Generalized-homogeneous deviation means

By Z. DAROCZY and ZS. PALES (Debrecen)

1. Introduction. Let ¢: R, —~R be a strictly monotone and continuous func-
tion. For the quasiarithmetic mean M, ,: R} —~R, (n€N) defined by

1 n
(1.1 My =971 % 3 0]
whenever x=(x, ..., X,)ER%, néN the following basic result is well known (see
HARDY—LITTLEWOOD—P6LYA [8, Theorem 84.]): If (1.1) is homogeneous i.e.
M, (tx)=tM,  (x) for t€R,, xER" , n€N then there exists acR, such that

(1.2) M, o(x) = M, .(x)
for each xc€R”. and n€EN where

n 1/a
[-’1!- Sul, it axo,
(1.3) M =1
[H x;]”", if a=0.
i=1

One of the known generalizations of quasiarithmetic means is the concept of
deviation means (see DAROCZY (3], [4]).

The function E: R% —R is called a deviation on R, if the following properties
are satisfied:

(E1) The function y-E(x,y) is strictly monotone decreasing and continuous
for any fixed x€R,.

(E2) E(x, x)=0 for any x¢R.

Denote by ¢(R.,) the set of all deviations defined on R . It is known (see DARO-
czy [3]) that, for arbitrary n€éN and x=(x, ..., x,)€R", the equation

(1.4) éE(xi, 5w

has a unique solution yp,€R, such that min {x;|l=i=n}=y,=max {x;|l =i=n}
is also satisfied. Therefore the symmetrical value y,=: I, p(x) is called the E-devia-
tion mean of x.

If ¢: R, —~R is a strictly monotone and continuous function then

(1.5) Eg(x, y) = 3[(P(x)—fp()’)], (x, y€R+)
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is a deviation on R, where =1 if ¢ increases and ¢=—1 if ¢ decreases. It is
easy to see that

(1.6) M, g, (x) = M, (x)

i.e. quasiarithmetic means are deviation means, too. Therefore, the following ques-
tion seems to be natural: What can we state about homogeneous deviation means?
The following result answers this question (Daréczy [3]): If Ece(R.) and
M, g(t x)=1M, (x) for any t€R,, xcR", nEN, then there exists h: R —~R,
with h(1)=1 and f: R, —R with sgnf(x)=sgn (1—Xx), (xéR,) such that

(1.7) B = ho) £ (2).

This result is unsatisfactory from many points of view. On the one hand it is
not reversible since (1.7) is not a deviation for any given h and f, on the other hand
there still exist too many homogeneous deviation means. These problems lead us
to introduce a new homogeneity property.

Definition. Let Ece(R,). The deviation mean M, ;: R% —~R, (n€N) is said
to be k-homogeneous if

(1.8) My, g (t0x) = My, £ (OM,, £(X)
for any t=(ty, ..., t,)€RY and x€R%, n€N and where
(1.9) 20X = (131, «ovs By Xony ous D1y ooy BXHERY,

We remark that k-homogeneous (k=2) deviation means are also 1-homo-
geneous means i.e. homogeneous means since substituting t=(t, ...,t) (t€R,) in
(1.8) we obtain

Wy g() =1 and My, g(tox) = M, p(1x).
On the other hand it can easily be seen that homogeneous quasiarithmetic means
are k-homogeneous means, too, since
k n 1;'0
(110) Mo o(tox) = (= 3 3 (2] =
kﬂ J=1i=1
1 1 = 1/a
= (205 3x) = Miu@M,o)
kida’nis
if a#0. Either by letting a—0 in (1.10) or by a direct computation we obtain
that (1.10) is valid for a=0 as well.

Deviation means which are k-homogeneous for any k are called multiplicative
means. The class of these means is known (DARGCZY—PALES [7, Theorem 9]):
If Ece(Ry) and M, g: R ~R, (n€EN) is multiplicative then there exist a multi-
plicative function m: R, —+R (i.e. m(xy)=m(x)m(y) if x,y€R+) and a constant
acR\ {0} such that either

Zn'm(x)lnx
(1.11) M,, £ (x) = exp|—— — ] ems)
2 mx)
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or
n 1/a
2 m(x)x{
(1.12) M, g (x) = |=——| , (x€RL).
2 m(x)

i=1

Conversely, the means standing on the right hand side of (1.11) and (1.12) are
multiplicative deviation means.

