On defining the distribution 5”(f(x)) for summable f

By BRIAN FISHER (Leicester)

In the following we let N be the neutrix, see van der CorpuT [1], having domain
N'={l1,2,...,n,...} and range N” the real numbers with negligible functions linear
sums of the functions n* for A=0 and all functions which converge to zero as n
tends to infinity.

It follows that if

JS(n) = fi(n) +£2(n),

where f)(n) is a negligible function and the limit as n tends to infinity of f;(n)
exists, then the neutrix limit as » tends to infinity of f(n) exists and

N-lim f(n) = lim f3(n).
Now let ¢ be a fixed infinitely differentiable function having the properties
i o(x)=0 for |x|=1,

(i) e(x)=0,
(i) o(x) = o(—x),

) [e®dx=1.
-1

We define the function J, by

6,(x) = ng(nx)
for n=1,2, ....
The following definition was given in [2].

Definition 1. Let f be an infinitely differentiable function. We say that the
distribution 6®’( f(x)) exists and is equal to h on the open interval (a, b) if

lim [ 30 (7(9)0 () dx = (h(2), 9(x)

for all test functions ¢ with compact support contained in the interval (a, b).
The following theorem was proved in [2] and shows that definition 1 is in agree-
ment with the definition of *( f(x)) given by GELFAND and SHiLOV [3].
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Theorem 1. Let f be an infinitely differentiable function and suppose that the
equation f(x)=0 has a single simple root at the point x=x, in the open interval
(a, b). Then the distribution 8")( f(x)) exists and

1
Lf (x| Lf (x) dx

59 (/) = A s
on the interval (a, b).
The next definition is an extension of definition 1 and was also given in [2].

Definition 2. Let f be an infinitely differentiable function. We say that the
distribution 6(f(x)) exists and is equal to h on the open interval (g, b) if

N-lim f” 8" (f(x)) @ (x) dx = (h(x), ¢ (x))

for all test functions ¢ with compact support contained in the interval (a, b).
The following theorem was then proved.

Theorem 2. Let F be an infinitely differentiable function and suppose that the
equation F(x)=0 has a single simple root at the point x=x, in the open interval
(@, b). Then if f=F", the distribution 6( f(x)) exists and

d ’
35"’ (f) = £ (x)6"*D(f(x))
on the interval (a, b) for r=0,1,2,... and s=1,2,.... In particular

3 (f(x)) =0
on the interval (a, b) for r=0,1,2, ... and s=2,4, ... and

(1) 6"’((x x,)’) = ms____j_a(un—l)(x_xl)

on the real line for r=0,1,2, ... and 5s=1,3,5, ....
We now extend definition 2 with the following definition.

Definition 3. Let fbe a summable function. We say that the distribution 6*( f(x))
exists and is equal to & on the open interval (a, b) if

Niim [ 50(/@)o () dx = (), 9(x)

for all test functions ¢ with compact support contained in the interval (a, b).

Now let fbe a summable function. We define the summable functions f, and
J- by
f(x), x=0,

0, x=0

£ ={7%
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and

70 - {fgx), x=(,

B aae )
However, in accordance with the usual practice, we define the summable functions

x% and x* by
C[x, x=0, C[Ixf x=0,
""'_{0, Pl I x'-'{ 0 ‘#>0

for =12 ....

Theorem 3. Let [ be a summable function and suppose that f is continuous
and f(x)#0 on the closed interval [a,b), where a<Q<b. Then the distribution

0 ( fi(x—x,)) exists and
8 (fs(x—x)) =0

on the interval (— e, b+x;) for r=0,1,2, .... In particular
O (H(x—x)) =0
on the interval (— =, =) for r=0,1,2, ..., where H denotes Heaviside’s function.

Proor. For simplicity of notation we will assume that x,=0. The more general
results will follow by translation.

Let @ be an arbitrary test function with compact support contained in the interval
(==, b). Then

0

[0 @e@dx= [ 800p@dx+ [ 60 (F)0 () dx =

=100 [o@dx+n*? [ o (nf(x))e)dx,
where 3 g

0
w1 [ ox)dx

is either negligible or zero. Further, since fis continuous and non-zero on the closed
interval [0, b], we can find an integer N such that

lnf(x)| = 1
for n>N. It then follows that ¢®(n f(x))=0 for n>N. Thus

Niim [ 60(7, ()0 () dx =

0 b
= N-Aim #+2¢®©0) [ o) dx+ lim o** [ O (nf () (x)dx = 0= (0, ¢)
—oo 0

7D
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and so

6“(f+(x) =0
for r=0,1, 2, .... This completes the proof of the theorem.

Corollary 3.1. Let f be a summable function and suppose that f is continuous
and f(x)#0 on the closed interval [a,b), where a<O<b. Then the distribution

" f-(x—x,)) exists and
( X ) €. 6"’(f.(x—x,)) =0

on the interval (a+x,, ) for r=0,1,2, ....

