On functional equations and measures of information I

By PL. KANNAPPAN and C. T. NG (Waterloo, Ontario)

§ 1. Introduction

In analysing the additivity property of Shannon's entropy one comes across the functional equation

$$\sum_{i=1}^{n} \sum_{j=1}^{m} f(p_i q_j) = \sum_{i=1}^{n} f(p_i) + \sum_{j=1}^{m} f(q_j).$$

Recently Z. DARÓCZY and A. JÁRAI [1] solved this equation with n=m=2 for (Lebesgue) measurable functions f.

The purpose of the present paper is to obtain the measurable solutions f_i : $]0, 1[\rightarrow R]$ of the functional equation (1.1)

 $f_1(pq) + f_2(p(1-q)) + f_3((1-p)q) + f_4((1-p)(1-q)) = f_5(p) + f_6(q)$ $(p, q \in]0, 1[)$ which is a generalization of the equation considered in [1].

§ 2. Some preliminary results

Let X be a set and (Y, \mathcal{B}, m) be a finite measure space. Let \mathcal{D} be the family of all subsets $D \subseteq X \times Y$ satisfying the property

$$\inf_{x \in X} m(D_x) > 0, \text{ where } D_x := \{ y \in Y | (x, y) \in D \} \in \mathcal{B}.$$

Let $\mathscr{F}(D) = \{g : D \to Y\}$ be the family of all functions g such that for all $\varepsilon > 0$, there exists $\delta > 0$ so that for each $E \in \mathscr{B}$ with $m(E) < \delta$ and each $x \in X$, the set $g_x^{-1}(E) := \{y \in Y \mid g(x, y) \in E\}$ is contained in some set B (depending upon x and E) $\in \mathscr{B}$ with $m(B) < \varepsilon$. We present the following Lemma without a proof.

Lemma 1. Let $D \in \mathcal{D}$ and $g_i \in \mathcal{F}(D)$ for i = 1, 2, ..., n. Then there exists $\delta > 0$ so that for each $E \in \mathcal{B}$ with $m(E) < \delta$,

$$\bigcup_{i=1}^{n} (g_i)_x^{-1}(E) \subseteq D_x \text{ for every } x \in X,$$

that is, for each $x \in X$ there exists $y_x \in D_x$ such that

$$g_i(x, y_x) \notin E$$
 for all $i = 1, 2, ..., n$.

Using Lemma 1 we can prove the following Theorem.

Theorem 2. Let $D \in \mathcal{D}$, $g_i \in \mathcal{F}(D)$, $h_i : Y \to R$ and $h : X \to R$ be functions satisfying the functional equation

$$h(x) = \sum_{i=1}^{n} h_i(g_i(x, y)) \quad (x, y) \in D.$$

If the functions h_i are measurable, then h is bounded on X.

The proofs of the above results are analogous to those used in [1].

We now proceed to show that if f_i 's are (Lebesgue) measurable functions satisfying the functional equation (1.1), then they are locally bounded. We shall make use of the following lemma ([2], Lemma 3, p. 210) in Natanson.

Lemma 3. Let $h: [\alpha, \beta] \to R$ be strictly monotone and suppose $E \subset [\alpha, \beta]$ is such that $|h'(x)| \ge b$ holds on E for some $b \ge 0$, then $m^*h(E) \ge bm^*E$, where m^* is the (Lebesgue) outer measure.

We can rewrite (1.1) as

(2.1)
$$f_1(x) = -f_2(g_1(x, y)) - f_3(g_2(x, y)) - f_4(g_3(x, y)) + f_5(g_4(x, y)) + f_6(g_5(x, y)), \quad (x, y) \in T$$

where $g_1(x, y) = \frac{x}{y} - x$, $g_2(x, y) = y - x$, $g_3(x, y) = 1 + x - y - \frac{x}{y}$, $g_4(x, y) = \frac{x}{y}$, $g_5(x, y) = y$ and $T = \{(x, y) | 0 < x < y < 1\}$.

