Generalized-homogeneous deviation means

By Z. DARÓCZY and ZS. PÁLES (Debrecen)

1. Introduction. Let $\varphi: \mathbb{R}_+ \to \mathbb{R}$ be a strictly monotone and continuous function. For the quasiarithmetic mean $M_{n,\varphi}: \mathbb{R}_+^n \to \mathbb{R}_+$ $(n \in \mathbb{N})$ defined by

(1.1)
$$M_{n,\varphi}(\underline{x}) := \varphi^{-1} \left[\frac{1}{n} \sum_{i=1}^{n} \varphi(x_i) \right]$$

whenever $\underline{x} = (x_1, ..., x_n) \in \mathbb{R}_+^n$, $n \in \mathbb{N}$ the following basic result is well known (see Hardy—Littlewood—Pólya [8, Theorem 84.]): If (1.1) is homogeneous i.e. $M_{n,\varphi}(\underline{x}) = tM_{n,\varphi}(\underline{x})$ for $t \in \mathbb{R}_+$, $\underline{x} \in \mathbb{R}_+^n$, $n \in \mathbb{N}$ then there exists $a \in \mathbb{R}$, such that

$$(1.2) M_{n,\,\sigma}(\underline{x}) = M_{n,\,a}(\underline{x})$$

for each $x \in \mathbb{R}^n_+$ and $n \in \mathbb{N}$ where

(1.3)
$$M_{n,a}(\underline{x}) := \begin{cases} \left[\frac{1}{n} \sum_{i=1}^{n} x_i^a\right]^{1/a}, & \text{if } a \neq 0, \\ \prod_{i=1}^{n} x_i\right]^{1/n}, & \text{if } a = 0. \end{cases}$$

One of the known generalizations of quasiarithmetic means is the concept of deviation means (see Daróczy [3], [4]).

The function $E: \mathbb{R}^2_+ \to \mathbb{R}$ is called a *deviation* on \mathbb{R}_+ if the following properties are satisfied:

(E1) The function $y \rightarrow E(x, y)$ is strictly monotone decreasing and continuous for any fixed $x \in \mathbb{R}_+$.

(E2) E(x, x) = 0 for any $x \in \mathbb{R}$.

Denote by $\varepsilon(\mathbf{R}_+)$ the set of all deviations defined on \mathbf{R}_+ . It is known (see Daróczy [3]) that, for arbitrary $n \in \mathbf{N}$ and $\underline{x} = (x_1, ..., x_n) \in \mathbf{R}_+^n$, the equation

(1.4)
$$\sum_{i=1}^{n} E(x_i, y) = 0$$

has a unique solution $y_0 \in \mathbb{R}_+$ such that $\min \{x_i | 1 \le i \le n\} \le y_0 \le \max \{x_i | 1 \le i \le n\}$ is also satisfied. Therefore the symmetrical value $y_0 =: \mathfrak{M}_{n, E}(\underline{x})$ is called the *E-deviation mean* of \underline{x} .

If $\varphi: \mathbb{R}_+ \to \mathbb{R}$ is a strictly monotone and continuous function then

(1.5)
$$E_{\boldsymbol{\sigma}}(x, y) := \varepsilon[\varphi(x) - \varphi(y)], \quad (x, y \in \mathbb{R}_+)$$

is a deviation on \mathbb{R}_+ , where $\varepsilon=1$ if φ increases and $\varepsilon=-1$ if φ decreases. It is easy to see that

$$\mathfrak{M}_{n,E_{\varphi}}(\underline{x}) = M_{n,\varphi}(\underline{x})$$

i.e. quasiarithmetic means are deviation means, too. Therefore, the following question seems to be natural: What can we state about homogeneous deviation means? The following result answers this question (Daróczy [3]): If $E \in \varepsilon(\mathbb{R}_+)$ and $\mathfrak{M}_{n,E}(t \underline{x}) = t \mathfrak{M}_{n,E}(\underline{x})$ for any $t \in \mathbb{R}_+$, $\underline{x} \in \mathbb{R}_+^n$, $n \in \mathbb{N}$, then there exists $h: \mathbb{R}_+ \to \mathbb{R}_+$ with h(1)=1 and $f: \mathbb{R}_+ \to \mathbb{R}$ with $\operatorname{sgn} f(x) = \operatorname{sgn} (1-x)$, $(x \in \mathbb{R}_+)$ such that

(1.7)
$$E(x, y) = h(y) f\left(\frac{x}{y}\right).$$

This result is unsatisfactory from many points of view. On the one hand it is not reversible since (1.7) is not a deviation for any given h and f, on the other hand there still exist too many homogeneous deviation means. These problems lead us to introduce a new homogeneity property.

