Inhomogeneous discriminant form and index form equations
and their applications

By I. GAAL (Debrecen)

1. Introduction

Let L, K be algebraic number fields with L CK, [L:Q]=!/ and [K:L]=n=3.
Let o,=1, a,, ..., o be algebraic integers of K, linearly independent over L and let
0#B€Z,.") In our previous papers [2], [3] we considered inhomogeneous norm
form equations of type

e)) N (e +ogxa+... + o x,+4) = B

where Xxi, ..., x,€Z,_are domiﬂting variables, and A€Zg is a non-dominating
variable such that?) |;1|-=:(lrgla‘xt |xi|)'—¢ (£ is a given small positive constant). Under

certain assumptions concerning o, ..., %, in [2], [3] we gave effective upper bounds
for the sizes of all solutions x;, ..., x;, A of equation (1). Our theorems generalized
some results of SPRINDZUK [23], GYOrY and Papp [20], [21] and KoTOV [22] con-
cerning norm form equations.

The purpose of the present paper is to generalize discriminant form and index
form equations to the inhomogeneous case in a similar way, as we generalized norm
form equations. We shall derive effective upper bounds for the solutions of inhomo-
geneous discriminant form and index form equations. Further, we shall present
some applications to algebraic integers with given discriminant and with given index,
respectively.

Our results will be deduced from an effective theorem of GyGry [8] concerning
algebraic integers with given degree and given discriminant.

2. Results

Let LcK be algebraic number fields as above with /=[L:Q] and let [K:L]=
=n=2. Further let a,=1, a,, ..., o, be algebraic integers in K, linearly independent
over L, and let 0#3¢Z,. Let us consider the discriminant form equation

2 Dy (3% ... +04X,) = 6
1) Z, will denote the ring of integers of an arbitrary algebraic number field M.

] ]_a:-I denotes the size of an algebraic number «, i.e. the maximum absolute value of its con-
jugates.
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in xp, ..., x€Z,. The discriminant form Dgjn(on Xy +... +0,. Xy) in equation (2)
is a decomposable form of degree n(n—1) with coefficients in Z, . Effective bounds
for all solutions x,, ..., x, of equation (2) were given by Gy6ry [6], [7] and later
by Gydry and Papp [19], [20]. For p-adic extensions and certain generalizations see
Gy6RY and Papp [19] and GyGry [10], [11], [13], [14], [16], [18].

As an inhomogeneous generalization of equation (2) we may consider the
equation
3) Dgjp(ayxy +... +opx,+4) = 6

where the dominating variables are Xx,, ..., x;€¢Z; and A€Zy is a non-dominating
variable such that |i|<C, max |x with a given small positive constant C,.

In order to formulate our Theorem 1, we need some further notation. Sup-

pose that in (3) la]*—-'-A (i=1, ...,k) and let |[Np,(0)|=d (d=2). Let us denote by
D, the absolute value of the dnscrrmmant of L. Let

Co = (4kE+D2(24)8-1) -1
and let
C, = n[3]/™-V exp {(5In¥)*"* [(dD})*?*(log dD,)"°**"}.

Theorem 1. If x;,. vs Xiey A is a solution of equation (3) with Xy, ..., x€Z,,
A€Zyx and |2.|-=:C., max |xi| then
(4) lrglaxk |x‘| = Co C1

In the special case =0 our theorem provides an effective upper bound for
the solutions of equation (2). Our Theorem 1 includes e.g. Theorem 4 of GyOGry
and Papp [20] (with another estimate).

Let O be an order in the field extension K/L (i.e. let O be a subring of Zg
containing Z, that has the full dimension n as a Z;-module), and suppose that O
has a relative integral basis of the form {l,a,,...,«,} over L with |¢|=4
(i=2,...,n). Let x5, ....x,€Z, and A€0. Then the discriminant of oyx,+...

