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By G. T. DIDERRICH*’ (Milwaukee, Wis.)
1. Introduction. An information function f is a real valued function defined

on [0,1] which satisfies the following functional equation and boundary con-
ditions

S@+0-x)f [l—fx] =f+d —y)f( lfy]

whenever x, y€[0,1] and x+y=1

with £(0)=s(1) and f[%]:l.

These conditions imply that f(x)=f(1—x), x€[0, 1] and f(0)=0. The above func-
tional equation is called the fundamental equation of information because the
problem of characterizing Shannon’s measure of entropy can be reduced to a study
of it. (For details and terminology see AczEL and DARGCzY [1]). The Shannon meas-
ure of entropy in a 2-event space

S(x) =—xlogx—(1—x)log(1—x), x€[0, 1]

(with the conventions log=Ilog, and 0log 0=0) is the most important informa-
tion function.

In [2] we have proved the following result: If fis an information function and
fis bounded on an arbitrarily small nonvanishing interval contained in ]0, 1[, then
f=S. The following question seems quite natural: Can one replace “bounded on
an arbitrary small nonvanishing interval” by “bounded on a set of positive meas-
ure” in the above statement (measurable is meant in the Lebesgue sense with u
denoting the measure). In this connection there is a result in [2].

Corollary 1.1. Suppose that, for every €>0, there is a positive constant K and
a measurable set Ex on which the information function f is bounded by K and u(Ex)=
=1=—g, then f=S.

In this paper we give a positive answer to the above question.
We prove the following:
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Theorem. Let f be an information function. If f is bounded on a set of positive
measure, then f=S.

2. Proof of the Theorem. The proof is carried out by imitating the procedure
in [1] (Section 3.4) and introducing a weaker definition of the multlphcmwe group
G;. The idea is to spread out the boundedness to larger and larger portions of
10, 1[ where intervals are replaced by measurable subsets together with the concept
of a “right-sided density point”. Some definitions follow.

Let E be a Borel subset on the real line. A point x is said to be a two-sided
density of E, if

-0+ 25

Almost all points of E are density points (see SAKS [7] Chapter 4 and RupIN [6]
Chapter 8). In an analogous way we say x is a right-sided density point, if

lim r(ENx, x+3D _ 1
50+ d

=1

with a similar definition for the concept of left-sided density point. We now proceed
to the lemmas.

Lemma 2.1. (See Jou and BAKER [3).) Let E,, E,, ..., E, and I be Borel sub-
sets of the real line with O<p(I)< <. Then

p(EN...NENT) _ Z[l wEND
n) O
From this lemma it is clear that a two-sided density point is also a right (left)-
sided density point.

Lemma 2.2. Let E,, E, be Borel subsets of the real line. Suppose that x is a two-
sided (right, left) density point of E, and E,. Then x is a two-sided (right, left) density
point of E\NE,.

Proor. We consider the two-sided case; the other cases follow in a similar
fashion. From the definition

1-

Faurvd 79 (i=12
where I;=]—3d+x, x+9J[. The preceeding lemma gives
0=1— H(ENEN 1) ad o H(E N 1) = H(E;N1y)
- 26 e 20 20

and hence the present lemma.

Lemma 2.3. Let T be a continuously differentiable transformation from an open
interval V=)a, bl to an open interval W =]c,d[. Assume that |T'|#0 on V. Let
E be a set of positive measure in V and suppose that x€E is a two-sided density point
of E. Then Tx is a two-sided density point of TE. In particular, if T'=0 (T'<0)
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and xCE is a right-sided density point of E, then Tx is a right (left)-sided density
point of TE.

Proor. We consider the 7°=0 case in the last sentence of the lemma. The
other cases follow in a similar way. Let x be a right-sided density point of E, so

30+ (S

=1

where I;=[x,x+d[. Clearly 7 is a 1—1 open mapping of V into W, hence
T(ENIs)=TENTIs. Furthermore TI; is an interval in W of the form [Tx, Tx+6,[
where 6,=u(TI;). We have by [5] (Theorem 8.26) that

(1) WTENTL) = [ |T'G)du().

Enl,
It suffices to prove that
R RTTA

to reach the desired conclusion. From (1) we obtain
inf [T'(Y)|W(ENI) = p(TENTI) = i 17" ()| n(ENT).
¥y &

= 1

YEENT,
Therefore
@ IENL) p(ENI) _ p(TENTI) _ LENL) p(ENT,)
u(Tl) plly) —  w(Th) — p(Th)  pll)
u(ls) u(Z)

where !(Eﬂlé)— llm |T’(y)| and L(ENI;)= sup |T’(»)|. But it is clear, using

yEEN
the continuity of T and the definitions, that the left and right extremities of (2)
go to 1 as J,—~0. This completes the proof.

Definition. Let f be a real-valued function defined on [0, 1]. The positive real
number A belongs to G, if there exist positive numbers X;, , and a Borel set I
contained in [0, 1] with O€Z, as a right-sided density point such that

I
ror-w ()| <k
for every yeI, N[0, d[ (0<d6=4,).
Roughly speaking, A belongs to G, if | f()—Af (—‘%—]l becomes eventually

bounded near [0, [ on a set whose measure becomes closer and closer to d as é—0.

Lemma 2.4. G, is a multiplicative subgroup of 10, <[, the multiplicative group
of positive reals.

ProOF.
(a) Clearly 1€G,.

