On functional equations and measures of information I

By PL. KANNAPPAN and C. T. NG (Waterloo, Ontario)

§ 1. Introduction

In analysing the additivity property of Shannon’s entropy one comes across
the functional equation

Zn: ZM;f(Pin) = é;f(!’i) +J§; f(q;).

i=1j=

Recently Z. DARGCzY and A. JARAI [1] solved this equation with n=m=2 for
(Lebesgue) measurable functions f.

The purpose of the present paper is to obtain the measurable solutions
fi: 10, 1[—~R of the functional equation

(1.1)
L) +£(p(1—9)+£((0-p)a)+4((1-p)(1—9) = fi(p)+fs(@) (p, 4€10, 1]

which is a generalization of the equation considered in [1].

§ 2. Some preliminary results

Let X be a set and (Y, #, m) be a finite measure space. Let 2 be the family of
all subsets DE X XY satisfying the property

llélg m(D,) >0, where D,:={ycY|(x, y)ED}cA.

Let #(D)={g: D—~Y} be the family of all functions g such that for all ¢=0, there
exists >0 so that for each E€# with m(E)<d and each x€X, the set g (E):=
:={y€Y |g(x, y)EE} is contained in some set B (depending upon x and E) €# with
m(B)<e. We present the following Lemma without a proof.

Lemma 1. Let D2 and g€F(D) for i=1,2,...,n. Then there exists
6=0 so that for each E€B with m(E)<9,

U (2):%(E) Z D for every x€X,
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that is, for each x€X there exists y €D, such that
gi(x,y)CE forall i=1,2,...,n
Using Lemma 1 we can prove the following Theorem.

Theorem 2. Let D2, g F (D), h;: Y—-R and h: X—~R be functions satis-
fying the functional equation

h(x) = 51 h(g(x, ¥) (x, »)ED.

If the functions h; are measurable, then h is bounded on X.
The proofs of the above results are analogous to those used in [1].

We now proceed to show that if f;’s are (Lebesgue) measurable functions satis-
fying the functional equation (1.1), then they are locally bounded. We shall make
use of the following lemma ([2], Lemma 3, p. 210) in Natanson.

Lemma 3. Let h: [« f]—=R be strictly monotone and suppose EC|a, B] is such
that |h'(x)|=b holds on E for some b=0, then m*h(E)=bm*E, where m* is
the ( Lebesgue) outer measure.

We can rewrite (1.1) as

Li(x) = =fao(&1(x, »)—fa(82(x, 1)) —fi(ga(x, ¥))+

2.1
( ) +f5(gl(x! y)) +fs(g5(xs y))! (x’ }’)€T

3 X x
where g,(x,y =—y——x, g:(x,y)=y—x, gs(x,y)=l+x—y—;. ga(x,y)=;-.

gs(x,y)=y and T={(x,y)|0<x<y<l1}.

Let X=[a, f]c]0,1[ (x<p) be an arbitrary closed interval. We shall show
that f; is bounded on X.

Let Y=]0, 1[ and # be the class of all Lebesgue measurable subsets of ¥ with
Lebesgue measure m. We can choose a sufficiently small #=>0 such that the set

D = {(x, y)ET|x€X, (y+n)* = x}
isin 2.

Since %gi(x, y) (i=1,2,...,5) are continuous and non-vanishing on the

closure D of D in R?, and since D is compact, there exists b>0 such that

% gi(x,»)|=b for all (x,y)eD.

Thus for each x€X,
P I S 9

and therefore the functions g;(x, +) are strictly monotone on D,. So, by Lemma 3,
m*(g;(x, E)) = bm*E for all EcCD,.
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Now we claim that g,€ # (D) and thereby the boundedness of f; on X follows from
Theorem 2. In fact, let £¢=>0 be given. Choose é=be=0. Then for any Fc#
with m(F)<dJ and for each x€X, we have

m* (&) (F)) = 5 m* (&,(x. (22 (F)) = 3 m* (F) < e

Hence (g;);*(F) is contained in some measureable set in ¥ of measure less than e.