In the present article we shall investigate the k-homogeneous deviation means
for some fixed k=2. We shall prove a surprising result:

If E is differentiable with respect to its second variable and its derivative is non-
vanishing then M, ¢ (nEN) is a k-homogeneous deviation mean if and only if there
exist a multiplicative function m and a constant acR\ {0} such that either (1.11)
or (1.12) is satisfied.

With the help of this result. we can easily see that the k-homogeneity of a reg-
ular deviation mean (for some fixed k=2) implies the multiplicativity of this mean.

2. Basic functional equation. In this section we deduce a functional equation
which plays an essential role in our discussion.

Theorem 1. Let E€e(R.) and assume that M, g: R -R, (n€N) is a k-homo-
geneous mean for some fixed k=2. Then the functions

2.1 f(x):=E(x,1), p(x):=M, g(x,1,...,1), x€R,
satisfy the functional equation
G fGy) k=1 __f(u)y)

JOSB) " ) f(ux) )
Sor any x,yeR,\{1}.

Proor. By the definition of deviation means, M, ; is k-homogeneous if and
only if
n k
(2.3) :2; ;Z; E(t;x;, My g (DM, £(x)) = 0
for any t=(1y, ..., t,)ERL, x=(xy, ..., x,)ER% nEN. Let t€R% be fixed and define
F¢: R2 —~R by

(24 Fi(x, y) = é; E(t;x, My, £ (D) »)-

Then Fy€e(R,) since it is strictly monotone decreasing and continuous in the
second variable, further, by the homogeneity of I, g,

Fs(.x, x) = jgk:]_ E(t_,x, mk’g(!)X) = Jéll E(.'jx, mk’g(x!)) = 0.
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Applying (2.4) the equation (2.3) turns into

‘é; Fy (x.h mu.l-:(l‘)) =0,
from which we obtain
@5 W, 5(x) = M, , ()

for any x¢€R%, ncN. It is known (see DARGCZY—PALES [6, Theorem 1]) that (2.5)
is satisfied if and only if
(2.6) F; (u, v) E(w, v) = F;(w, v) E(u, v)
for any O<u=v=w.

We see immediately that (2.6) is valid not only in the region 0<u=v=w but
for any O<wu,v,w. E.g. let O<u=v and O<=w=v. Choose w*=>v and apply
(2.6) for the values O<u=v<w* and O<=w=v<w"*. Then we have

2.7 Fy(u, 9) E(W", v) = F(W*, ) E(u, v),
(2.8) F(w*, 0) E(w, v) = F(w, v) E(W", v).
Multiplying (2.7) by (2.8) and dividing the resulting equatio-n by
E(w*, v) Fy(w*,v) >0

we obtain (2.6) just for O<u, w=v. In the case O<v=u, w the proof of (2.6) is
completely similar.
Now let x, yéR,\ {1} be arbitrary and substitute into (2.6)

u=yu(x), v=1, w=pu(x),

TN 1 ! 1 &
k (ﬂ(x)’ ¢ #(x)]ek"'

Then, since 9,  is a homogeneous mean,

x 1 1 1
By () = Em"":(,u(x) o7 A ,u(x)] e

i.e., using the notations (2.1), it follows from (2.6) that

L Gep) + (k=1 SIS (1) = f) f(u(x) »).
Dividing both sides by f(x)f(1(x))f(»)#0 we obtain the desired equation (2.2). 0O

3. The elimination of x. In the present section we deduce a functional equation
that contains only the unknown function f(x)=E(x,1). We shall need the fol-
lowing definition (DARGCZY [3]).

Definition. The function E: R% —R is called a differentiable deviation on R
if it satisfies the following properties:

My p(x, 1, ..., 1) =1
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(E*1) For each fixed x, yeR,
._ 9E(x, y)
EZ(x’ y) m——— ay
exists and is negative.
(E*2) E(x,x)=0 for any x€R,.
Denote by ¢*(R,) the set of all differentiable deviations on R, . Then it is
obvious that ¢*(R,)ce(Ry).

Lemma. Let Ece*(R.) and suppose M, z: R*, ~R, (n€EN) to be a homo-
geneous mean. Then, using the notation f(x):=E(x, 1), (xéR,), the function

LS fe2)
7@ /0" 7@

is continuous on the set R, \{l1} and the limit exists at x=1 for each fixed
¥, z€R\({1}.

