A rational functional equation with an economic application

By HELMUT FUNKE (Ulm)

0. Introduction

The purpose of this paper is to solve the functional equation

(1) A0 _ ) s@) g g mG)
ié,lﬂ(x‘) i;; g;(xl) ié; h‘(xi)

for n=2 and
.ﬁ! Li» hl: XIT'F (" == ]: veey ")‘

Let F be a field, whereas the X;’s are allowed to be arbitrary sets. Let A€ F such
that A1¢ {0, 1}. Of course, firstly we have to assume that all denominators are dif-
ferent from zero. Secondly, let all images f;(X;) have sufficiently many elements,
namely at least 4 elements in the case n=2 and 3 elements in all other cases.

It is very helpful to know all solutions of functional equation (1) for finding
those of the system

.21' byd;(p;,a;, by, ..., by,)

(2) =t21'ejs(Pu sovy Pus Qps ooy a:nbt)

i;l', di(pi’ a;, bl! seey bm)
for j=1,...,n, n=3, m=2. This equation represents an aggregation problem in
economics. In this context, p,¢ P,CR,, denotes the price producer i requires for
his product, whereas a; (not necessary a real) represents other nonprice charac-
teristics of commodity #, for example advertisement or goodwill; b,€B,CR, is
the budget of consumer & and

ejt(pl! ooy Py Q15 «+vy Qg b._)ER+

denotes his expenditure for commodity j. Thus the left hand side of equation (2) is
the total turnover of commodity j.

A characterization of the functional form representing the left hand side of
equation (2) is given in FUNKE (1982), who was inspired by a similar characteriza-
tion of BURK and GEHRIG (1979). It seems worthwhile to analyze the corresponding
aggregation problem, i.e., to answer the questions: Is it possible to represent such a
turnover function by a sum of individual expenditure functions or ot? In nother
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words, has functional equation (2) solutions? And if so, how do the expenditure func-
tions look like?

Using the solutions of equation (1) one can show that all solutions of equation
(2) are of a very spcmal form. Moreover, one can show that some economically very
suggestlve assumptions imply that all expenditure functions have to be identical, i.e.,
there is no individuality of demand. Additionally, if there is no money illusion,
the Engel-curves are straight lines. These results will be discussed in Section 3.

In Section 1 we deal with the basic functional equation, i.e., with equation (1)
for n=2 and identities on the left hand side. Equation (1) can be transformed
into a system of functional equations that contains an equation which has been
considered by AczEL (1966, p. 160). The remaining equations make this problem
more difficult but, as we shall see, more interesting, too. We use a direct way to
solve equation (1) without applying Aczél’s result. However, there are some simi-
larities between the two approaches.

At the end of Section 2 we turn to the most general case of equation (1), whereas
in Section 3 the economic applications will be given without proofs.

1. The Basic Functional Equation

Let n=2 and all /s be identities. Then equation (1) can be written as

&l a(x) - c(x)
©) x+y T a(x)+b(y) A ¢(x)+d(y)

where a,c: XcFy—~F, b,d: YCF,~F and 2€F\{1}?). F is a field containing
sufficiently many elements. Of course, we have to require that all denominators are
different from zero for all x€X, yeY.

Theorem 1. Let |X|=4, |Y|=4 and
IIx#y

xEX yey

Jor \X|=|Y|=4. Then all solutions of equation (3) can either be written in the form

a(x) = r(Ax—e),
b(y) = r(iy+se),
C) ¢(x) = s(ux+e),

d(y) = s(uy—e)
with pu=1-A4, r,s€F, and ecF

1) Fo:=F\{0} as usual.
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or in the form

rx
a0 =7 %"
S i
b(y) ot A'I“Sy,
sX
®) o=
5y
d —
) )
with u=1—2, r,s€F, and €€ F such that
0§(A—eX)U(A+eY)U(u+eX)U(u—eY)

or for 2A=1 in the form

a(x) = rp(ex),

b(y) = rq(—ey),

¢(x) = sp(ex),

(6) 14 = —sq(—¢y)

Jor r, s¢ F,, suitable ecF, and p and q are

suitable root functions, i.e., inverses of the
| standard quadratic function z v z*.

Conversely, all functions given above are solutions of equation (3).

Nemark 1. Of course, solutions of the form (6) require both Char F#2 and
a suitable algebraic completeness of F. However, there always exist solutions of
the Yorms (4) and (5), for example standard solutions, i.e., £¢=0.