 $g_5(x, y) = y$ and $T = \{(x, y) | 0 < x < y < 1\}$. Let $X = [\alpha, \beta] \subset]0$, $1[(\alpha < \beta)$ be an arbitrary closed interval. We shall show

that f_1 is bounded on X.

Let Y=]0, 1[and \mathcal{B} be the class of all Lebesgue measurable subsets of Y with Lebesgue measure m. We can choose a sufficiently small $\eta>0$ such that the set

$$D = \{(x, y) \in T | x \in X, (y+\eta)^2 \le x\}$$

is in D.

Since $\frac{\partial}{\partial y} g_i(x, y)$ (i=1, 2, ..., 5) are continuous and non-vanishing on the closure \overline{D} of D in R^2 , and since \overline{D} is compact, there exists b>0 such that

$$\left|\frac{\partial}{\partial y} g_i(x, y)\right| \ge b$$
 for all $(x, y) \in \overline{D}$.

Thus for each $x \in X$.

$$\left|\frac{\partial}{\partial y} g_i(x, y)\right| \ge b$$
 for all $y \in \overline{D_x}$,

and therefore the functions $g_i(x, \cdot)$ are strictly monotone on $\overline{D_x}$. So, by Lemma 3, $m^*(g_i(x, E)) \ge bm^*E$ for all $E \subset D_x$.

Figure-T

Now we claim that $g_i \in \mathcal{F}(D)$ and thereby the boundedness of f_1 on X follows from Theorem 2. In fact, let $\varepsilon > 0$ be given. Choose $\delta = b\varepsilon > 0$. Then for any $F \in \mathcal{B}$ with $m(F) < \delta$ and for each $x \in X$, we have

$$m^*\big((g_i)_x^{-1}(F)\big) \leq \frac{1}{b} \, m^*\big(g_i(x,\,(g_i)_x^{-1}(F))\big) \leq \frac{1}{b} \, m^*(F) < \varepsilon.$$

Hence $(g_i)_x^{-1}(F)$ is contained in some measureable set in Y of measure less than ε . As the closed interval $[\alpha, \beta]$ is arbitrary, this proves the local boundedness of f_1 on]0, 1[. Since the f_i 's (i=1, 2, 3, 4) play symmetric roles in (1.1) we have indeed established the following theorem.

Theorem 4. If f_i : $]0,1[\rightarrow R$ are measurable functions satisfying (1.1), then they are all locally bounded.

From Theorem 4, it follows that the measurable solutions f_i 's of (1.1) are locally integrable and then by adapting similar techniques employed in ([1], Theorem 3) (which is now considered as standard in the theory of functional equations), it can be shown that the derivatives of all orders of the f_i 's exist on [0, 1[.

§ 3. Main results

We provide the measurable solutions of (1.1) through a sequence of auxiliary results. The first two propositions follow from ([1], Lemma 7, Theorem 4 and Lemma 5).

Proposition 5. A measurable function $F: [0, 1] \rightarrow R$ satisfies the equation

$$F(pq) + F(p(1-q)) + F((1-p)q) + F((1-p)(1-q)) = 0$$

for all $p, q \in]0,1[$ if, and only if,

$$F(p) = 4ap - a$$
 for all $p \in]0, 1[$,

where a is an arbitrary constant.

Proposition 6. The measurable solutions $F: [0, 1] \rightarrow R$ of

$$F(pq) - F(p(1-q)) - F((1-p)q) + F((1-p)(1-q)) = 0$$

for all $p, q \in]0, 1[$ are given by

$$F(p) = ap^2 - ap + b \log p + c, p \in]0, 1[$$

where a, b, c are arbitrary constants.

Remark. From now on all functions occurring in this section are from]0, 1[into R and all equations displayed are supposed to hold for all variables in]0, 1[(unless otherwise specified).

Proposition 7. The measurable solutions of

(3.1)
$$F(pq) + G(p(1-q)) + G((1-p)q) + F((1-p)(1-q)) = 0$$
 are given by

(3.2)
$$\begin{cases} F(p) = bp^2 + (2a - b)p - c\log p - d - a, \\ G(p) = -bp^2 + (2a + b)p + c\log p + d, \end{cases}$$

where a, b, c, d are arbitrary constants.