PRrOOF. Since M, p is a homogeneous mean, applying the second theorem
mentioned in the introduction, we obtain that there exist h: R, -~R_, with h(1)=1
such that

62 B = ho) (2)

(3.1) 2

=: G(x, y, 2)

for x, yeR,. With the help of this relation we get

0 Y

E(l, %] E(y, 1) = E[l, é] E(z, 1)

G(x, y,2)=

Dy, Y-
- EO, ’)E[l, )—E(l, 1)_ Mzl E(l,-:?]—E(l, 1)

1
X

for x,y, zeR,\{1}. It follows from the last expression that x—~G(x,»,z) is a
continuous function, and lin: G(x,y,z) exists since Ece*(Ry). O

Theorem 2. Let E€e*(R,) and assume that M, p: R —~R . (n€N) is a k-ho-
mogeneous mean for some fixed k=2. Then, using the notation f(x)=E(x,]1),

f&) _ S6) L S0

33) 25070~ @ T o)
JSor any x,yeR,\({1}.
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ProoF. Let y, z€R,.\{1} be fixed values and define the function G, .: R, ~R
with the help of G as follows

G,,:(x) == G(x, », 2), x€R,\{1},
- l‘mll Nz =1,
Then, by the Lemma, G, . is a continuous function. Now we prove that G, is

identically constant i.e. G, .(x)=G, .(1) for any x€R,.
Let x,>1 be an arbitrary but fixed value, further let

Hxn = {xe{l, xO]IGy.z(x) = Gy.z(xﬂ)}'

Then the continuity of G, . implies that H, is closed, and since x,cH, , H, is
nonvoid.

Now apply the functional equation (2.2) for the values x, y and x, z. Subtracting
the equations obtained we get

G,,:(x) = G,,.(u(x))
for x€R, . It follows from this relation that
3.4 u(H,)c H,,.

Denote by X, the greatest lower bound of the set H, . Since H, is closed we have
Xo€H,,. Therefore, by (3.4), we obtain

(3.5) K(Xo)€ Hy,.
Now we prove that 1<3X, cannot be valid. By the definition of u(X,) we have

E (%, n(%0)) +(k—=1)E(1, u(%,)) = 0.
Since k=2, it follows from this relation that
(3.6) 1= p(X) <X,

provided that 1<X,. However (3.6) and (3.5) contradict the definition of X,. Thus
we have proved 1=X, ie. 1€H,,. Therefore G, .(x9)=G,,.(1).

If xo<1 then it can analogously be seen that G, .(x))=G, .(1) is also sat-
isfied.

Now notice the relation G, .(1)=—G. (1) if y,zeR,\{l}. By its help we
obtain the equation

(3'7) G(x’ b x) = Gy.x(x)=Gy,x(l) = “Gx,y(l) =—s x.y(y) &= —-G'(y,_x, J-'),

for x, yeR,\{1}. Taking into consideration the notion of G we get at once (3.3)
from (3.7). O

4. The solution of (3.3). In this section we determine all the solutions f:R_—R
of (3.3) having the property sgn f(x)=sgn(x—1), x€R.

Theorem 3. Assume that the function f: R, —~R satisfies sgn f(x)=sgn (x—1)
for x€R, and (3.3) for x,yeR. \{1}. Then there exists a constant b=0 such
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that, for the function
S (x?

(41) g(x) = 7.;—(})—, XER-L\{I},
we have
4.2) gxy)g(x)+g(»]—gx)g(») = b*

Sfor any x,yeR \{l1}.
ProoF. Let, for x, yeR.\ {1},
Flx,9) =2 M

fx) )"
Then it is obvious that F satisfies the equation
(4.3) F(xy, 2) F(x, y) = F(x, y2) F(y, 2)

On the other hand, by (3.3), we have
F(x, y) = g(x)+g().
Therefore it follows from (4.3) that

[g(xy)+2(2)][g(x)+2(M] = [g(x)+2(¥2)l[g(»)+2g(2)]
for x,y,zeR.\({l}. Using the notation

G(x, p) :== gxy)[g®)+g(M—g(x)g(»)

we obtain

449 G(x,y) =G, 2)

for x,y,zéR,\{1}. The repeated application of (4.4) yields
4.5 G(x, ) =G(y,2) =G(z,u)

for x, y,z, u¢R . \{1}. It is obvious from (4.5) that G is identically constant, i.e.
there exists ¢€R so that

(4.6) gxex)+g(]—gx)eg(») =c¢

if x,yeR . \({1}.

To complete the proof of the theorem it is enough to show that ¢=0. Then
c=b* for a suitable b=0.