ProoF. The last assertion of Theorem 1 will easily be shown by plugging the
functions given above into equation (3). The following proof is splitted into two
parts. By using the condition |X|=3 and |¥|=3 Part 1 shows that the functions
a, b, ¢ and d either are of the form (6) or are ratios of polynomials of degree =2.
This result will be used for both Part 2 of this proof and for the proof of Theorem 2.
Additionally, by the assumption from Theorem I, namely |[X|=4 and |Y|=4,
some so-called degeneration cases can be excluded. That is, the polynomials men-
tioned above fulfill certain conditions of non-divisibility.

Part 1: In this section, for the sake of simplicity, we omit the arguments in
the functions and indicate the function values through the index of its argument.
For example, we write ¢ for ¢(x) and b, for b(y;). Multiplying equation (3) by its
denominators yields:

(7) (ux —2y) ad +(Ax — py) be — yac + xbd = 0.

For determining b and d through appropriate combinations of equation (7) for
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X;, X3, X3€ X we obtain the system
(8) {Pllb_'_Pl!d = ql,
Pib 4 PR = g
with the monomials in y
P = (X0, — X1 €)Y + X X3 (c2— 1),
P2 = J(Xya, —X,a5)y +X,X3(as—a,),
P = p(Xg€a—XaCa)y + X X3 (C3—Ca),
P2 = (X305 —X303)y + X3 X3(a3—ay),
7' = (xya5¢3—x30,¢,),
q* = (xaa3¢3—x3a5¢,)).
For solving equation (8) we have to pay attention for zeros of the determinant
Y(y) == |PUp2_ pr2pa|,
If  is the zero polynomial, then one of the following cases has to hold:

Case la: Let x,a,—x,8,=Xx,¢,—X;¢,=0 hold. By appropriate combinations
of equation (7) for x, and x, and through some calculations we obtain

©) b(y)=fc—iy and d(y)=%‘1-y,

namely zeros of order two for the corresponding binomials in b and d, respectively.
Clearly from solution (9) one similarly obtains

.. ) L 3
©9) a(x) = & x and c(x) =3 %
We refer to the results (9) and (9') as the standard solution of equation (3).
Case 1b: For u=A, ¢;=na;(i=1, 2, 3; n#0)

ai a3 _ a3
X1 y X3 % X3
holds, that is,
al=zsx; (I=12213).
This implies

a;=pex) (i=12273),
where p is an appropriate inverse of the standard quadratic function z—z% Again,
by using equation (7) assertion (6) is proven.
Case Ic: There exist some a, 1, o, 7€ F, such that
o*x; HIX;

and ¢; =

o +1x; o+1x; (=%
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holds. We call this case degenerate because it yields a contradiction as will become
clear from the following treatment of both b and d in case 2a.

We now assume that the determinant y is different from the zero polynomial,
i.e., it has to be a polynomial of either degree 0, 1 or 2. If :JJ is different from zero
we obtain the following representation for b and d:

BO») 6(»)
[76) o)

W0) = Yoy >+ +ily = PUPE_Ppusw)

(10) b(y) = y and d(y)=-—=5y (PEV\Y~ (O,

where

B®) = Bry+Bo = %(q*PLq*P**),

5(9) = 81y +80 = %(q’f’"—qwﬂ).

Since system (8) has to be solvable for all y€Y zeros of  in Y also have to be
zeros of B and . This states that y has at most one zero in Y; in this case we have

P

d
(11) b()’)=my and d(J’)=WJ’ (eY\y—(0).

This form either represents the standard solution®) for ;=0 or a degenerate
case to be dealt with in

Case 2a: Suppose b and d are degenerate, that is, after some suitable normaliza-
tions b and d can be written as

b d(y) = —2— 0

0)=d0) =<7 (ENY= ()

Since b and d cannot be constant simultaneously #7#0 must hold. By equation (7)
it follows:

Y*(—Aa—pc—ac)+y(x(pa+2ic+1)—nac)+n(x(pa+2ic)—nac) = 0.

The left hand side of this equation must be the zero polynomial because, firstly,
its degree is less than 2 and secondly, it has |[Y\y~(0)|=3 zeros. Letting the coeffi-
cients of this polynomial equal zero, we obtain three functional equations for a, ¢
and n€F,. These turn out to be contradictionary.

