(f(x)\big)=0$$

on the interval (a, b) for r=0, 1, 2, ... and s=2, 4, ... and

(1)
$$\delta^{(r)}((x-x_1)^s) = \frac{r!}{s(rs+s-1)!}\delta^{(rs+s-1)}(x-x_1)$$

on the real line for r=0, 1, 2, ... and s=1, 3, 5, ...

We now extend definition 2 with the following definition.

Definition 3. Let f be a summable function. We say that the distribution $\delta^{(r)}(f(x))$ exists and is equal to h on the open interval (a, b) if

$$\underset{n\to\infty}{N-\lim} \int_{-\infty}^{\infty} \delta_n^{(r)} (f(x)) \varphi(x) dx = (h(x), \varphi(x))$$

for all test functions φ with compact support contained in the interval (a, b). Now let f be a summable function. We define the summable functions f_+ and f_- by

$$f_{+}(x) = \begin{cases} f(x), & x \ge 0, \\ 0, & x < 0 \end{cases}$$

and

$$f_{-}(x) = \begin{cases} f(x), & x \le 0, \\ 0, & x > 0. \end{cases}$$

However, in accordance with the usual practice, we define the summable functions x_+^s and x_-^s by

$$x_{+}^{s} = \begin{cases} x^{s}, & x \ge 0, \\ 0, & x < 0 \end{cases}$$
 and $x_{-}^{s} = \begin{cases} |x|^{s}, & x \le 0, \\ 0, & x > 0 \end{cases}$

for s=1, 2,

Theorem 3. Let f be a summable function and suppose that f is continuous and $f(x)\neq 0$ on the closed interval [a,b], where a<0< b. Then the distribution $\delta^{(r)}(f_+(x-x_1))$ exists and

$$\delta^{(r)}(f_+(x-x_1))=0$$

on the interval $(-\infty, b+x_1)$ for r=0, 1, 2, ... In particular

$$\delta^{(r)}\big(H(x-x_1)\big)=0$$

on the interval $(-\infty, \infty)$ for r=0, 1, 2, ..., where H denotes Heaviside's function.

PROOF. For simplicity of notation we will assume that $x_1=0$. The more general results will follow by translation.

Let φ be an arbitrary test function with compact support contained in the interval $(-\infty, b)$. Then

$$\int_{-\infty}^{\infty} \delta_n^{(r)} (f_+(x)) \varphi(x) \, dx = \int_{-\infty}^{0} \delta_n^{(r)} (0) \varphi(x) \, dx + \int_{0}^{\infty} \delta_n^{(r)} (f(x)) \varphi(x) \, dx =$$

$$= n^{r+1} \varrho^{(r)} (0) \int_{0}^{0} \varphi(x) \, dx + n^{r+1} \int_{0}^{b} \varrho^{(r)} (nf(x)) \varphi(x) \, dx,$$

where

$$n^{r+1}\varrho^{(r)}(0)\int_{-\infty}^{0}\varphi(x)\,dx$$

is either negligible or zero. Further, since f is continuous and non-zero on the closed interval [0, b], we can find an integer N such that

$$|nf(x)| \ge 1$$

for n>N. It then follows that $\varrho^{(r)}(nf(x))=0$ for n>N. Thus

$$N-\lim_{n\to\infty} \int_{-\infty}^{\infty} \delta_n^{(r)} (f_+(x)) \varphi(x) dx =$$

$$= N-\lim_{n\to\infty} n^{r+1} \varrho^{(r)}(0) \int_{-\infty}^{0} \varphi(x) dx + \lim_{n\to\infty} n^{r+1} \int_{0}^{\infty} \varrho^{(r)} (nf(x)) \varphi(x) dx = 0 = (0, \varphi)$$

and so

$$\delta^{(r)}(f_+(x)) = 0$$

Brian Fisher

for r=0, 1, 2, ... This completes the proof of the theorem.

Corollary 3.1. Let f be a summable function and suppose that f is continuous and $f(x)\neq 0$ on the closed interval [a,b], where a<0< b. Then the distribution $\delta^{(r)}(f_-(x-x_1))$ exists and

 $\delta^{(r)}(f_-(x-x_1))=0$

on the interval $(a+x_1, \infty)$ for r=0, 1, 2, ...

