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Gauss bounds of quadratic extensions

By FRANZ LEMMERMEYER (Saarbrücken)

Abstract. We give a simple proof of results of Lubelski and Lakein on Gauss
bounds for quadratic extensions of imaginary quadratic Euclidean number fields.

1. Preliminaries

Let k be a number field with class number 1; in the following, N will
denote the absolute value of the norm, i.e. Nα = |Nk/Qα|. We define the
Euclidean minimum M(k) by M(k) = inf {δ > 0 : ∀ ξ ∈ k ∃ η ∈ Zk such
that N(ξ − η) < 1}. An ideal I in the maximal order ZK of a quadratic
extension K/k is called primitive if it is not divisible by any non-unit
a ∈ Zk. Since h(k) = 1, there exists a relative integral basis {1, ω} of ZK .

The following lemma and its proof are well known for k = Q
([2], 14.12):

Lemma 1. Let k be a number field with class number 1, and suppose
that K/k is a quadratic extension. Then every primitive ideal I has the
form I = (a + ω)Zk + cZk for algebraic integers a, c ∈ Zk, where c is a
generator of the ideal cZk = NK/kI.

Proof. Choose α = a+bω such that I = (α, c) (cf. [2], 6.19). Writing
cω ∈ I as a linear combination of a + bω and c shows easily that b | a and
b | c. Since I is primitive, b must be a unit, and we may assume without
loss of generality that b = 1. ¤
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2. Quadratic number fields

The following theorem is well known (see e.g. Holzer [3]); we will
give a very simple proof which we will generalize in the next section.

Theorem 2. Let K = Q(
√

m ) be a quadratic number field with ring
of integers ZK = Z[ω] and discriminant ∆, where

ω=

{√
m, if m ≡ 2, 3 mod 4,

1+
√

m
2 , if m ≡ 1 mod 4.

and ∆=

{
4m, if m ≡ 2, 3 mod 4,

m, if m ≡ 1 mod 4.

Let µK be defined by µK =





1, if ∆ = 5
√

∆/8, if ∆ ≥ 8
√
−∆/3, if ∆ < 0.

Then each ideal class of K contains an integral ideal of norm ≤ µK .

Proof. Let [I] be an ideal class generated by an integral ideal I which
we may assume to be primitive. Then I = (γ, c) with (c) = NK/QI and
γ = a + ω = s + 1

2

√
∆, where 2s ∈ Z. Applying the Euclidean algorithm

to the pair (s, c) we see that there exists a γ = r + 1
2

√
∆ ∈ I such that

|r| ≤ c

2
if ∆ < 0,

c

2
≤ |r| ≤ c if c2 >

∆
5

,

c ≤ |r| ≤ 3
2
c if

∆
8

< c2 <
∆
5

.

We claim that |Nγ| ≤ 1
4 (c2 − ∆) < c2 provided that c2 > µK ; this

shows that I1 = γ′c−1I ∼ I (where γ′ denotes the algebraic conjugate
of γ) is an integral ideal such that [I1] = [I] and NI1 < NI. Repeating
this procedure if necessary we eventually arrive at an integral ideal In ∼ I
with norm ≤ µK .

The claimed inequality is proved by going through all the cases:

1. ∆ < 0: here |Nγ| =
∣∣∣r2 − ∆

4

∣∣∣ ≤ c2 + |∆|
4

< 1 since c2 > µK =
|∆|
3

.

2. c2 >
∆
5

: here −c2 =
c2 − 5c2

4
< r2 − ∆

4
< c2.

3.
∆
8

< c2 <
∆
5

: then −c2 = c2 − 8c2

4
< r2 − ∆

4
<

9c2 − 5c2

4
= c2.
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The only possibility not covered by the proof is c2 = ∆/5; since the odd
part of ∆ is squarefree, this will happen if and only if ∆ = 5 and c = ±1.
This completes the proof of the theorem. ¤

3.2. Quadratic extensions of imaginary quadratic fields

Let k = Q(
√−n ), where n ∈ {−1,−2,−3,−7,−11}. These are the

Euclidean among the imaginary quadratic fields, and it is known (cf. [5])
that for all ξ ∈ k there exist integers η ∈ Zk such that N(ξ − η) ≤ M ,
where the Euclidean minimum M = M(k) is given by

M =





|n|+ 1
4

, if ∆ ≡ 0 mod 4,

(|n|+ 1)2

16|n| , if ∆ ≡ 1 mod 4.

Fix an embedding of k into C; then Nξ = |ξ|2 for all ξ ∈ k, and the above
result translates into

Lemma 3. Let k = Q(
√−n ) be Euclidean; then for all ξ ∈ k there

exist η ∈ Zk such that |ξ − η|2 ≤ M .

Now we redo our computations in the proof of Theorem 1, assuming
a, c, m, etc. to be integers (resp. half-integers) in k; the discriminant ∆ is
now replaced by the relative discriminant d = discK/k(1, ω), and we have
∆ = disc(K/Q) = d2

0Nd, where d0 = disc(k/Q). Now

|r2 − d/4|
|c|2 ≤ 4|r2|+ |d|

4|c|2 ≤ 4M |c|2 + |d|
4|c|2 ,

and this expression is < 1 if and only if

(1) |c|2 >
|d|

4(1−M)
=

√
∆

4|d0|(1−M)
.

For k = Q(
√−1 ) we have M(k) = 1

2 and d0 = −4, hence µK =
√

∆/8.
Evaluating (1) for the other fields gives

Theorem 4. Let k = Q(
√−n ) be Euclidean, and let K/k be a quad-

ratic extension with absolute discriminant ∆. Then every ideal class of K
contains an integral ideal of norm ≤ µK , where

µK =
√

∆
4|d0|(1−M)

=

{ √
∆/8, if n ∈ {−1,−2,−3,−11};

√
∆/12, if n = −7.
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These are exactly the bounds given by Lakein [4]; another proof is
due to Mordell [7]. The result in the special case k = Q(

√−1 ) was
already known to S. Kuroda and J. A. Nyman (cf. [4]). After the comple-
tion of this article I discovered that S. Lubelsky (in his posthumously
published paper [6]) had already found the formula connecting the bounds
given in Theorem 2 with the Euclidean minima of imaginary quadratic
number fields; his results remained unnoticed, probably because he used
the language of quadratic forms.

In [1], Robin Chapman has generalized Theorem 2 to quadratic ex-
tensions of imaginary quadratic fields with class number 1.
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