Definition. Let $E \in \varepsilon(\mathbb{R}_+)$. The deviation mean $\mathfrak{M}_{n,E} \colon \mathbb{R}_+^n \to \mathbb{R}_+$ $(n \in \mathbb{N})$ is said to be k-homogeneous if

$$\mathfrak{M}_{nk,E}(\underline{t} \circ \underline{x}) = \mathfrak{M}_{k,E}(\underline{t}) \mathfrak{M}_{n,E}(\underline{x})$$

for any $t=(t_1,...,t_k)\in\mathbb{R}^k_+$ and $x\in\mathbb{R}^n_+$, $n\in\mathbb{N}$ and where

(1.9)
$$\underline{t} \circ \underline{x} = (t_1 x_1, ..., t_1 x_n, ..., t_k x_1, ..., t_k x_n) \in \mathbb{R}_+^{kn}.$$

We remark that k-homogeneous $(k \ge 2)$ deviation means are also 1-homogeneous means i.e. homogeneous means since substituting $\underline{t} = (t, ..., t)$ $(t \in \mathbb{R}_+)$ in (1.8) we obtain

$$\mathfrak{M}_{k,E}(\underline{t}) = t$$
 and $\mathfrak{M}_{kn,E}(\underline{t} \circ \underline{x}) = \mathfrak{M}_{n,E}(\underline{t}\underline{x}).$

On the other hand it can easily be seen that homogeneous quasiarithmetic means are k-homogeneous means, too, since

(1.10)
$$M_{kn,a}(\underline{t} \circ \underline{x}) = \left(\frac{1}{kn} \sum_{j=1}^{k} \sum_{i=1}^{n} (t_j x_i)^a\right)^{1/a} =$$
$$= \left(\frac{1}{k} \sum_{j=1}^{k} t_j^a \frac{1}{n} \sum_{i=1}^{n} x_i^a\right)^{1/a} = M_{k,a}(\underline{t}) M_{n,a}(\underline{x})$$

if $a\neq 0$. Either by letting $a\to 0$ in (1.10) or by a direct computation we obtain that (1.10) is valid for a=0 as well.

Deviation means which are k-homogeneous for any k are called multiplicative means. The class of these means is known (DARÓCZY—PÁLES [7, Theorem 9]): If $E \in \varepsilon(\mathbb{R}_+)$ and $\mathfrak{M}_{n,E} \colon \mathbb{R}_+^n \to \mathbb{R}_+$ $(n \in \mathbb{N})$ is multiplicative then there exist a multiplicative function $m \colon \mathbb{R}_+ \to \mathbb{R}_+$ (i.e. m(xy) = m(x)m(y) if $x, y \in \mathbb{R}_+$) and a constant $a \in \mathbb{R} \setminus \{0\}$ such that either

(1.11)
$$\mathfrak{M}_{n,E}(\underline{x}) = \exp\left[\frac{\sum_{i=1}^{n} m(x_i) \ln x_i}{\sum_{i=1}^{n} m(x_i)}\right], \quad (\underline{x} \in \mathbb{R}_+^n)$$

or

(1.12)
$$\mathfrak{M}_{n,E}(\underline{x}) = \left[\frac{\sum\limits_{i=1}^{n} m(x_i) x_i^a}{\sum\limits_{i=1}^{n} m(x_i)}\right]^{1/a}, \quad (\underline{x} \in \mathbb{R}_+^n).$$

Conversely, the means standing on the right hand side of (1.11) and (1.12) are multiplicative deviation means.

In the present article we shall investigate the k-homogeneous deviation means for some fixed $k \ge 2$. We shall prove a surprising result:

If E is differentiable with respect to its second variable and its derivative is non-vanishing then $\mathfrak{M}_{n,E}$ $(n \in \mathbb{N})$ is a k-homogeneous deviation mean if and only if there exist a multiplicative function m and a constant $a \in \mathbb{R} \setminus \{0\}$ such that either (1.11) or (1.12) is satisfied.

With the help of this result we can easily see that the k-homogeneity of a regular deviation mean (for some fixed $k \ge 2$) implies the multiplicativity of this mean.

2. Basic functional equation. In this section we deduce a functional equation which plays an essential role in our discussion.

Theorem 1. Let $E \in \varepsilon(\mathbb{R}_+)$ and assume that $\mathfrak{M}_{n,E} \colon \mathbb{R}_+^n \to \mathbb{R}_+$ $(n \in \mathbb{N})$ is a k-homogeneous mean for some fixed $k \ge 2$. Then the functions

(2.1)
$$f(x) := E(x, 1), \quad \mu(x) := \mathfrak{M}_{k, E}(x, 1, ..., 1), \quad x \in \mathbb{R}_{+}$$

satisfy the functional equation

(2.2)
$$\frac{f(xy)}{f(x)f(y)} + \frac{k-1}{f(x)} = \frac{f(\mu(x)y)}{f(\mu(x))f(y)}$$
 for any $x, y \in \mathbb{R}_+ \setminus \{1\}$.