. +a,x,£0 over L can be written in the form

DK{L(M!"‘ e +anxn) = [F(xn’ sesy xu)FDKIL(]s aEs ceey an)
where F(X,, ..., X,) denotes the index form of the basis {1, as, ..., ®,} of O over

"("; D i X e X Shnilait

L, which is a decomposable form of degree

‘DKIL(aﬁxS"' +rx,,x,, +’1) [G(xz’ aaay xn, A)FDKHI.(L Ooy ouny an)

where G(xg, ..., X,, A)EZ, is the index of oxs+...+0o,x,+4€0 over L with
respect to the basis {1, as, ..., o,} of O. Since

G(Xay s Koy 0) = F(XG, 0y X

hence G(X,, ..., X,,A) may be called an “inhomogeneous” index form of the
basis {1, a,, ..., a,} of O over L.
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Let 0#p€cZ,. Effective bounds for all solutions x,, ..., x,€Z, of the index
form equation

(5) F(xz, "o ey xn) — ﬂ

were given by GyYORry [6], [7] and GYORGY and PApp. These results were extended
to the p-adic case by TRELINA [24], GYOrY and Papp [19] and Gyé6ry [10], [11],
[13], [14]. We remark that recently Gy6ry [16], [18] obtained effective results on
discriminant form and index form equations also in the more general case, when
the ground ring is an arbitrary integral domain, finitely generated over Z.

Let us consider the equation

(6) G(xm'"’ xm ’1)=ﬁ

with variables x,,...,x,€Z;, and A€0, which may be called an inhomogeneous
index form equation.

Theorem 2. If x,,...,X,, A is a solution of equation (6) with x,, ..., x,€Zy,
A€O and |A]<Co max [xi| then

M max [l < exp (S [(B* 4" DD Gog [B] 4D,) T}

In the special case A=0 our Theorem 2 gives Theorem 4 of GYO6rY and PApp
[19] (with a different estimate).

Discriminant form and index form equations have several applications (see
e.g. GYORY [12]). We shall show that their inhomogeneous versions have also appli-
cations.

Let L, I and D be as above. We shall call the algebraic integers « and o* Z, -
equivalent if a—a"€Z,. In this case it is clear that Dy, («)= D,,(,-,,L(a*) In a
series of papers Gyory [4], [5], [6], [7], [8], [9], [15] examined polynomials with integer
coefficients and given discriminant. As an application of his results Gydry proved
that there are only finitely many pairwise Z -inequivalent algebraic integers « with
given degree and with given non-zero discriminant over L, and such a system of
algebraic integers can be effectively determined. Gy6ry obtained a similar result
for algebraic integers with given index. Further, he extended these results to the
more general case when the ground ring is an arbitrary integral domain, finitely
generated over Z (see [17]).

In the remaining part of this paper we shall give certain inhomogeneous versions
of these theorems concerning algebraic integers of given discriminant and of given
index, respectively. We prove in an effective way that there are only finitely many
pairwise Z-inequivalent algebraic integers a of given degree (over L) such that
o+ is of given degree and of given discriminant over L for some algebraic integer
2 which is “small” compared to « in a certain sense. In the case L=Q we have
as a consequence a similar result for algebraic integers of the form «+2A with a
given index.

Theorem 3. Suppose that o and A are algebraic integers, o is of degree m=2
over L and K=L(x+2) is of degree n=2 over L. If m-:%lDumL(a)Pf"t""“ and
® Dyj(a+2) =6
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where 0#0€Z; with |Nyo(8)|=d then there exists an algebraic integer o*, Z,-
equivalent to o such that

©) & <26
with the constant Cy occurring in Theorem 1.

We remark that our theorem implies that |1T is also bounded and (9) makes
possible to derive an effective upper bound for the size of Dy () =Dy v (@)

which gives a bound for |4].

In the special case A=0 our Theorem 3 includes e.g. Theorem 3A of GYGRY [8]
(whit another estimate).