PROOF. Let g(x)=f(-x). Then g is continuous and non-zero for $-b \le x \le -a$ and so by the theorem

$$\delta^{(r)}\big(g_+(x)\big) = 0$$

on the interval $(-\infty, -a)$ for $r=0, 1, 2, \dots$ Replacing x by -x we see that

$$\delta^{(r)}(g_{+}(-x)) = \delta^{(r)}(f_{-}(x)) = 0$$

on the interval (a, ∞) and the result of the corollary follows.

Corollary 3.2. Let f be a summable function and suppose that f is continuous and $f(x) \neq 0$ on the closed interval [a, b], where a < 0 < b. Then the distributions $\delta^{(r)}(f(x-x_1))$ and $\delta^{(r)}(f_+(x-x_1)-f_-(x-x_1))$ exist and $\delta^{(r)}(f(x-x_1))=$ $=\delta^{(r)}(f_+(x-x_1)-f_-(x-x_1))=0$ on the interval $(a+x_1,b+x_1)$ for $r=0,1,2,\ldots$

PROOF. Let φ be an arbitrary test function with support contained in the interval (a, b). Then

$$\int_{-\infty}^{\infty} \delta_n^{(r)} (f(x)) \varphi(x) dx = \int_{-\infty}^{0} \delta_n^{(r)} (f(x)) \varphi(x) dx + \int_{0}^{\infty} \delta_n^{(r)} (f(x)) \varphi(x) dx$$

and

$$\int_{-\infty}^{\infty} \delta_n^{(r)} (f_+(x) - f_-(x)) \varphi(x) dx = \int_{-\infty}^{0} \delta_n^{(r)} (-f(x)) \varphi(x) dx + \int_{0}^{\infty} \delta_n^{(r)} (f(x)) \varphi(x) dx.$$

It was also proved above that

$$\lim_{n\to\infty} \int_{0}^{\infty} \delta_{n}^{(r)} (f(x)) \varphi(x) dx = 0$$

and similarly

$$\lim_{n\to\infty} \int_{-\infty}^{0} \delta_n^{(r)} (f(x)) \varphi(x) dx = \lim_{n\to\infty} \int_{-\infty}^{0} \delta_n^{(r)} (-f(x)) \varphi(x) dx = 0.$$

It follows that

$$\underset{n\to\infty}{N\text{-}\lim} \int\limits_{-\infty}^{\infty} \delta_n^{(r)} \big(f(x)\big) \varphi\left(x\right) dx = \underset{n\to\infty}{N\text{-}\lim} \int\limits_{-\infty}^{\infty} \delta_n^{(r)} \big(f_+(x) - f_-(x)\big) \varphi\left(x\right) dx = (0,\,\varphi)$$

and the result of the corollary follows.

As an example consider $f(x) = \cos x$. Then it follows immediately from theorems 1 and 3 that

$$\delta(\cos_+ x) = \sum_{k=0}^{\infty} \delta\left(x - k\pi - \frac{1}{2}\pi\right)$$

and it follows from theorem 1 and corollary 3.2 that

$$\delta(\cos_{+} x - \cos_{-} x) = \sum_{k=0}^{\infty} \delta\left(x - k\pi - \frac{1}{2}\pi\right) + \sum_{k=1}^{\infty} \delta\left(x + k\pi - \frac{1}{2}\pi\right).$$

Further, from theorems 2 and 3, it follows that

$$\delta^{(r)}(\cos^2_+ x) = 0$$

for r=0, 1, 2,

It was proved in [2] that

$$\delta(\sin^3 x) = \sum_{k=-\infty}^{\infty} \frac{1}{6} \left[\delta(x - k\pi) + \delta''(x - k\pi) \right]$$

and it follows by translation that

$$\delta(\cos^3 x) = \sum_{k=-\infty}^{\infty} \frac{1}{6} \left[\delta \left(x - k\pi - \frac{1}{2} \pi \right) + \delta'' \left(x - k\pi - \frac{1}{2} \pi \right) \right].$$

It now follows from theorem 3 that

$$\delta(\cos_+^3 x) = \sum_{k=0}^{\infty} \frac{1}{6} \left[\delta \left(x - k\pi - \frac{1}{2} \pi \right) + \delta'' \left(x - k\pi - \frac{1}{2} \pi \right) \right].$$

All the above results of course hold on the real line.