PROOF. By the definition of deviation means, $\mathfrak{M}_{n,E}$ is k-homogeneous if and only if

(2.3)
$$\sum_{i=1}^{n} \sum_{j=1}^{k} E(t_j x_i, \mathfrak{M}_{k, E}(\underline{t}) \mathfrak{M}_{n, E}(\underline{x})) = 0$$

for any $\underline{t} = (t_1, ..., t_k) \in \mathbb{R}_+^k$, $\underline{x} = (x_1, ..., x_n) \in \mathbb{R}_+^n$ $n \in \mathbb{N}$. Let $\underline{t} \in \mathbb{R}_+^k$ be fixed and define $F_{\underline{t}} : \mathbb{R}_+^2 \to \mathbb{R}$ by

(2.4)
$$F_{\underline{t}}(x, y) := \sum_{j=1}^{k} E(t_{j}x, \mathfrak{M}_{k, E}(\underline{t}) y).$$

Then $F_t \in \varepsilon(\mathbf{R}_+)$ since it is strictly monotone decreasing and continuous in the second variable, further, by the homogeneity of $\mathfrak{M}_{n,E}$,

$$F_{\underline{t}}(x,x) = \sum_{j=1}^k E(t_j x, \mathfrak{M}_{k,E}(\underline{t}) x) = \sum_{j=1}^k E(t_j x, \mathfrak{M}_{k,E}(x\underline{t})) = 0.$$

Applying (2.4) the equation (2.3) turns into

$$\sum_{i=1}^n F_t(x_i, \mathfrak{M}_{n, E}(\underline{x})) = 0,$$

from which we obtain

$$\mathfrak{M}_{n,E}(\underline{x}) = \mathfrak{M}_{n,F_{\underline{t}}}(\underline{x})$$

for any $x \in \mathbb{R}_+^n$, $n \in \mathbb{N}$. It is known (see Daróczy—Páles [6, Theorem 1]) that (2.5) is satisfied if and only if

(2.6)
$$F_{\underline{t}}(u, v)E(w, v) = F_{\underline{t}}(w, v)E(u, v)$$

for any $0 < u \le v \le w$.

We see immediately that (2.6) is valid not only in the region $0 < u \le v \le w$ but for any 0 < u, v, w. E.g. let $0 < u \le v$ and $0 < w \le v$. Choose $w^* > v$ and apply (2.6) for the values $0 < u \le v < w^*$ and $0 < w \le v < w^*$. Then we have

(2.7)
$$F_{\underline{t}}(u,v)E(w^*,v) = F_{\underline{t}}(w^*,v)E(u,v),$$

(2.8)
$$F_{t}(w^{*}, v)E(w, v) = F_{t}(w, v)E(w^{*}, v).$$

Multiplying (2.7) by (2.8) and dividing the resulting equation by

$$E(w^*, v) F_t(w^*, v) > 0$$

we obtain (2.6) just for 0 < u, $w \le v$. In the case $0 < v \le u$, w the proof of (2.6) is completely similar.

Now let $x, y \in \mathbb{R}_+ \setminus \{1\}$ be arbitrary and substitute into (2.6)

$$u = y\mu(x), \quad v = 1, \quad w = \mu(x),$$

$$\underline{t} = \left(\frac{x}{\mu(x)}, \frac{1}{\mu(x)}, \dots, \frac{1}{\mu(x)}\right) \in \mathbb{R}^k_+.$$

Then, since $\mathfrak{M}_{k,E}$ is a homogeneous mean,

$$\mathfrak{M}_{k,E}(\underline{t}) = \mathfrak{M}_{k,E}\left(\frac{x}{\mu(x)}, \frac{1}{\mu(x)}, ..., \frac{1}{\mu(x)}\right) = \frac{1}{\mu(x)} \mathfrak{M}_{k,E}(x, 1, ..., 1) = 1$$

i.e., using the notations (2.1), it follows from (2.6) that

$$[f(xy)+(k-1)f(y)]f(\mu(x)) = f(x)f(\mu(x)y).$$

Dividing both sides by $f(x)f(\mu(x))f(y)\neq 0$ we obtain the desired equation (2.2). \Box

3. The elimination of μ . In the present section we deduce a functional equation that contains only the unknown function f(x)=E(x, 1). We shall need the following definition (DARÓCZY [3]).

Definition. The function $E: \mathbb{R}^2_+ \to \mathbb{R}$ is called a differentiable deviation on \mathbb{R}_+ if it satisfies the following properties:

(E*1) For each fixed $x, y \in \mathbb{R}_+$

$$E_2(x, y) := \frac{\partial E(x, y)}{\partial y}$$

exists and is negative.