For both the sake of completeness and for further use we show that the fol-
lowing degenerate case cannot occur:

*) y(2):={y€Fly(»)=z).
**) Contrary to indicated roman letters indicated greek letters are used for coefficients rather
than function values. Sometimes, however, we continue to omit the arguments in the functions.
For example, we write & for a(x)=o0x+ .

?) See case 1a above.
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Case 2b: Suppose P~90, that is, f=vd for an appropriately choosen vEF,.
In the case of deg f=deg 6=0 by using system (8) one can show that ¥,=0 holds,
ie.,
vy
vy +¥,

In the case of deg f=deg =1, again, by using system (8) one can show that both
P and o divide ¥. In either case we obtain the former type of degeneration that
turned out to be contradictionary.

Part 2 of the proof of Theorem 1: We have shown that, if b and d are not of
type (6), both are of the form (10) for all y€Y. Because of symmetry, it follows that

b(y)=vd(y) = y (¥eY).

_ 2k — Y
(12) a(x) = Y x and c(x)= T x (x€X)
must hold where

@(x) = @ x*+ 91X+,
a(x) = ayx+oy,
?(X) = n1x+7,.

These results we plug into equation (7) and obtain

o(x, y) = (ux—=21p)a(x) (x) (V)Y (»)+(x—py)y(x) @ (x) BOIY (¥) -
(13) [ —x2(x)y () (Y )P +y8(») (»)(e(x))* =0
(x€X, y€Y).

We now show, that  is the zero polynomial. If this holds has to divide xay and
¥ has to divide ypé. Dividing @ by @y the remaining proof will be easy.

For showing that @ is the zero polynomial, we exclusively deal with the most
complicate case, that is, |[X|=|Y|=4 and

I x#= [II».
xeX yeY
From equation (13) and by rules of divisibility it follows that the representation
(14) o(x, ) =e(»ex)+{(x)1(y) (x, y€F)
holds, where
6(x) = X*+03x*+ 03 x2+0, x+06,:= [ (x—x),
xeX
(1) = V' + 150+ 1)+ y 41 = IGIY(y*y;)
¥

and ¢ and { are appropriate polynomials of degree equal or less than 4:
e(¥) = eay'+esy*+e:y*+ 01y +0os
E(x) = Lx* + 6+ ax + 4y +o.

Obviously, representation (14) is unique except for some multiples of ¢ and 7. We
have to distinguish between the following six cases for ¢ and (:
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Case 3a: ¢ has no zero in Y and o(»)=f(¥(»))*+ft(») for all y€F and
appropriately choosen f€F,, fe F.

Case 3b: ¢ has a zero in Y.
Case 3c¢: ¢ neither meets case 3a nor case 3b.

Case 4a: { has no zero in X and {(x)=g(¢(x))}*+go(x) for all x¢F and
appropriately choosen ge€ F,, g€ F.

Case 4b: { has a zero in X.
Case 4c: { neither meets case 4a nor case 4b.

Except for the combination case 3a—case 4a it can be shown easily that ¢
divides xay and  divides yfd. Therefore the degree of @ is reducible in both x and
¥, 1.e., w has to be the be the zero polynomial. The remaining combination case 3a—
case 4a will turn out to contradictionary. This combination yields

(x, y) =f (U ())Pox)+g(e®)*t(y)+ha(x)t(y) (x, yEF)

where h=f+g. Since ¢ divides y*(fo+xuy)+hot and ¥ and t do not have a
common divisor ¢ has to divide fo+xxy and thus A=0 must hold. Similarly it
follows that Y has to divide gr—yfd. Furthermore, because @ has no term x*y*
we obtain f+g=0. Now several normalizations yield y,=¢,=1, f=1 and g=—1,
that is

(15) o(x,y) = W ())Pe @) —(ex)*t(») (x, yEF).
By the divisibility conditions mentioned above, namely
(16) @ (x)&(x) = o (x)+x2(x)7(x)
where
E(x) = Ext+&x+ &,
and
(17 yO)r(y)=—t(»)—yB()o(y)
where

n(y) = ny*+my+m,
it follows that we can divide equation (15) by ¢y and obtain

(18) (ux—2p)a(x)0(p) +(Ax—w)y () B(¥) —S(X)¥ (¥) —@(x)n(y) = 0.

Since equations (16), (17) and (18) hold for all x, y€ F one obtains a corresponding
system of equations for the coefficients. This system implies ¢,=1,,%) that is,

[Ix= Iy

xeX yevy

But this equality was excluded by assumption. Obviously, this assumption is sat-
isfied for some suitable choice of the arguments if either |X|=5 or |Y|=5. This

%) For this deduction the impossibility of both a~y and f~J is very important. In this
context, see case 2b.
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statement completes the analysis above for domains containing more elements
than 4.