As the closed interval [a, f] is arbitrary, this proves the local boundedness of
/1 on 10, 1[. Since the f;’s (i=1, 2, 3, 4) play symmetric roles in (1.1) we have indeed
established the following theorem.
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Theorem 4. If f;: 10, [~ R are measurable functions satisfying (1.1), then they
are all locally bounded.

From Theorem 4, it follows that the measurable solutions f;’s of (1.1) are locally
integrable and then by adapting similar techniques employed in ([1], Theorem 3)
(which is now considered as standard in the theory of functional equations), it can
be shown that the derivatives of all orders of the f’s exist on ]0, 1[.

§ 3. Main results

We provide the measurable solutions of (1.1) through a sequence of auxiliary
results. The first two propositions follow from ([1], Lemma 7, Theorem 4 and
Lemma 5). '

Proposition 5. A measurable function F: )0, 1[—~R satisfies the equation
F(pq)+F(p(1-9))+F((1-p)q)+F((1-p)(1—9)) =0
for all p,q€l0,1] if, and only if,
F(p) =4ap—a for all p€)o, 1],
where a is an arbitrary constant.
Proposition 6. The measurable solutions F: )0, 1[—~R of
F(pg)—F(p(1-9)—F((1-p)g)+F((1-p)(1—¢)) =0
for all p,q€]0, 1] are given by
F(p) =ap*—ap+blog p+c, pe€lo, 1|
where a, b, ¢ are arbitrary constants.

Remark. From now on all functions occurring in this section are from ]0, 1]
into R and all equations displayed are supposed to hold for all variables in ]0, 1]
(unless otherwise specified).

Proposition 7. The measurable solutions of

(3.1) F(pg)+G(p(1-9))+G((1-p)g)+F((1-p)(1—¢)) =0
are given by

= 2 2a— o .
(3.2) {F(P) bp*+(Qa—b)p—clog p—d—a,

G(p) =—bp*+(2a+b)p+clog p+d,
where a, b, c,d are arbitrary constants.

ProOF. Replacing p by 1—p in (3.1) and adding the resultant to (3.1), we
obtain

(F+G)(pq)+ (F+G)(p(1-9) +(F+G)((1-p) 9)+(F+G)((1 —p)(1-9)) = 0,
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from which it follows by Proposition 5 that
(3.3) F(p)+G(p) = 4ap—a,
where a is a constant. With the use of (3.3) and (3.1) we get
H(pq)—H(p(1—-q)—H((1-p)g)+H((1-p)(1—¢q)) =0
where H(p):=G(p)—2ap. By Proposition 6, we obtain
H(p) =—bp*+bp+clogp+d

which in turn yields the asserted form of G in (3.2). This, together with (3.3) yields
the sought for form of F in (3.2).

Proposition 8. The solutions of
F(pg)+G(p(1-9)—G((1-p)g)—F((1-p)(1—¢)) =0
are given by
F=a and G=b

where a, b are arbitrary constants.

Proor. From
F(pq)—F((1-p)(1-9)) = G((1-p)q)-G(p(1-¢)
and the symmetry of the left side and the antisymmetry of the right side in p and
q we get
F(pg)—F((1-p)(1-9)) = 0 = G((1-p)g)-G(p(1—9)).

Putting w=pq in the equation of F we can rewrite it as

F(u) = F[l—p—%-}m] for all p€lu, 1
for each u€]0, 1[. This is equivalent to

F(u) = F(r) for all 1€]0, (1=Yu)[

for each u€]0,1[. This constancy of F on the intervals 0, (1—Vu)}[ for each
u€]0, 1[ implies that F is constant on ]0, 1[. Similarly G is also constant.