Assume, on the contrary, that ¢<0. Then, by (4.6),

g(x»)g(x) = g [g(x)—gxy)]
If x,y=1 then g(x), g(»), g(xy)=0 therefore we get
CY)) g(x) = g(x).
Substituting into (4.7) x:=x", y:=x we obtain
g(x") = g(x"x) = g(x™*Y).
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On the other hand g(x")>0 hence the following limit exists
Jim g(x") =:g(x) = 0.
Substituting y:=x" into (4.6) and calculating the limit as n-<c, we get
g(x) =c.
However this is a contradiction, since ¢<0. [
First we discuss the functional equation (4.2) in the case b=0.

Theorem 4. Assume that the function g: 1, «<<[~R, satisfies the equation

(4.8) g(xex)+g(M—g(x)g(» =0

for x,y=>1. Then there exists a positive constant d such that

4.9 g(x) = ﬁ
Jor x=>1.

Proor. Using the notation

1
. I(x)-—m, x> 1,
we obtain from (4.8) that

1 Ete0) 1 . 1
g(xy) g(x)g(») g(x) gy

if x,y>1. Let, for >0,

I(xy) = = 1(x)+1(y)

A1) = 1(e").
Then we have
A(t+s) =AM +A(s)

for t,5=0. It is well known that there exists an additive function A: R—R such
that A(1)=A(t) if t=0 (see AczfL—ERDGS [2], DAROCZY—LosoNczi [5]). On
the other hand A(1)=A(t)=0 if t€R,, therefore there exists a constant d=0
such that A(t)=dt for t€R (see AczgL [1]). However, for t=0, l(e")=d!l, i.e.

substituting /=In x, we obtain
Ix)=dInx

for x>1. Therefore we just get the solution (4.9). [0

Theorem 5. Let b=0, and assume that g: |1, «<[+R . satisfies the equation

(4.10) g(xy)[g®)+gl—-g(x)g(y) = b*
for x,y=1. Then either
@@ gx)=b, x=>1,

or
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(ii) there exists a positive constant a such that

x*+1
g(x) = b-x"_l
for x=1.
Proor. For x=>1, let
_ gx)—b
4.11) m(x)__g(x)+b i
Then, by (4.10), we obtain
b*+g(x)g(»)
_8G»-b_  gx)+g0) gx)-b][e0-b] _
meY) = oGy Th ENEHON [g(x)+b][g(y)+b] mx)miy)
g(x)+g(y)
for x,y=1.

The function g(x)=b is obviously a solution of (4.10). Now try to find all
the different solutions. Assume that g(y,)#b for some y,>1. Then we prove
that g(x)#b for x=>1. Choose nEN such that yj>x. Then, since g(y,)#b,

m(y,)#0, we have 0=m"(y))=m(yj)=m Yo ] [—?—]m(x). Hence m does

not vanish anywhere. Then m is positive, smcc

m(x) = m(VxVx) = m?(yx) > 0.

Rearranging (4.11), we obtain
4.12) T L

1—m(x)
for x=1. Since g is positive, we have m(x)<1 for x=>1. Let
A() = Inm(ée)

if #=0. Then it follows from the properties of m that A(t+s)=A(t)+A(s) for
t,5=>0 and A(t)<0 if t<0. Therefore, as we have shown in the proof of Theo-
rem 4, there exists a positive constant a such that A(7)= —at for t=0. Substituting
t=In x we have
Inm(x) =-—alnx
i.e.
m(x) = x"*

for x=1. Applying (4.12) we obtain immediately the solution (ii). [

Theorem 6. Let f: R.—~R and assume that sgnf(x)=sgn(x—1) if x€R,,
further f satisfies the equation (3.3) for x,yeR, \{1}). Then there exist a multi-
plicative function m: R,—-~R, (ie. m(xy)=m(x)m(y) if x,yER, and positive
constants a, ¢ such that either

§)) f(x) =em(x)In x
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or
(61) JS(x) = em(x)(x"—1)
Jor xeR_.

Proor. Using the notation (4.1) we easily obtain from (3.3) that
4.13) 2 SO +50)

S )

if x,yeR,\{1}. Further, by Theorem 3, g satisfies the equation (4.2) for
x, yER,\ {1} with a suitable constant b=0.