By using the divisibility conditions ¢|xxy and |yBé further treatment of
equation (13) yields one of the following two cases:

Case 5a: @,=@o=Y,=Y,=0, ¢;7#0 and y,;#0
or
Case 5b: There exist f, g€ F, such that

o(x) = fa(x)y(x) and ¥ ()= gf(»)é(y).

In both cases we divide equation (13) by ¢y. The remaining proof, i.e., the final
deduction of both the solutions of form (4) from case 5a and the solutions of form
(5) from case 5b, is left to the reader.

Remark 2. The reason for excluding both 06X and 0€Y is that x=0 or
y=0 would be exceptions for the basic functional equation (3). For example x=0
and some other x€X yield

a(0) =c(0)=0.

This implies that from equation (3) we cannot get any information for b and d
if x=0.

Remark 3. The following example shows that the assumption

is an essential one:

a(x) = 10(1 +x)(5+18x+10x*)"1x,
b(y) = 10(1+y)(5+17y+10y%) "y,
c(x) = 10(1 —2x)(5+18x+10x%)'x,
d(y)=103+p)(5+17y+10y%) "1y,
X = {x€R|x"+6,4x>+5,68x*—0,6x—0,25 = 0},
Y = {yeR|y*+2,6y3—0,77y2—2,9y—0,25 = 0}.

2. The General Case

Firstly, we consider the functional equation

(19) Xy = }» al(xl) +(] —A) bl(x]_)
g’: X .'é a;(xy) ig; by (x;)

with a;, b;: X,cF-~F, i=1,...,n, 06 X,UX,+...4X, and A€F but 1¢{0,1}.
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Of course we continue to assume that all denominators are different from zero for
all x;€X,, i=1, ...,n. The case n=2 has already been dealt with in the previous
section.

Theorem 2. Let |X,|=3 and n=3. Then all solutions of equation (19) can be
written in the form
(20) a;(x) =r(Ax;—{) and bi(x) =s(ux+&) (i=1,...,n)
with p=1-2,r,s¢Fy and &, €F, i=1, ...,n, such that {,=¢&, and

holds. Conversely, functions of this form are solutions of equation (19).

Proor. The second assertion is obvious. To show the first assertion we denote
by E the set of all mappings

e=(0,....8): Y= FJ X; - X X;
i=2 i=2
satisfying

n

(22) 2e(»)=y (eY).

im2

Apparently E is not empty and each representation of y as a sum of x;’s is represented
by an e€E. Using x for x,, a for a,, ¢ for b, and

@3 be.y) = 3 ae(y)
g (e€E, ycY)
(23) d(e, y) := _Z; bl(ei(y))
we obtain from equation (19) B
. a(x) i c(x)
@) S tirbEn T TV c@TdEy FEH YET. €E).

If e does not vary, this functional equation can be treated similarly to the basic
equation (3). From the first part of the proof of Theorem 1 we already know that for
|X;/=3 and |Y|=37? all solutions either are of the standard form or, for 2i=1,
of the form (6) or of the form

o R =)
i B
pO) 50)

b(e,y) = Wy! d(e,y) = TV

The construction of b and d with the values of a and ¢ for the three different
x€X shows that b and d do not depend on e. Furthermore, @, which is defined by

4) The assumption |X;|=3,i=2,...,n implies |¥Y|=5.
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equation (13), does not depend on y because its degree in y is less than 5 and Y con-
tains 5 elements at least. Therefore y has to divide yfd; thus some monomials may
be cancelled out. Hence

Case 6a: The following representation holds:
By +Po 0,y +0,
b(y) =——— and d(y) = ——
) my-+me s ) my-+mo
Since b does not depend on e we obtain by backward substitution (23) equation

(ex) .

& B Zn'xi‘l‘ﬂo
25 2 a(x) =———— (x€X;, i=2,..,n).
o ”hi._z; X;+Mo

Furthermore, again through backward substitution one obtains a similar equation
for the b;’s. From equation (25) it follows:

(26) Pi(utv)+hy _ Pi(@+v)+Bo _ Bi(u+)+By _ Bi(@+0)+PBo i
mu+v)+n,  n(@+v)+n, mu+o)+n,  m(@+0)+n,

k n
(u,5€U == 3 X;, v,5€V:= J X))
i=2

i=k+1

with an arbitrary, but fixed, integer k: 2=k=n. Further treatment of equation
(26) either yields 7,8, —n,=0 or n,=0. In both cases we have

@7 3 ax) =B 3 xi+Bo (Bos BLEF).
Similarly we obtain 2
@7) S b =3 Zxi+3, (G0, 3,6 F)

Separation of variables and some suitable substitutions yield
a(x) = r(Ax;—={;) and bi(x) = s(ux;+&) (i=2,...,n).