(E*2) E(x, x)=0 for any $x \in \mathbb{R}_+$.

Denote by $\varepsilon^*(R_+)$ the set of all differentiable deviations on R_+ . Then it is obvious that $\varepsilon^*(R_+) \subset \varepsilon(R_+)$.

Lemma. Let $E \in \varepsilon^*(\mathbb{R}_+)$ and suppose $\mathfrak{M}_{n,E} \colon \mathbb{R}_+^n \to \mathbb{R}_+$ $(n \in \mathbb{N})$ to be a homogeneous mean. Then, using the notation f(x) := E(x, 1), $(x \in \mathbb{R}_+)$, the function

(3.1)
$$x \to \frac{f(xy)}{f(x) f(y)} - \frac{f(xz)}{f(x) f(z)} =: G(x, y, z)$$

is continuous on the set $\mathbb{R}_+\setminus\{1\}$ and the limit exists at x=1 for each fixed $y, z\in\mathbb{R}_+\setminus\{1\}$.

PROOF. Since $\mathfrak{M}_{n,E}$ is a homogeneous mean, applying the second theorem mentioned in the introduction, we obtain that there exist $h: \mathbb{R}_+ \to \mathbb{R}_+$ with h(1)=1 such that

(3.2)
$$E(x, y) = h(y) f\left(\frac{x}{y}\right)$$

for $x, y \in \mathbb{R}_+$. With the help of this relation we get

$$G(x, y, z) = \frac{E\left(y, \frac{1}{x}\right)}{E\left(1, \frac{1}{x}\right)E(y, 1)} - \frac{E\left(z, \frac{1}{x}\right)}{E\left(1, \frac{1}{x}\right)E(z, 1)} =$$

$$= \frac{1}{E(y,1)} \frac{E\left(y,\frac{1}{x}\right) - E(y,1)}{E\left(1,\frac{1}{x}\right) - E(1,1)} - \frac{1}{E(z,1)} \frac{E\left(z,\frac{1}{x}\right) - E(z,1)}{E\left(1,\frac{1}{x}\right) - E(1,1)}$$

for $x, y, z \in \mathbb{R}_+ \setminus \{1\}$. It follows from the last expression that $x \to G(x, y, z)$ is a continuous function, and $\lim_{x \to 1} G(x, y, z)$ exists since $E \in \varepsilon^*(\mathbb{R}_+)$. \square

Theorem 2. Let $E \in \varepsilon^*(\mathbb{R}_+)$ and assume that $\mathfrak{M}_{n,E} \colon \mathbb{R}_+^n \to \mathbb{R}_+$ $(n \in \mathbb{N})$ is a k-homogeneous mean for some fixed $k \ge 2$. Then, using the notation f(x) = E(x, 1),

(3.3)
$$2\frac{f(xy)}{f(x)f(y)} = \frac{f(x^2)}{f^2(x)} + \frac{f(y^2)}{f^2(y)}$$
 for any $x, y \in \mathbb{R}_+ \setminus \{1\}$.

PROOF. Let $y, z \in \mathbb{R}_+ \setminus \{1\}$ be fixed values and define the function $G_{y,z} : \mathbb{R}_+ \to \mathbb{R}$ with the help of G as follows

$$\widetilde{G}_{y,z}(x) := G(x, y, z), x \in \mathbb{R}_+ \setminus \{1\},
:= \lim_{t \to 1} G(t, y, z), x = 1.$$

Then, by the Lemma, $\tilde{G}_{y,z}$ is a continuous function. Now we prove that $\tilde{G}_{y,z}$ is identically constant i.e. $\tilde{G}_{y,z}(x) = \tilde{G}_{y,z}(1)$ for any $x \in \mathbb{R}_+$. Let $x_0 > 1$ be an arbitrary but fixed value, further let

$$H_{x_0} := \{x \in [1, x_0] | \widetilde{G}_{y,z}(x) = \widetilde{G}_{y,z}(x_0) \}.$$

Then the continuity of $\overline{G}_{y,z}$ implies that H_{x_0} is closed, and since $x_0 \in H_{x_0}$, H_{x_0} is nonvoid.