If b=0, then, by Theorem 4, there exists a constant d=0 such that g(x)=
=d1_111x’ (x=>1). We prove this equation also for 0=x<1. Let O0<x=<1 and
y=1/x in the equation (4.13). Since f(xy)=f(x(1/x))=f(1)=0, it follows from
(4.13) that
1 1

dln[l] dinx
X

flxy) 1 1 dlIn xy

2_)‘(Jc)f(y) s dlnx+d1ny =(dlnx)(dlny)

for any x, yeR \{1}.
With the help of (4.14) it is easy to see that the function m: R, —~R, defined by

g(x)=—g[£—) e

Therefore

4.19)

is multiplicative. Hence, for x€R_,
d
J(x)= ?m(x)lnx = cm(x)In x.

If b=0, then by Theorem 5 we have two possibilities. If g(x)=b for any
x=>1, then applying (4.13) for O0=x<1, y=1/x we get

g(x) =—g[%] .

el
2—f(£)fé_]] = s@+g(3) =b-b=0,

But then, by (4.13),



Generalized-homogeneous deviation means 63

hence f(2)=0. Because of this contradiction there remains the case
g() = b x“-}-l
Then, it follows from (4.13) that

- 3 PO e ol SR |
R

for 0<x<1. Applying (4.13) again we get

2f (xy) _bx"+1+b »+1 _ 2b[(xy)—1]

i) 7@ 1~ =D =D

if x, yeR,\{1}.
It follows from (4.15) that the function m: R, —~R, defined by

m(x) = 2{ f‘l) x€R L\ (1},

1s multiplicative. Hence
@) = 5 m@) (1) = em(x) (1)

for x€R,.
Conversely, it can easily be checked that the obtained functions (j) and (jj)
really satisfy the functional equation (3.3) for x,yeR.\{1}. O

5. k-homogeneous deviation means

Theorem 7. Let Ece*(R,) and assume that M, z: R%. —R . (n€N) is a k-ho-
mogeneous mean for some fixed k=2. Then there exist a multiplicative function
m: R, =R, (ie. m(xy)=m(x)m(y) for x,yE€R,) and a positive constant a such
that either (1.11) or (1.12) is satisfied.

Conversely, the means obtained are really k-homogeneous, moreover they are
multiplicative means.

Proor. If Ece*(R,) and M, g is k-homogeneous then, by Theorem 2, f(x)=
—E(x, 1) satisfies equation (3.3) for x, yER+\{1} Hence, by Theorem 6, there
exist a multiplicative function m and posnwe constants a, ¢ such that either ( _]) or (j))
is satisfied. On the other hand 9, . is a homogeneous mean, therefore there exists
a function h: R, —-R, such that h(1)=1 and (3.2) is valid. Hence we obtain
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that either
B ) = h)f (2] = hoyem [X) 10X =
= ¢20) n x)(n x—1n y) =
= H(y)m(x)(In (x)—In y)
i

EGi ) = h)f () = hoyem [;] [[%]- 1] -

h(y)
m(y)y*

=c m(x) (x*—y?) = H(y) m(x)(x*—y).

Now let xy, ..., x,€R, (n€N) and consider the equation

IZ;. E(xia y) = 0‘

Solving this equation for y in both cases we easily get that either (1.11) or (1.12)
is valid.
The multiplicativity of M, ; of this form can easily be checked. ([

Remark. Apparently, in the above manner, we have obtained the means in
(1.12) only for a=0. However, for a<0

1/a -1/a

ﬁ' m(x;) x{ Zﬂ'ﬁ(xi)xi'“
iml L iml
> mx) 3 (x)
i=1 =1

where m(x)=m(x)x* is also a multiplicative function.

6. Open problems. In the present paper we have proved that the k-homogeneity
of a deviation mean and certain regularity assumptions imply the multiplicativity
of the mean. It would have some interest to find a value k£ and a deviation such that
the generated mean is A-homogeneous but not multiplicative. It can be proved that
the k-homogeneity of deviation means implies /-homogeneity if /=k. Therefore
if there exists a nonmultiplicative but k-homogeneous (for some k) deviation mean,
then necessarily there also exists a nonmultiplicative 2-homogeneous mean.

In our discussion the functional equation (2.2) plays an important role. It
would be very useful to know all the solutions f: R, —~R with sgnf(x)=sgn (x—1),
(x€R,), and pu: R,—R, with sgn(u(x)—1)=sgn(x—1) (x€R,) of equa-
tion (2.2).

The regularity properties of E were used only in the elimination of u. It is
easy to see that we would get all the k-homogeneous deviation means if we could
deduce equation (3.1) without using regularity properties for the deviations.
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