PROOF. Replacing p by 1-p in (3.1) and adding the resultant to (3.1), we obtain

$$(F+G)(pq)+(F+G)(p(1-q))+(F+G)((1-p)q)+(F+G)((1-p)(1-q))=0,$$

from which it follows by Proposition 5 that

(3.3)
$$F(p) + G(p) = 4ap - a,$$

where a is a constant. With the use of (3.3) and (3.1) we get

$$H(pq)-H(p(1-q))-H((1-p)q)+H((1-p)(1-q))=0$$

where H(p) := G(p) - 2ap. By Proposition 6, we obtain

$$H(p) = -bp^2 + bp + c \log p + d$$

which in turn yields the asserted form of G in (3.2). This, together with (3.3) yields the sought for form of F in (3.2).

Proposition 8. The solutions of

$$F(pq) + G(p(1-q)) - G((1-p)q) - F((1-p)(1-q)) = 0$$

are given by

$$F = a$$
 and $G = b$

where a, b are arbitrary constants.

PROOF. From

$$F(pq) - F((1-p)(1-q)) = G((1-p)q) - G(p(1-q))$$

and the symmetry of the left side and the antisymmetry of the right side in p and q we get

$$F(pq) - F((1-p)(1-q)) = 0 = G((1-p)q) - G(p(1-q)).$$

Putting u=pq in the equation of F we can rewrite it as

$$F(u) = F\left(1 - p - \frac{u}{p} + u\right)$$
 for all $p \in]u, 1[$

for each $u \in]0, 1[$. This is equivalent to

$$F(u) = F(t)$$
 for all $t \in [0, (1-\sqrt{u})^2]$

for each $u \in]0, 1[$. This constancy of F on the intervals $]0, (1-\sqrt{u})^2[$ for each $u \in]0, 1[$ implies that F is constant on]0, 1[. Similarly G is also constant.

Proposition 9. The measurable solutions of

(3.4)
$$f_1(pq) + f_2(p(1-q)) + f_3((1-p)q) + f_4((1-p)(1-q)) = 0$$
 are given by

(3.5)
$$\begin{cases} f_i(p) = bp^2 + (a-b)p - c\log p + d_i, & i = 1, 4, \\ f_i(p) = -bp^2 + (a+b)p + c\log p + d_i, & i = 2, 3, \end{cases}$$

where a, b, c, d_i 's are constants with $a+d_1+d_2+d_3+d_4=0$.

PROOF. Replace p by 1-p and q by 1-q in (3.4), then add and subtract the resultant to (3.4) respectively to get

(3.6)
$$(f_1+f_4)(pq)+(f_2+f_3)(p(1-q))+(f_2+f_3)((1-p)q)+ +(f_1+f_4)((1-p)(1-q))=0,$$

(3.7)
$$(f_1 - f_4)(pq) + (f_2 - f_3)(p(1-q)) - (f_2 - f_3)((1-p)q) - (f_1 - f_4)((1-p)(1-q)) = 0.$$

By applying Propositions 7 and 8 to (3.6) and (3.7) respectively we get

$$(f_1+f_4)(p) = 2bp^2 + (2a-2b)p - 2c \log p + e_1,$$

$$(f_2+f_3)(p) = -2bp^2 + (2a+2b)p + 2c \log p + e_2$$

with $a+e_1+e_2=0$, and

$$(f_1-f_4)(p)=e_3,$$

$$(f_2-f_3)(p)=e_4.$$

This proves (3.5) with $d_1=(e_1+e_3)/2$, $d_4=(e_1-e_3)/2$, $d_2=(e_2+e_4)/2$ and $d_3=(e_2-e_4)/2$.