Now apply the functional equation (2.2) for the values x, y and x, z. Subtracting the equations obtained we get

$$\tilde{G}_{y,z}(x) = \tilde{G}_{y,z}(\mu(x))$$

for $x \in \mathbb{R}_+$. It follows from this relation that

Denote by \bar{x}_0 the greatest lower bound of the set H_{x_0} . Since H_{x_0} is closed we have $\bar{x}_0 \in H_{x_0}$. Therefore, by (3.4), we obtain

$$\mu(\bar{x}_0) \in H_{x_0}.$$

Now we prove that $1 < \bar{x}_0$ cannot be valid. By the definition of $\mu(\bar{x}_0)$ we have

$$E(\bar{x}_0, \mu(\bar{x}_0)) + (k-1)E(1, \mu(\bar{x}_0)) = 0.$$

Since $k \ge 2$, it follows from this relation that

$$(3.6) 1 < \mu(\bar{x}_0) < \bar{x}_0$$

provided that $1 < \bar{x}_0$. However (3.6) and (3.5) contradict the definition of \bar{x}_0 . Thus we have proved $1 = \bar{x}_0$ i.e. $1 \in H_{x_0}$. Therefore $\tilde{G}_{y,z}(x_0) = \tilde{G}_{y,z}(1)$.

If $x_0 < 1$ then it can analogously be seen that $\tilde{G}_{y,z}(x_0) = \tilde{G}_{y,z}(1)$ is also satisfied in $\tilde{G}_{y,z}(x_0) = \tilde{G}_{y,z}(x_0) = \tilde{G}_{y,z}(1)$.

Now notice the relation $\tilde{G}_{y,z}(1) = -\tilde{G}_{z,y}(1)$ if $y, z \in \mathbb{R}_+ \setminus \{1\}$. By its help we obtain the equation

(3.7)
$$G(x, y, x) = \tilde{G}_{y, x}(x) = \tilde{G}_{y, x}(1) = -\tilde{G}_{x, y}(1) = -\tilde{G}_{x, y}(y) = -G(y, x, y),$$

for $x, y \in \mathbb{R}_+ \setminus \{1\}$. Taking into consideration the notion of G we get at once (3.3) from (3.7).

4. The solution of (3.3). In this section we determine all the solutions $f: \mathbb{R}_+ \to \mathbb{R}$ of (3.3) having the property $\operatorname{sgn} f(x) = \operatorname{sgn} (x-1), x \in \mathbb{R}_+$.

Theorem 3. Assume that the function $f: \mathbb{R}_+ \to \mathbb{R}$ satisfies $\operatorname{sgn} f(x) = \operatorname{sgn} (x-1)$ for $x \in \mathbb{R}_+$ and (3.3) for $x, y \in \mathbb{R}_+ \setminus \{1\}$. Then there exists a constant $b \ge 0$ such that, for the function

(4.1)
$$g(x) = \frac{f(x^2)}{f^2(x)}, \quad x \in \mathbb{R}_+ \setminus \{1\},$$

we have

(4.2)
$$g(xy)[g(x)+g(y)]-g(x)g(y) = b^2$$

for any $x, y \in \mathbb{R}_+ \setminus \{1\}$.

PROOF. Let, for $x, y \in \mathbb{R}_+ \setminus \{1\}$,

$$F(x, y) := 2 \frac{f(xy)}{f(x) f(y)}.$$

Then it is obvious that F satisfies the equation

(4.3)
$$F(xy, z)F(x, y) = F(x, yz)F(y, z)$$

On the other hand, by (3.3), we have

$$F(x, y) = g(x) + g(y).$$

Therefore it follows from (4.3) that

$$[g(xy)+g(z)][g(x)+g(y)] = [g(x)+g(yz)][g(y)+g(z)]$$

for $x, y, z \in \mathbb{R}_+ \setminus \{1\}$. Using the notation

$$G(x, y) := g(xy)[g(x)+g(y)]-g(x)g(y)$$

we obtain

$$(4.4) G(x, y) = G(y, z)$$

for $x, y, z \in \mathbb{R}_+ \setminus \{1\}$. The repeated application of (4.4) yields

(4.5)
$$G(x, y) = G(y, z) = G(z, u)$$

for $x, y, z, u \in \mathbb{R}_+ \setminus \{1\}$. It is obvious from (4.5) that G is identically constant, i.e. there exists $c \in \mathbb{R}$ so that

(4.6)
$$g(xy)[g(x)+g(y)]-g(x)g(y) = c$$

if $x, y \in \mathbb{R}_+ \setminus \{1\}$.

To complete the proof of the theorem it is enough to show that $c \ge 0$. Then $c=b^2$ for a suitable $b \ge 0$.

Assume, on the contrary, that c < 0. Then, by (4.6),

$$g(xy)g(x) < g(y)[g(x) - g(xy)].$$

If x, y > 1 then g(x), g(y), g(xy) > 0 therefore we get

$$(4.7) g(x) > g(xy).$$

Substituting into (4.7) $x := x^n$, y := x we obtain

$$g(x^n) > g(x^n x) = g(x^{n+1}).$$

On the other hand $g(x^n) > 0$ hence the following limit exists

$$\lim_{n\to\infty}g(x^n)=:\bar{g}(x)\geq 0.$$

Substituting $y := x^n$ into (4.6) and calculating the limit as $n \to \infty$, we get

$$\bar{g}^2(x) = c$$
.