Proor. Let g(x)=f(—x). Then g is continuous and non-zero for —b=
=x= —a and so by the theorem

59(g. (9) =0
on the interval (—e<, —a) for r=0,1,2,.... Replacing x by —x we see that
0(g+ (=x) =0"(f-(x)) =0
on the interval (a, =) and the result of the corollary follows.

Corollary 3.2. Let f be a summable function and suppose that f is continuous
and f(x)#0 on the closed interval (a,b], where a<=0<b. Then the distributions
0(f(x—xy) and 8U(fy(x—x))—f-(x—x,)) exist and V(f(x—x))=
=0 f1 (x—x)—f-(x—x,))=0 on the interval (a+x,,b+x,) for r=0,1,2,....

PRrOOF. Let ¢ be an arbitrary test function with support contained in the interval
(a, b). Then

o= 0

f 5,(:) (f(x)) e(x)dx = f 6;') (f(x))(p (x)dx+ fw J,Er) (f(x)) @ (x)dx

and

J (e @D—f-@)o@dx = [ 60 (—f(x)e@) dx+ [ 80 (f()e(x)dx.
It was also proved above that

lim f 5 (f(x)e(x)dx =0
and similarly ’
0 0
lim [0 (/@)e@dx = lim [ 69 (~/()e(x)dx = 0.

It follows that
Nim [ 69(/)odx = Nlim [ 59(f. (/- ()0 () dx = 0, 0)

and the result of the corollary follows.



On defining the distribution 6 (f(x)) for summable 237

As an example consider f(x)=cos x. Then it follows immediately from theorems
1 and 3 that
d(cos, x) = 2..,' 5[x—k1r.—-—l-rr]

k=0 2

and it follows from theorem 1 and corollary 3.2 that

d(cos; x—cos_ x) = E&(x-kn——;—n]-i- g‘&[x+kn—% n].
k=1

k=0
Further, from theorems 2 and 3, it follows that

0" (cos® x) =0
for r=0,1,2,....
It was proved in [2] that

o(sin*x) = 3 %[6(x—krc)+6”(x-k1t)]

k=—eo
and it follows by translation that

Scost) = 3 -l—[é[x—kn—-%-n]+6”[x—kn—%n]].

k= —oo 6

It now follows from theorem 3 that

5(cos? x) = gé,? [a [x—kn—-zl—— 7:]+5” [x—kn—-%—rz]] .

All the above results of course hold on the real line.

Theorem 4. Let F be a summable function which is ms+s+1 times continuously
differentiable on the closed interval [a, b], where a<0<b. Suppose that the equation
F(x)=0 has a single simple root at the point x=0 in the interval [a,b]. Then if
f=F* the distribution 6 (f,(x—x,)) exists on the interval (—=,b+x,) for
r=0,1,...,m and s=1,2,.... In particular

i, (__ 1)r:+r+s-—1r!

6(r)((x_xl)’+) e zs(rs_l_s__l)! 6("+3“3)(x_x1)

on the interval (— =, =) for r=0,1,2, ... and s=1,2, ....

ProoFr. We will again prove the theorem for the case x,=0.

Since x=0 is a simple root of the equation F(x)=0, it follows that F’(x)=0
on the closed interval [0, ¢], where O<c=b. The equation F(x)=y will therefore
have an inverse x=g(y) on the interval [0, ¢] and the function g will be ms+s+1
times continuously differentiable.

T*
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Now let ¢ be an arbitrary test function with compact support contained in the
interval (— e, ¢). Then

[ 800, Nom@dx= [ 60©@0@dx+ [ 60(7(x)o()dx =

= w+1g90) [ p@dx+ [ 69 (7)o dx,
where again i y

0
w1 0) [ o(x)dx

it either negligible or zero. Further, on making the substitution "/*=F(x) or
x=g(1"%) we have

3 ¥, -1 2 r s ’ s 5=-1
of 3 (fW)p(x)dx = — llj 30 ()0 (g (%) |g’ (%) /=1 dt.

The function
v(»)=o(g(»)lg’ M|

is ms+s times continuously differentiable and so since r=m, we have by Taylor’s
theorem

rs+s—1 4,(")(0) i !Il(r’+s)(¢y) yn+x

y(y) = y'+ oy

where 0=¢=1. Thus

s [ ap(myemdx="3"Y2O £ o0 ) umyesv-t du+
0 i=0 H iy

(rs+s-1)(Q) 2 1 ylrs+9) 1/s
+—%'s—-'-'s_—l()!)6f Q(r)(u)ur d“—|—6f ”0 (rs(i(:;/ln) ) nrg(r)(u)(u/n)r.;.y,d“’

where the substitution nf=wu has been made. It follows that

¢(rs+s— 1) (0)

N-lim of sN(f(x)e(x)dx = g P T

1
[ oW du =
0

_ (=Drtyle+s-n(0)
T 2s(rs+s—1)!

= Niim [ 60(f, () o () dx.