Proposition 9. The measurable solutions of

(3.4) Li(pD)+2(p(1 =) +/o((1—p)g) +/((1—p)(1—¢)) = 0

are given by

(3.5) {_ﬂ(p) = bp*+(a—b)p—clogp+d;, i=14,
fi(p) =—bp*+(a+b)p+clog p+d;, i=273,

where a, b, c,d;’s are constants with a+d,+dy+ds+d,=0.
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Proor. Replace p by 1—p and ¢ by 1—¢g in (3.4), then add and subtract the
resultant to (3.4) respectively to get

(L +) () +(fa+) (P (1 - @) +(fe+) (1 -p)g) +
+(A+A([1-p)(1-9) =0,
L= P +(fa=/) (P =)~ (fa=S)((1-P)g) -
—(A=A((1-p)(1-q))=0.
By applying Propositions 7 and 8 to (3.6) and (3.7) respectively we get
(i+/)(p) = 2bp*+(2a—2b)p—2clog p+e,,
(fa+f)(p) =—2bp*+(2a+2b)p+2clog p+e,
with a+e,+e,=0, and

(3.6)

3.7

(fi—f)(p) = e,
(=1 (p) = ey.
This proves (3.5) with dy=(e;+e,)/2, dy=(e,—ey)/2, dy=(ey+ey)/2 and dy=
=(e;—ey)/2.
Theorem 10. The measurable solutions of the functional equation (1.1) are given by
fi(p) = 4ap®+(b—9a)p*+c;p+cplog p+elog p+d;, i=1,4
Ji(p) = 4ap®—(b+9a)p*+c;p+cplog p+elog p+d;, i=2,3
fs(p) = —6ap®+(6a—2b+cy—c)p+c[plog p+(1—p)log (1-p)l +
+(e; +e;) log p+(es+e,) log (1—p) +d;,
fo(p) =—6ap*+(6a—2b+cs—c,)p+c[plog p+(1—p)log (1-p)l+
+(e1+ey) log p+(e;+ey) log (1-p)+ds
where a, b, c, ¢;,d,, e;, are constants with
4b+cy—cy—cs+cy; =0 and b—Sa+cy+d,+dy+ds+d, = dg+ds.

ProoF. From section 2 we may assume that the f;’s have derivatives of all
orders. Differentiate (1.1) twice, first with respect to p and then with respect to ¢,
to obtain

Fi(pq)—Fy(p(1—9))— F((1-p)g)+ Fi((1—p)(1—q)) = 0,
where
(3.8) Fi(p):=pfi’(P)+fi(p), (i=123,4).

By Proposition 9 the F;’s are given by

Fi(p) = Bp*+(A—B)p—Clog p+D;, i=1,4,

(3.9)
Fi(p) = Bp*—(A+B)p—Clogp—D;, i=2,3,
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where A4, B,C, D; are constants with A4+D,+D,+D;+D;=0. Using (3.8) and
(3.9) we get

B , A-B
fi(p) = 5 PP +—5—p*~C(plog p—2p)+

+D;p+elogp+d;,, i=1,4,

B A+B
f;(p)=jp"— 2 p*—C(plog p—2p)—

_‘Dip.i'el‘ logp+dh i= 21 3’

where e;, d; are constants. This establishes the asserted form of f;’s for i=1,2, 3,4,
which in turn, from (1.1), yields the form of f; and fg. This proves the theorem.

Corollary 11. The measurable solutions of the functional equation (1.1) with
h=fi=fs=fy=f are given by

S(p) = 4ap®*—9ap*+cop+cplog p+e,log p+d,
fi(p) = —6ap*+6ap+c[plog p+(1—p)log (1-p)]+
+2eylog p(1—p)+d;, i=35,6,
where a, c,, ¢, ey, d,d; are constants with —5a+cy+4d,=d;+d,.
Corollary 12. The measurable solutions of the functional equation
Sp)+f(p(1=@)+/((1 =p)g)+/ (1 -p)(1-p)) =
=f(p)+f(1-p)+f(g)+/(1—q)
for all p,q€l0, 1] are given by
f(p) =4ap®—9ap*+Sap+cplog p+d
where a,c,d are constants. (This is Theorem 5 in [1]).
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