The remaining work can be done by computing both @, and b, from a system of
linear equations for a, and b, that is analogous to system (8).
For the sake of completeness finally we consider:

Case 6b: b and d are of the form (6), i.e.,
b(y)=rq(—ey) and d(y)=—sq(—ey)
for appropriately choosen &€ F, and arbitrary r, s€ F, where p and ¢ are suitable

5) Since b and d do not depend on e we write b and d instead of b(e, -) and d(e, -).
6) For the case grad w=0 a special treatment is necessary. It can be shown, however, that
this case is impossible.
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inverses of the standard quadratic function, i.e., z—z2% This solution requires 24=1
and therefore Char F#2. A similar analysis as in case 6a yields

(28) qu+v)+q(@+v) = g(a+v)+q(u+v),
k n
(v, @€U:=-¢ 3 X, v,0€V:=—2 J X)).
i=2 i=k+1
After squaring out equation (28) twice in a suitable way we obtain
4(u—a)(t—v) =0 (u,acU,v, veV)

which, because of Char F##2, is a contradiction. Therefore it is shown that case
6a holds which proves the remainder. By now, we are ready to consider the gene-
ral case, i.e.,

) ”fl(xl) =¥ "g:(xl) +(1=2) fl(xl)
ig;ﬂ(xl) ig; gi(x) igl' hi(x;)

for n=2, AeF\{1} and f;, g, h;: X;—~F, i=1, ..., n, where the X;’s are arbitrary
sets and 04 f£i(X)Uf(X)+... +£(X,). Of course, we continue to require all
denominators to be different from zero for all x€X;, i=1, ..., n.

The distinction between n=2 and n=3, again, is mode for simplicity of
illustration.

Theorem 3. Let n=2, | fi(X)|=4, | a(X)|=4 and

.2 I
g€ (%) 2€54(Xp

for | fi(X)|=|/a(Xy)|=4. Then all solutions of equation (1) either can be written
in the form
g(x)=r ()‘fi (x])_s)s
g2(x2) = r(Ma(x) +e),
(29) hi(x)) = s(ufi(x,) +e),
ha(x2) = s(ufa(x2) —)
with u=1-A, r,s€ F, and &€ F
or in the form

&1 (xl) — ; :fj':f(-ligl) s
. rfa(xs)
ga(xs) = mm ’
60 {he =T
- Sf;z(xz)
ha(xd) = S o
with y=1—2, r, s€ F, and ¢ F such that
0¢ (A—gfi (X)) U(A+efo (X)) U(n+8f (X)) U(n—gfa (X p)
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or for 2)=1 in the form

[ g,(x1) = rp(efi(x), xy),

ga(x2) = rq(—efa(x), x,),

hy (x;) = sp(efi(xy), xy),

(1) { ha(x) = —sq(—efa(x), x)

Jor appropriately choosen ¢€ F, and, r, s€ Fy and

p(+,x,) and q(-, x;) are suitably choosen root
| functions.

Conversely, all functions given above solutions of equation (1).

ProoF. The second assertion is obvious. To show the remaining assertion in
the first part of this proof we restrict X; to X;* such that f; is injective on X;" and
fi(X)=£(X]), i=1,2. Now the assertlon of Theorem 3 can easily be proven by
inversion of the f’s, application of Theorem 1 and reinversion.

It remains to be shown that the assertion also holds for every X, X\ X;" with
both the same functional form and the same coefficients as before. We define

I = (Xi*\{x,-E Xllﬂ(xl) =f;(fl)})u {fl}

and in the same way as before we obtain a pair of solutions (g;, #;) of the form
(29), (30) or (31). Three common points of X;* and X;** imply that the functional
form and the corresponding coefficients are the same.

Theorem 4. Let n=3 and |fi(X)|=3, i=1,...,n. Then all solutions of equa-
tion (1) can be written in the form

{gi(xl) = r(Afi(x)—0),
hi(x;) = S(Hﬂ(xi)—fl)
with p=1-—), arbitrary r,scF, and arbitrary (;, E€F, i=1,...,n, such that
(1i=¢&, and

n n
(33) 21' 2
hold.