However this is a contradiction, since c < 0. \square

First we discuss the functional equation (4.2) in the case b=0.

Theorem 4. Assume that the function $g:]1, \infty[\to \mathbb{R}_+$ satisfies the equation

(4.8)
$$g(xy)[g(x)+g(y)]-g(x)g(y)=0$$

for x, y > 1. Then there exists a positive constant d such that

$$g(x) = \frac{1}{d \ln x}$$

for x>1.

PROOF. Using the notation

$$l(x) := \frac{1}{g(x)}, \quad x > 1,$$

we obtain from (4.8) that

$$l(xy) = \frac{1}{g(xy)} = \frac{g(x) + g(y)}{g(x)g(y)} = \frac{1}{g(x)} + \frac{1}{g(y)} = l(x) + l(y)$$

if x, y > 1. Let, for t > 0,

$$A(t) = l(e^t).$$

Then we have

$$A(t+s) = A(t) + A(s)$$

for t, s>0. It is well known that there exists an additive function $\overline{A} \colon \mathbb{R} \to \mathbb{R}$ such that $\overline{A}(t) = A(t)$ if t>0 (see Aczél—Erdős [2], Daróczy—Losonczi [5]). On the other hand $\overline{A}(t) = A(t) > 0$ if $t \in \mathbb{R}_+$, therefore there exists a constant d>0 such that $\overline{A}(t) = dt$ for $t \in \mathbb{R}$ (see Aczél [1]). However, for t>0, $l(e^t) = dt$, i.e. substituting $l=\ln x$, we obtain

$$l(x) = d \ln x$$

for x>1. Therefore we just get the solution (4.9). \Box

Theorem 5. Let b>0, and assume that $g: [1, \infty[\rightarrow \mathbb{R}_+]$ satisfies the equation

$$(4.10) g(xy)[g(x)+g(y)]-g(x)g(y) = b^2$$

for x, y>1. Then either

$$(i) g(x) = b, \quad x > 1,$$

or

(ii) there exists a positive constant a such that

$$g(x) = b \frac{x^a + 1}{x^a - 1}$$

for x>1.

PROOF. For x>1, let

(4.11)
$$m(x) = \frac{g(x) - b}{g(x) + b}.$$

Then, by (4.10), we obtain

$$m(xy) = \frac{g(xy) - b}{g(xy) + b} = \frac{\frac{b^2 + g(x)g(y)}{g(x) + g(y)} - b}{\frac{b^2 + g(x)g(y)}{g(x) + g(y)} + b} = \left[\frac{g(x) - b}{g(x) + b}\right] \left[\frac{g(y) - b}{g(y) + b}\right] = m(x)m(y)$$

for x, y > 1.

The function $g(x) \equiv b$ is obviously a solution of (4.10). Now try to find all the different solutions. Assume that $g(y_0) \neq b$ for some $y_0 > 1$. Then we prove that $g(x) \neq b$ for x > 1. Choose $n \in \mathbb{N}$ such that $y_0^n > x$. Then, since $g(y_0) \neq b$, $m(y_0) \neq 0$, we have $0 \neq m^n(y_0) = m(y_0^n) = m(\frac{y_0^n}{x}x) = m(\frac{y_0^n}{x})m(x)$. Hence m does not vanish anywhere. Then m is positive, since

$$m(x) = m(\sqrt{x}\sqrt{x}) = m^2(\sqrt{x}) > 0.$$

Rearranging (4.11), we obtain

(4.12)
$$g(x) = b \frac{1 + m(x)}{1 - m(x)}$$

for x>1. Since g is positive, we have m(x)<1 for x>1. Let

$$A(t) = \ln m(e^t)$$

if t>0. Then it follows from the properties of m that A(t+s)=A(t)+A(s) for t, s>0 and A(t)<0 if t<0. Therefore, as we have shown in the proof of Theorem 4, there exists a positive constant a such that A(t)=-at for t>0. Substituting $t=\ln x$ we have

$$\ln m(x) = -a \ln x$$

i.e.

$$m(x) = x^{-a}$$

for x>1. Applying (4.12) we obtain immediately the solution (ii). \Box

Theorem 6. Let $f: \mathbb{R}_+ \to \mathbb{R}$ and assume that $\operatorname{sgn} f(x) = \operatorname{sgn} (x-1)$ if $x \in \mathbb{R}_+$, further f satisfies the equation (3.3) for $x, y \in \mathbb{R}_+ \setminus \{1\}$. Then there exist a multiplicative function $m: \mathbb{R}_+ \to \mathbb{R}_+$ (i.e. m(xy) = m(x)m(y) if $x, y \in \mathbb{R}_+$ and positive constants a, c such that either

$$(j) f(x) = cm(x) \ln x$$

(jj)
$$f(x) = cm(x)(x^a - 1)$$
 for $x \in \mathbb{R}_+$.