Finally, for algebraic integers of given index we have the following theorem:

Theorem 4. Let K be an algebraic number field of degree n=2, let o, AcZg
and suppose that « is of degree m=2 over Q. If I7l-==;1;- |DQ(,),Q(a)]””'(”'"1) and the
index of a+2 is

(10) Ia+i) =1
where 0#I€Z then there exists an algebraic integer o*, Z-equivalent to o such that
(11) [o] < exp {(6n*)*"* [(12D)** (log | 1| D)"F""}

where Dy denotes the absolute value of the discriminant of K.

In the special case A=0 this theorem gives Corollaire 3.2 of GyGry [6] (with
another bound).

3. Proofs

Our theorems can be easily deduced from the following result of Gydry [8].

Theorem A. If « is an algebraic integer of degree n=2 over L with Dy (2)=
=0#0 and |Nyq(0)|=d, then there exists an algebraic integer o*, Z -equivalent to
o such that

o < €,
with the constant C, occurring in Theorem 1.

This theorem is Theorem 3A of GYORY [8] (for n=2 see also the remark after
Theorem 1 in [8]). We remark that the proof of this theorem involves Baker’s method

(see e.g. [1]).

ProOOF OF THEOREM 1. This short proof of Theorem 1 was suggested by
K. Gydry.

Let Xx3,...,.%€Z; and A€Zg be a solution of equation (3) with |7.-|*=:C¢,X
where X= max [x]. Denote by y; (i=1,...,n) the conjugates of any €K over

L and let /(x)=0yx;+... +%X;. Applying Theorem A to equation (3) we obtain
(12) 1(x)+4A=0a%+a
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where a*EZx with |at”|-=:C1 and acZ;. Put I;(x)=l(x)—I (x) Ayy=2;—2; and
afj=of —af for any i#j, 1=i,j=n. With this notation (12) 1mp ies

Ly(x)+4; = of
whence

(13) Iy @) = o]+ 2] = 2G,4+2C, X

for any i##j. Here Cy, C, denote the expressions specified in the theorem. Since by
assumption oy=1, o, ..., are linearly independent over L, hence the equation
system /;;(x)=0 (1=i<j=n) has no nontrivial solution in C. Solving the equation
system I,J(x) ajj—Ay; (1=i<j=n) by Cramer’s rule, and applying (13) we get

X < KM+ (2 48-1(2C, +2C, X) = —C 122G, +2CX) = Co 1Cr" 7 X

that is X<C;'C, and thus (4) is proved.
PROOF OF THEOREM 2. If x,,...,x,6Z, and A€O is a solution of (6) then

(14) Dy (0exa+... + 0, %, +2) = p*Dg;r (1, g, ..., &)

Now we have |f*Dg, (1, a, ..., a,,)lgﬁzn"”‘zi”. Applying our ' Theorem 1 to (14)
with k=n—1 and with 6=p*Dg, (1, ®,, ..., %,) and using |0|=|B*n"*4", d=|d|",
we get (7).

Our Theorem 3 and Theorem 4 could be deduced (with other bounds) from
Theorem 1 and Theorem 2 respectively, but it is easier to derive them from Theo-
rem A.

ProoF oF THEOREM 3. Applying Theorem A to (8) we obtain
(15) a4+l =0ao*+a

where o*€Z; with |-rx_*|<:C1 and acZ;. Let K’=L(x,2) and let us denote the
conjugates of any y€K’ over L by vy;, i=1,...,n’, where n'=[K":L]=nm. By

assumption we have m{f |D @y (@)/™™=1 and thus
DTy Ty
(16) A < 7l —al

where |az;—o:, —I’r‘n?,);” |ot;, —;,|. From (15) we get
d;—a_,-+l;—lj = a?—'a?
whence

e kR a2 (R
|y —oy] = 2|4 +2C, = =5 |oy — o5 +2C,

that is |o;—a;|<4C,. Comparing this with (16) we have [A]<Cy. Now let o**=
=a*—4, then |¢**|<2C, and by (15) « is Z,-equivalent to «**, which proves (9).
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PrOOF OF THEOREM 4. From (10) we get

a”n

|Dgjq (2+4)| = I*Dy.

Applying our Theorem 3 to (17) with L=Q, I=1 and d=|5|=1*Dg we get (11).
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