(b) Suppose that A€G,, we want to show that %E G,. The definition yields

l.
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positive numbers k,, §, and a Borel set 7; with 0¢/; as a right-sided density point
such that

)

10-#(2) <%

for each ycI,N[0, 6[ (0<=d=4,). Now put I°=IT‘. Lemma 2.3 implies that 0¢/,

is a right-sided density point. Choose 0460_67‘. Hence, x€I,N[0, 5, implies

that x=2 where yeI,N[0, é,[. Thus, dividing (3) by 2, we obtain

@

&)~ Geh) = |f[%] -}f(y)l <

for each x€l,N[0, d[ (0<=d=4d,). Hence we proved %GG,.

(c) We now prove 4, 2,€G, imply 4,7,€G;. Our hypothesis gives

"ﬂki

) lror—ar (2)

for yeI,N[0, 6] where 0<d6=4; (i=1,2). Put I,=I,NL4, and &,=min {5,, 5,1, }.
It follows from Lemma 2.2 and Lemma 2.3 that 0 is a right-sided density point of /,.

We claim that

©
for every x€I,N[0, [ where 0<6=5,. This follows by multiplying (5), in the

i=2 case, by 4, and noting that xcl,C/l,/; implies -%GI,,. Also (5), in the i=1
case, yields
a) reo-nr{) <k

“1

for every x€I,N[0, [ (0<=6=49,). Adding (6) and (7) results in

< ky+ 4, kg

1@ -t (75

for every x€/,N[0, 8[ (0=5=4,). This completes the proof of the lemma.

Lemma 2.5. If an information function f is bounded on a set of positive measure
E, then G;=]0, .

PrOOF. Almost all points in E are two-sided density points, a fortori, right-
sided density points. Fix a density point x in £(]0, 1[. Assume that y—~0+ such
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that x+y=1. Then the fundamental equation gives

® r@+a-91{12) =ro+a-ns()-

Now %QE if and only if y€/=(1—xE~'). An application of Lemma 2.3,

with T(z)=1—xz"%, shows that 0¢/ is a right-sided density point of J. Equation
(8) gives

= 2k

r@-0-01(:55) = lror-a-»s(2)

for yeIN[0,d[ and small enough =0 where k=0 is the bound for f on E. The
preceeding argument clearly proves that 1—-x€G,. Hence, G,D1—E" is the set
of density points of EN]0, 1[.

The group (Gy, -) is isomorphic to a subgroup (R,, +) of the additive
group of reals (R, +) via the mapping x—logx. But (R;, +) contains a set
of positive measure, F=log (1—E?*). The linear Steinhaus theorem (sece KEMPER-
MAN [4]. Section 2) implies that F+F contains a non-degenerate interval. So
(R;, +)=(R, +), hence G,=]0, <[ which completes the proof of the lemma.

Lemma 2.6. If G;=], «[, then every point x in 10, 1[ is in a set E, of positive
measure with x as a right-sided density point on which f is bounded. Indeed, E.=
=x(1—=15_,)"* where I,__ is the Borel set associated with 1—Xx in the definition

of Gy;.
ProoF. Now 1—x€G, (0<=x=<1). Therefore the definition of G, yields posi-
tive numbers k,, d, and a Borel set / with 0€/ as a right-sided density point such that

© f-a-27(1) < &

for yeIN[0,d[ (0<d=4,). The fundamental equation (8) together with (9)
then gives

(10)

<k

reo-a-»s(%)

for yeIN[0, §[. But Lemma 2.3, using T(z)=x(1—z)"?, showsthat E.=x(1—1)"*
with (10) has the desired properties.

Lemma 2.7. If f is bounded on a Borel set of positive measure in 10, 1], then f
is bounded on Borel sets of measure arbitrarily close to 1.

Proor. We use a modified Heine—Borel type of argument. Let F=[a,b]
(a<b) be a given closed interval in ]0, 1[. Let N=2 be a given positive integer.
Let T denote the set of real numbers 7 such that a=7=b and there is a Borel set

E contained in [a,t] with ,u(E)E(&'—a)[I—}i\‘r on which f is bounded. Let
e=sup T. By our hypothesis and Lemma 2.6, it is clear that c=>a.
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We now argue that ¢€7. Lemma 2.6 shows that c is a left-sided density point
of El=1-E,;_. on which fis bounded. Hence for ¢ sufficiently close to ¢ (t<c)
we can find a measurable set £, contained in [, ¢] on which fis bounded and

(11) ,u(El)“é(c—r)(l—%].

But by the definition of sup and by our hypothesis, we can find a measurable set E,
contained in [a, t] on which fis bounded and

(12) wE) = - (1-5).

Thus (11) and (12) yield the set E=E,UE,C[a,c] on which f is bounded and

u(E) = (c—a)[l —-%

which demonstrates that c€T.
Let E,c[a, c] be the set associated with ¢, so

a3) wE) = (-a(1-2)

and fis bounded on E,. Again by Lemma 2.6, we can find a Borel set E,, disjoint
from E,, with ¢ as a right-sided density point such that E.C[c, ¢;] for some
¢, >c¢ with

1
(14) kB =@~ 1

on which fis bounded. Clearly f is bounded on E=E,UE,C|a, ¢;] and (13) and
(14) yield

W(E) = wE)+u(E) = ~a) (13} e -0 (1-3) = @-a1-7)-

But this contradicts the definition of ¢ and, as a consequence, ¢ cannot be an interior
point, so ¢=b. Hence we proved that every closed interval [a, b] contains a meas-

urable set E such that p(E) ;(b—a)[l —%} on which f is bounded. To complete

the proof of the lemma, take [a, b}=[%, 1—-%] with k sufficiently large and N

sufficiently large.

The theorem now follows from Corollary 1.1 of [2]. The reader is referred to
[5] for simplified proofs of the main result here and the result in [2].
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