PROOF. Using the notation (4.1) we easily obtain from (3.3) that

(4.13)
$$2\frac{f(xy)}{f(x)f(y)} = g(x) + g(y)$$

if $x, y \in \mathbb{R}_+ \setminus \{1\}$. Further, by Theorem 3, g satisfies the equation (4.2) for $x, y \in \mathbb{R}_+ \setminus \{1\}$ with a suitable constant $b \ge 0$.

If b=0, then, by Theorem 4, there exists a constant d>0 such that $g(x)=\frac{1}{d \ln x}$, (x>1). We prove this equation also for 0< x<1. Let 0< x<1 and y=1/x in the equation (4.13). Since f(xy)=f(x(1/x))=f(1)=0, it follows from (4.13) that

$$g(x) = -g\left(\frac{1}{x}\right) = -\frac{1}{d\ln\left(\frac{1}{x}\right)} = \frac{1}{d\ln x}.$$

Therefore

(4.14)
$$2\frac{f(xy)}{f(x)f(y)} = \frac{1}{d \ln x} + \frac{1}{d \ln y} = \frac{d \ln xy}{(d \ln x)(d \ln y)}$$

for any $x, y \in \mathbb{R}_+ \setminus \{1\}$.

With the help of (4.14) it is easy to see that the function $m: \mathbb{R}_+ \to \mathbb{R}_+$ defined by

$$m(x) := \frac{2f(x)}{d \ln x}, \quad x \in \mathbb{R}_+ \setminus \{1\},$$
$$:= 1, \quad x = 1$$

is multiplicative. Hence, for $x \in \mathbb{R}_+$,

$$f(x) = \frac{d}{2} m(x) \ln x = cm(x) \ln x.$$

If b>0, then by Theorem 5 we have two possibilities. If $g(x)\equiv b$ for any x>1, then applying (4.13) for 0< x<1, y=1/x we get

$$g(x) = -g\left(\frac{1}{x}\right) = -b.$$

But then, by (4.13),

$$2\frac{f\left(4\cdot\frac{1}{2}\right)}{f(4)f\left(\frac{1}{2}\right)} = g(4) + g\left(\frac{1}{2}\right) = b - b = 0,$$

hence f(2)=0. Because of this contradiction there remains the case

$$g(x) = b \frac{x^a + 1}{x^a - 1}, \quad x > 1.$$

Then, it follows from (4.13) that

$$g(x) = -g\left(\frac{1}{x}\right) = -b\frac{x^{-a}+1}{x^{-a}-1} = b\frac{x^a+1}{x^a-1}$$

for 0 < x < 1. Applying (4.13) again we get

(4.15)
$$\frac{2f(xy)}{f(x)f(y)} = b\frac{x^a + 1}{x^a - 1} + b\frac{y^a + 1}{y^a - 1} = \frac{2b[(xy)^a - 1]}{(x^a - 1)(y^a - 1)}$$

if $x, y \in \mathbb{R}_+ \setminus \{1\}$.

It follows from (4.15) that the function $m: \mathbb{R}_+ \to \mathbb{R}_+$ defined by

$$m(x) := \frac{bf(x)}{x^a - 1}, \quad x \in \mathbb{R}_+ \setminus \{1\},$$

$$:= 1, x = 1$$

is multiplicative. Hence

$$f(x) = \frac{1}{b} m(x)(x^a - 1) = cm(x)(x^a - 1)$$

for $x \in \mathbb{R}_+$.

Conversely, it can easily be checked that the obtained functions (j) and (jj) really satisfy the functional equation (3.3) for $x, y \in \mathbb{R}_+ \setminus \{1\}$. \square

5. k-homogeneous deviation means

Theorem 7. Let $E \in \varepsilon^*(\mathbb{R}_+)$ and assume that $\mathfrak{M}_{n,E} \colon \mathbb{R}_+^n \to \mathbb{R}_+$ $(n \in \mathbb{N})$ is a k-homogeneous mean for some fixed $k \ge 2$. Then there exist a multiplicative function $m \colon \mathbb{R}_+ \to \mathbb{R}_+$ (i.e. m(xy) = m(x)m(y) for $x, y \in \mathbb{R}_+$) and a positive constant a such that either (1.11) or (1.12) is satisfied.

Conversely, the means obtained are really k-homogeneous, moreover they are multiplicative means.