Theorem 10. The measurable solutions of the functional equation (1.1) are given by

$$f_{i}(p) = 4ap^{3} + (b-9a)p^{2} + c_{i}p + cp \log p + e_{i} \log p + d_{i}, \quad i = 1, 4$$

$$f_{i}(p) = 4ap^{3} - (b+9a)p^{2} + c_{i}p + cp \log p + e_{i} \log p + d_{i}, \quad i = 2, 3$$

$$f_{5}(p) = -6ap^{2} + (6a-2b+c_{2}-c_{4})p + c[p \log p + (1-p) \log (1-p)] + (e_{1}+e_{2}) \log p + (e_{3}+e_{4}) \log (1-p) + d_{5},$$

$$f_{6}(p) = -6ap^{2} + (6a-2b+c_{3}-c_{4})p + c[p \log p + (1-p) \log (1-p)] + (e_{1}+e_{3}) \log p + (e_{2}+e_{4}) \log (1-p) + d_{6}$$

where a, b, c, c_i, d_i, e_i , are constants with

$$4b+c_1-c_2-c_3+c_4=0$$
 and $b-5a+c_4+d_1+d_2+d_3+d_4=d_5+d_6$.

PROOF. From section 2 we may assume that the f_i 's have derivatives of all orders. Differentiate (1.1) twice, first with respect to p and then with respect to q, to obtain

$$F_1(pq) - F_2(p(1-q)) - F_3((1-p)q) + F_4((1-p)(1-q)) = 0,$$

where

(3.8)
$$F_i(p) := pf_i''(p) + f_i'(p), \quad (i = 1, 2, 3, 4).$$

By Proposition 9 the F_i 's are given by

(3.9)
$$F_i(p) = Bp^2 + (A - B)p - C\log p + D_i, \quad i = 1, 4,$$
$$F_i(p) = Bp^2 - (A + B)p - C\log p - D_i, \quad i = 2, 3,$$

where A, B, C, D_i are constants with $A+D_1+D_2+D_3+D_4=0$. Using (3.8) and (3.9) we get

$$f_i(p) = \frac{B}{9} p^3 + \frac{A - B}{4} p^2 - C(p \log p - 2p) +$$

$$+ D_i p + e_i \log p + d_i, \quad i = 1, 4,$$

$$f_i(p) = \frac{B}{9} p^3 - \frac{A + B}{4} p^2 - C(p \log p - 2p) -$$

$$- D_i p + e_i \log p + d_i, \quad i = 2, 3,$$

where e_i , d_i are constants. This establishes the asserted form of f_i 's for i=1, 2, 3, 4, which in turn, from (1.1), yields the form of f_5 and f_6 . This proves the theorem.

Corollary 11. The measurable solutions of the functional equation (1.1) with $f_1=f_2=f_3=f_4=f$ are given by

$$f(p) = 4ap^3 - 9ap^2 + c_0p + cp \log p + e_0 \log p + d,$$

$$f_i(p) = -6ap^2 + 6ap + c[p \log p + (1-p) \log (1-p)] +$$

$$+2e_0 \log p (1-p) + d_i, \quad i = 5, 6,$$

where a, c_0, c, e_0, d, d_i are constants with $-5a+c_0+4d_0=d_5+d_6$.

Corollary 12. The measurable solutions of the functional equation

$$f(pq)+f(p(1-q))+f((1-p)q)+f((1-p)(1-p)) =$$

$$= f(p)+f(1-p)+f(q)+f(1-q)$$

for all $p, q \in]0, 1[$ are given by

$$f(p) = 4ap^3 - 9ap^2 + 5ap + cp \log p + d$$

where a, c, d are constants. (This is Theorem 5 in [1]).

References

Z. Daróczy and A. Járai, On the Measurable Solution of a Functional Equation of the Information Theory, Acta Math. Acad. Sci. Hungaricae 34 (1979), 105—116.
 I. P. Natanson, Theory of Functions of a Real Variable, Volume 1, Frederick Ungar Publishing Co., New York, 1964.

FACULTY OF MATHEMATICS UNIVERSITY OF WATERLOO WATERLOO, ONTARIO CANADA N2L 3G1

(Received February 8, 1978; in revised form September 7, 1984.)