Theorem 4. Let F be a summable function which is ms+s+1 times continuously differentiable on the closed interval [a,b], where a<0< b. Suppose that the equation F(x)=0 has a single simple root at the point x=0 in the interval [a,b]. Then if $f=F^s$, the distribution $\delta^{(r)}(f_+(x-x_1))$ exists on the interval $(-\infty,b+x_1)$ for $r=0,1,\ldots,m$ and $s=1,2,\ldots$ In particular

$$\delta^{(r)}((x-x_1)_+^s) = \frac{(-1)^{rs+r+s-1}r!}{2s(rs+s-1)!}\delta^{(rs+s-1)}(x-x_1)$$

on the interval $(-\infty, \infty)$ for r=0, 1, 2, ... and s=1, 2, ...

PROOF. We will again prove the theorem for the case $x_1 = 0$.

Since x=0 is a simple root of the equation F(x)=0, it follows that $F'(x)\neq 0$ on the closed interval [0, c], where $0 < c \le b$. The equation F(x)=y will therefore have an inverse x=g(y) on the interval [0, c] and the function g will be ms+s+1 times continuously differentiable.

238 Brian Fisher

Now let φ be an arbitrary test function with compact support contained in the interval $(-\infty, c)$. Then

$$\int_{-\infty}^{\infty} \delta_n^{(r)} (f_+(x)) \varphi(x) dx = \int_{-\infty}^{0} \delta_n^{(r)} (0) \varphi(x) dx + \int_{0}^{\infty} \delta_n^{(r)} (f(x)) \varphi(x) dx =$$

$$= n^{r+1} \varrho^{(r)} (0) \int_{-\infty}^{0} \varphi(x) dx + \int_{0}^{\infty} \delta_n^{(r)} (f(x)) \varphi(x) dx,$$
again

where again

$$n^{r+1}\varrho^{(r)}(0)\int_{-\infty}^{0}\varphi(x)\,dx$$

it either negligible or zero. Further, on making the substitution $t^{1/s} = F(x)$ or $x = g(t^{1/s})$ we have

$$\int_{0}^{\infty} \delta_{n}^{(r)} (f(x)) \varphi(x) dx = \frac{1}{s} \int_{0}^{\infty} \delta_{n}^{(r)} (t) \varphi(g(t^{1/s})) |g'(t^{1/s})| t^{1/s-1} dt.$$

The function

$$\psi(y) = \varphi(g(y))|g'(y)|$$

is ms+s times continuously differentiable and so since $r \le m$, we have by Taylor's theorem

$$\psi(y) = \sum_{i=0}^{rs+s-1} \frac{\psi^{(i)}(0)}{i!} y^i + \frac{\psi^{(rs+s)}(\xi y)}{(rs+s)!} y^{rs+s},$$

where $0 \le \xi \le 1$. Thus

$$s\int_{0}^{\infty} \delta_{n}^{(r)}(f(x))\varphi(x) dx = \sum_{i=0}^{rs+s-2} \frac{\psi^{(i)}(0)}{i!} \int_{0}^{1} n^{r} \varrho^{(r)}(u) (u/n)^{(i+1)/s-1} du +$$

$$+ \frac{\psi^{(rs+s-1)}(0)}{(rs+s-1)!} \int_{0}^{1} \varrho^{(r)}(u) u^{r} du + \int_{0}^{1} \frac{\psi^{(rs+s)}(\xi(u/n)^{1/s})}{(rs+s)!} n^{r} \varrho^{(r)}(u) (u/n)^{r+1/s} du,$$

where the substitution nt=u has been made. It follows that

$$N-\lim_{n\to\infty} \int_{0}^{\infty} \delta_{n}^{(r)}(f(x))\varphi(x) dx = \frac{\psi^{(rs+s-1)}(0)}{s(rs+s-1)!} \int_{0}^{1} \varrho^{(r)}(u)u^{r} du =
= \frac{(-1)r!\psi^{(rs+s-1)}(0)}{2s(rs+s-1)!} = N-\lim_{n\to\infty} \int_{-\infty}^{\infty} \delta_{n}^{(r)}(f_{+}(x))\varphi(x) dx.$$

This proves the existence of $\delta^{(r)}(f_+(x))$ on the interval $(-\infty, c)$ for r=0, 1, ..., m and s=1, 2, ... We of course have $\delta^{(r)}(f_+(x))=0$ on the interval (1/2c, b) by corollary 3.2.