PROOF. If $E \in \varepsilon^*(\mathbb{R}_+)$ and $\mathfrak{M}_{n,E}$ is k-homogeneous then, by Theorem 2, f(x) = E(x, 1) satisfies equation (3.3) for $x, y \in \mathbb{R}_+ \setminus \{1\}$. Hence, by Theorem 6, there exist a multiplicative function m and positive constants a, c such that either (j) or (jj) is satisfied. On the other hand $\mathfrak{M}_{n,E}$ is a homogeneous mean, therefore there exists a function $h: \mathbb{R}_+ \to \mathbb{R}_+$ such that h(1) = 1 and (3.2) is valid. Hence we obtain

that either

$$E(x, y) = h(y) f\left(\frac{x}{y}\right) = h(y) cm\left(\frac{x}{y}\right) \ln\frac{x}{y} =$$

$$= c \frac{h(y)}{m(y)} m(x) (\ln x - \ln y) =$$

$$= H(y) m(x) (\ln (x) - \ln y)$$

or

$$E(x, y) = h(y) f\left(\frac{x}{y}\right) = h(y) cm\left(\frac{x}{y}\right) \left[\left(\frac{x}{y}\right)^a - 1\right] =$$

$$= c \frac{h(y)}{m(y) y^a} m(x) (x^a - y^a) = H(y) m(x) (x^a - y^a).$$

Now let $x_1, ..., x_n \in \mathbb{R}_+$ $(n \in \mathbb{N})$ and consider the equation

$$\sum_{i=1}^n E(x_i, y) = 0.$$

Solving this equation for y in both cases we easily get that either (1.11) or (1.12) is valid.

The multiplicativity of $\mathfrak{M}_{n,E}$ of this form can easily be checked. \square

Remark. Apparently, in the above manner, we have obtained the means in (1.12) only for a>0. However, for a<0

$$\left[\frac{\sum\limits_{i=1}^{n}m(x_i)x_i^a}{\sum\limits_{i=1}^{n}m(x_i)}\right]^{1/a} = \left[\frac{\sum\limits_{i=1}^{n}\overline{m}(x_i)x_i^{-a}}{\sum\limits_{i=1}^{n}\overline{m}(x_i)}\right]^{-1/a}$$

where $\overline{m}(x) = m(x)x^a$ is also a multiplicative function.

6. Open problems. In the present paper we have proved that the k-homogeneity of a deviation mean and certain regularity assumptions imply the multiplicativity of the mean. It would have some interest to find a value k and a deviation such that the generated mean is k-homogeneous but not multiplicative. It can be proved that the k-homogeneity of deviation means implies l-homogeneity if $l \le k$. Therefore if there exists a nonmultiplicative but k-homogeneous (for some k) deviation mean, then necessarily there also exists a nonmultiplicative 2-homogeneous mean.

In our discussion the functional equation (2.2) plays an important role. It would be very useful to know all the solutions $f: \mathbb{R}_+ \to \mathbb{R}$ with $\operatorname{sgn} f(x) = \operatorname{sgn} (x-1)$, $(x \in \mathbb{R}_+)$, and $\mu: \mathbb{R}_+ \to \mathbb{R}_+$ with $\operatorname{sgn} (\mu(x) - 1) = \operatorname{sgn} (x-1)$ $(x \in \mathbb{R}_+)$ of equation (2.2).

The regularity properties of E were used only in the elimination of μ . It is easy to see that we would get all the k-homogeneous deviation means if we could deduce equation (3.1) without using regularity properties for the deviations.

References

- J. Aczél, Vorlesungen über Funktionalgleichungen und ihre Anwendungen, VEB Deutscher Verlag der Wissenschaften. Berlin, 1960.
- [2] J. Aczél—P. Erdős, The Non-Existence of a Hamel-Basis and the General Solution of Cauchy's Functional Equation for Nonnegative Numbers, Publ. Math. (Debrecen) 12 (1965) 259—263
- 259-263.
 [3] Z. DARÓCZY, Über eine Klasse von Mittelwerten, Publ. Math. (Debrecen) 19 (1972), 211-217.
- [4] Z. DARÓCZY, A general inequality for means, Aequationes Math., 7 (1972), 16-21.
- [5] Z. DARÓCZY—L. LOSONCZI, Über die Erweiterung der auf einer Punktmenge additiven Funktionen, Publ. Math. (Debrecen) 14 (1967), 239—245.
- [6] Z. DARÓCZY—Zs. PÁLES, On comparison of mean values, Publ. Math. (Debrecen) 29 (1982), 107—115.
- [7] Z. DARÓCZY—Zs. PÁLES, Multiplicative mean values and entropies, In "Colloquia Math. Soc. J. Bolyai 35." Functions, Series and Operators, Budapest (1980), 343—359.
- [8] G. H. HARDY—J. E. LITTLEWOOD—G. PÓLYA, Inequalities, Cambridge Univ. Press, Cambridge, 1934.

(Received May 15, 1984)