This proves the existence of *)( f, (x)) on the interval (==, ¢) for r=0,1,...,m
and s=1,2,.... We of course have 6“’(f,(x))=0 on the interval (1/2c,b) by
corollary 3.2.
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In the particular case when F=x, F is infinitely differentiable, f, =x* and
¥ is identical to ¢. It follows that

Ay (rs4+5-1) g s+r4+5—1
(676, 00) =5 = Fremr O 0(0)

and so

(= 1)ys+r+s=1p)

(r) =
e 2s(rs+s—1)!

6(" +5—1) (x)

for r=0,1,2,... and s=1,2,.... This completes the proof of the theorem.

Corollary 4.1. Let F be a summable function which is ms+s+1 times con-
tinuously differentiable on the closed interval [a,b], where a<0-<b. Suppose that
the equation F(x)=0 has a single simple root at the point x=0 in the interval [a, b).
Then if f=F°, the distribution 6")( f_(x—x,)) exists on the interval (a+x,, =)
for r=0,1,...,m and s=1,2,.... In particular

V(v — = (=1 (rs+5=1) (4o _
80((x—x)-) 2s(rs+s—1)! ¢ (x—x)
on the interval (— o, =) for r=0,1,2,... and s=1,2,....

Proor. We note that

3D (f- () = 37 (f+ (=),

the right hand side existing by the theorem.
In particular we have

1yrs+rds=1.1
80 (x) = =D r

* S(rs+s5—-1)
TR (x)

and replacing x by —x we have

5(’) (xl_) —

(- 1)"+r+"_lr'! (rs43=1)(__ v\ — = l)'l"! iR
2s(rs+s—1)! 8 %) = 2s(rs+s—1)! ¢ i

Corollary 4.2. Let F be a summable function which is ms+s+1 times conti-
nuously differentiable on the closed interval [a,b), where a<Q0<b. Suppose that
the equation F(x)=0 has a single simple root at the point x=0 in the interval [a, b).
Then if f=F*, the distributions 6( f(x)) and 6 ( f.(x)—f-(x)) exist on the
interval (a+x,,b+x,) for r=0,1,...,m and s=1,2, .... In particular

(2) 0 (sgn (x—x,)(x—x,)*) = 0
on the interval (— e, =) for r=0,2,4, ... and 5=2,4, ...
3) 59 (x—x,[) = 0

on the interval (— e, =) for r,s=1,3, ...,

r!

~ e |

4) 0 (sgn (x —x) (x—x,)*) =
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on the interval (— e, =) for r=1,3, ... and s=2,4,... and
r!

s(rs+s—1)!

on the interval (— <=, =) for r=0,2,4, ... and 5s=1,3, ....
Proor. We have

) 67 (Ix—x,[) = grreelix—x)

[ ()o@ dx = [ 860 (f(%)e(x)dx+ fu 57 (/()e (x) dx =

= [0 @e@dx+ [ 60(f, @)o@ dx— [ 60 ©O)p(x)dx,

the last term being either negligible or zero. It follows that

Nlim [ 60(f(®)e(x) dx = (57 (f. (0)+5(f- (), ¢ (),

so that in fact

5O(f(¥)) = 69 (f+ () +67(f- ().
Similarly we can prove that
8O (f+ () —f- (%)) = 8V (f4 (0))+0D(=f-(x)) =
= 00 (f+ (%)) +(=1) 6 (f- (x)).

Equations (2), (3), (4) and (5) now follow from these results on using theorem 4
and corollary 4.1.
We note that the following more general results hold.

(_ 1)rs+r+s-—1r!

3O ((x—x)% +(x—x)") = §e+o=D (x—x,)+

2s(rs+s—1)!
(_ I)’P’! (ﬂu+n-—15
2m(rm+m—1)! B (x—=xy),
—l rs+r+5—1 |
SO ((e—x)s —(x—x)) = (25(35 +s_l)r! e+ (x—x)) +

r!
¥ 2m(rm+m—1)!

on the interval (—ee, «) for r=0,1,2,... and s,m=1,2,.... Equations (1), (2),
(3), (4) and (5) are of course particular cases of these results.

As a final example consider F(x)=sinx and f(x)=sin®x. It follows from
theorem 2 that

6(rm+m-—l) (x _xl)

6" (sin*x) =0



On defining the distribution 5 (f(x)) for summable f 241

on the interval (— e, <) for r=0,1,2,.... Further, for arbitrary test function ¢
Y () = @(sin~1y)(1—yH~12
¥’ (0) = ¢’ (0),
¥”(0) = 4¢’(0)+¢” (0).

It follows from theorem 4 and its corollaries that

and it can be shown that

(3(sint, %), 9 () =5 ¥ (0) = 7' (0),

(¥ sin% ), () =~ ¥ (O) = 5 ¢ (O) =57 6" (0)
and so

S(eint 3) = -% 5 (),
5(sint. ) = 75/ (0),
d(sgnx-sin®x) = — —%— &’ (x),

B (sind, x) = 45/ (x) 45 57 (),
 (sint ) = — -8 (1) 57 ().

&’ (sgn x - sin®x) = —5'( )+—aﬂ' (%)

on the interval (— es, =),
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