In the particular case when F=x, F is infinitely differentiable, $f_+=x^s$ and ψ is identical to φ . It follows that

$$\left(\delta^{(r)}(x_+^s), \varphi(x)\right) = \frac{(-1)^r r! \varphi^{(rs+s-1)}(0)}{2s(rs+s-1)!} = \frac{(-1)^{rs+r+s-1} r!}{2s(rs+s-1)!} \left(\delta^{(rs+s-1)}(x), \varphi(x)\right)$$

and so

$$\delta^{(r)}(x_+^s) = \frac{(-1)^{rs+r+s-1}r!}{2s(rs+s-1)!}\delta^{(rs+s-1)}(x)$$

for r=0, 1, 2, ... and s=1, 2, ... This completes the proof of the theorem.

Corollary 4.1. Let F be a summable function which is ms+s+1 times continuously differentiable on the closed interval [a,b], where a<0< b. Suppose that the equation F(x)=0 has a single simple root at the point x=0 in the interval [a,b]. Then if $f=F^s$, the distribution $\delta^{(r)}(f_-(x-x_1))$ exists on the interval $(a+x_1,\infty)$ for $r=0,1,\ldots,m$ and $s=1,2,\ldots$ In particular

$$\delta^{(r)}((x-x_1)^s_-) = \frac{(-1)^r r!}{2s(rs+s-1)!} \delta^{(rs+s-1)}(x-x_1)$$

on the interval $(-\infty, \infty)$ for r=0, 1, 2, ... and s=1, 2, ...

PROOF. We note that

$$\delta^{(r)}(f_{-}(x)) = \delta^{(r)}(f_{+}(-x)),$$

the right hand side existing by the theorem.

In particular we have

$$\delta^{(r)}(x_+^s) = \frac{(-1)^{rs+r+s-1}r!}{2s(rs+s-1)!}\delta^{(rs+s-1)}(x)$$

and replacing x by -x we have

$$\delta^{(r)}(x_-^s) = \frac{(-1)^{rs+r+s-1}r!}{2s(rs+s-1)!}\delta^{(rs+s-1)}(-x) = \frac{(-1)^rr!}{2s(rs+s-1)!}\delta^{(rs+s-1)}(x).$$

Corollary 4.2. Let F be a summable function which is ms+s+1 times continuously differentiable on the closed interval [a,b], where a<0< b. Suppose that the equation F(x)=0 has a single simple root at the point x=0 in the interval [a,b]. Then if $f=F^s$, the distributions $\delta^{(r)}(f(x))$ and $\delta^{(r)}(f_+(x)-f_-(x))$ exist on the interval $(a+x_1,b+x_1)$ for r=0,1,...,m and s=1,2,... In particular

(2)
$$\delta^{(r)}(\operatorname{sgn}(x-x_1)(x-x_1)^s) = 0$$

on the interval $(-\infty, \infty)$ for r=0, 2, 4, ... and s=2, 4, ...

(3)
$$\delta^{(r)}(|x-x_1|^s) = 0$$

on the interval $(-\infty, \infty)$ for r, s=1, 3, ...,

(4)
$$\delta^{(r)}(\operatorname{sgn}(x-x_1)(x-x_1)^s) = \frac{r!}{s(rs+s-1)!} \delta^{(rs+s-1)}(x-x_1)$$

240 Brian Fisher

on the interval $(-\infty, \infty)$ for r=1, 3, ... and s=2, 4, ... and

(5)
$$\delta^{(r)}(|x-x_1|^s) = \frac{r!}{s(rs+s-1)!} \delta^{(rs+s-1)}(x-x_1)$$

on the interval $(-\infty, \infty)$ for $r=0, 2, 4, \ldots$ and $s=1, 3, \ldots$

PROOF. We have

$$\int_{-\infty}^{\infty} \delta_n^{(r)} (f(x)) \varphi(x) dx = \int_{-\infty}^{0} \delta_n^{(r)} (f(x)) \varphi(x) dx + \int_{0}^{\infty} \delta_n^{(r)} (f(x)) \varphi(x) dx =$$

$$= \int_{-\infty}^{\infty} \delta_n^{(r)} (f_-(x)) \varphi(x) dx + \int_{-\infty}^{\infty} \delta_n^{(r)} (f_+(x)) \varphi(x) dx - \int_{-\infty}^{\infty} \delta_n^{(r)} (0) \varphi(x) dx,$$

the last term being either negligible or zero. It follows that

$$\underset{n\to\infty}{\text{N-lim}} \int_{-\infty}^{\infty} \delta_n^{(r)} \big(f(x) \big) \varphi(x) \, dx = \big(\delta^{(r)} \big(f_+(x) \big) + \delta^{(r)} \big(f_-(x) \big), \, \varphi(x) \big),$$

so that in fact

$$\delta^{(r)}(f(x)) = \delta^{(r)}(f_{+}(x)) + \delta^{(r)}(f_{-}(x)).$$

Similarly we can prove that

$$\delta^{(r)}(f_{+}(x) - f_{-}(x)) = \delta^{(r)}(f_{+}(x)) + \delta^{(r)}(-f_{-}(x)) =$$

$$= \delta^{(r)}(f_{+}(x)) + (-1)^{r} \delta^{(r)}(f_{-}(x)).$$

Equations (2), (3), (4) and (5) now follow from these results on using theorem 4 and corollary 4.1.

We note that the following more general results hold.

$$\delta^{(r)}((x-x_1)_+^s + (x-x_1)_-^m) = \frac{(-1)^{rs+r+s-1}r!}{2s(rs+s-1)!} \delta^{(rs+s-1)}(x-x_1) + \frac{(-1)^r r!}{2m(rm+m-1)!} \delta^{(rm+m-1)}(x-x_1),$$

$$\delta^{(r)}((x-x_1)_+^s - (x-x_1)_-^m) = \frac{(-1)^{rs+r+s-1}r!}{2s(rs+s-1)!} \delta^{(rs+s-1)}(x-x_1) + \frac{r!}{2m(rm+m-1)!} \delta^{(rm+m-1)}(x-x_1)$$

on the interval $(-\infty, \infty)$ for r=0, 1, 2, ... and s, m=1, 2, ... Equations (1), (2), (3), (4) and (5) are of course particular cases of these results.

As a final example consider $F(x) = \sin x$ and $f(x) = \sin^2 x$. It follows from theorem 2 that

$$\delta^{(r)}(\sin^2 x) = 0$$

on the interval $(-\infty, \infty)$ for $r=0, 1, 2, \dots$ Further, for arbitrary test function φ

$$\psi(y) = \varphi(\sin^{-1}y)(1-y^2)^{-1/2}$$

and it can be shown that

$$\psi'(0) = \varphi'(0),$$

$$\psi'''(0) = 4\varphi'(0) + \varphi'''(0).$$

It follows from theorem 4 and its corollaries that

$$(\delta(\sin^2_+ x), \varphi(x)) = \frac{1}{4}\psi'(0) = \frac{1}{4}\varphi'(0),$$

$$\left(\delta'(\sin_+^2 x), \, \varphi(x)\right) = -\frac{1}{24} \, \psi'''(0) = -\frac{1}{6} \, \varphi'(0) - \frac{1}{24} \, \varphi'''(0)$$

and so

$$\delta(\sin_+^2 x) = -\frac{1}{4} \, \delta'(x),$$

$$\delta(\sin^2_- x) = \frac{1}{4} \, \delta'(x),$$

$$\delta(\operatorname{sgn} x \cdot \sin^2 x) = -\frac{1}{2} \delta'(x),$$

$$\delta'(\sin^2_+ x) = \frac{1}{6}\delta'(x) + \frac{1}{24}\delta'''(x),$$

$$\delta'(\sin^2_- x) = -\frac{1}{6}\delta'(x) - \frac{1}{24}\delta'''(x).$$

$$\delta'(\operatorname{sgn} x \cdot \sin^2 x) = \frac{1}{3}\delta'(x) + \frac{1}{12}\delta'''(x)$$

on the interval $(-\infty, \infty)$.

References

- J. G. VAN DER CORPUT, Introduction to the neutrix calculus, J. Analyse Math. 7 (1959—60), 291—398.
- [2] B. Fisher, On defining the distribution $\delta^{(r)}(f(x))$, Rostock. Math. Kolloq. 23 (1983), 73—80. [3] I. M. Gelfand and G. E. Shilov, Generalized functions, Vol. I, (1964), Academic Press.

DEPARTMENT OF MATHEMATICS THE UNIVERSITY LEICESTER LEI 7RH U. K.

(Received March 16, 1984.)