ProOOF. The proof is similar to the one given for Theorem 3. It has to be men-
tioned, however, that now two common points of X;* and X;** are sufficient to
extend the solutions.

(32) } sl 2o
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3. Consequences for an Aggregation Problem for Turnover
and Expenditure Functions

We have solved functional equation (1) in order to solve equation
12; bed;(p;,a;, by, ..., by)

‘Z; di(pis aig b]_, sesy bm)

for n=3 and m=2. The economical interpretation was sketched in Section 0.
For solving equation (2) we assume that an individual budget constraint holds for
every consumer. This implies that the expenditures of a consumer are equal zero if
his budget is equal zero. For employing equation (1) we let all budgets b, equal zero
except one of them. This yields

m
2 ¥ 12:. ej&(P;, cves Pus Q15 +oey Gns by)

fﬂc(i"b“hbi) e L aa it B=Tgaain)
‘Z; du(pi» a;, by)

ejk(p’ a, bk) - bk

where
d]k(pj’ aJ, bk) = dj(pj’ 0}, 0, sasy 0, bl’.’ 0, sany 0).

Plugging this result into equation (2) for fixed budgets we obtain indeed a func-
tional equation of the form (1) that we have solved already.

Theorem 5. Let m=2, 0¢B,, k=1, ...,m, and B:=B;X...XB,\{0}, B#0.
Let |d;(P;, A;, b)| =3, be B, j=1, ..., n. Then there exist n(m+1) +1 functions, namely

7: B—~Ry,,
Py PIXAI _"R++ (l — I) srey H),

Cik: Bk_‘"R (k: ]., vesy m)
satisfying

I}:?l La(b) =0 (k=1,...,m)

Ca(by) < @i(pis a) (BEBy, pEP;, ai€A;, i=1, ..., n)
such that each solution of equation (2) can be represented as follows

(34

3 beLu(b)
(35) d;(p;, a;, b) = y(b) 9;(p;, ﬁ'i)-—kil———'— i=1,..n),
by

Mz

Il
S

G0  ea(paby=b 2L L®) ko, m)
J_g; @;(Pj, a;)
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Conversely, functions of the forms (35) and (36) satisfying equation (34) are solutions
of equation (2).

For the PROOF see FUNKE (1982, Theorem 2).

As discussed in that paper already the resulting turnover and expenditure func-
tions at first sight seem to be acceptable from an economic point of view. But if
we employ one and only one of the following properties which economically are
reasonable then there arise severe objections against the use of such turnover func-
tions.

(37) Arbitrary reduction of consumer k's expenditures:
For every commodity i=1, ...,n and all b€ B, there exists a sequence

(Pls aken© PiX 4,
such that the expenditure of consumer k converges to 0:

klirg ex(p,a, b)) =0 ((p;,a)=(pk ah).

Except for the dependence on a; property (37) states a ‘“‘concept of prohibitive price”.
Economically spoken, consumer k’s expenditure for commodity i becomes arbi-
trarily small if the price of this commodity sufficiently increases. We say, consumer
k behaves in line with real market conditions.

(38) Absence of consumer k’s money illusion:

If all prices and consumer k’s budget are multiplied by the same factor con=
sumer k does not change his demand:

ex(2p, a, 2by) o ex(p, a,
Ap; Pi

and Z€R, . such that ApcP and Ab€B,.")
Property (38) states that changes of money units do not alter a consumer’s behaviour.
For both economical and technical®) reasons we assume the following two
properties:

bt) (PEP, aEAs bgGBg, i= 1, asey n)

(39) There exists an arbitrary i€{l,...,n} and an arbitrary small open interval
P;c P; where consumer k’s expenditure for commodity 7 is decreasing.
(40) There exists an arbitrarily small open interval P/*C P,, i=1, ..., n, such that

7) For the sake of simplicity some domains are required to be intervals, that is,
B.:=(0,b) b =0, k=1,...,m),
P:= ‘2(1 (pl.p) O=p} <p!=w, i=1,...,0).
8) Homogeneity vields the following functional equation for restricted domain: f(ix)=

=u(l)g(x)+p(2). For this equation we need some regularity condition as was shown in Funke
(1982, Theorem 4).
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consumer k’s expenditure share is restricted as follows
eit(ps a, bh)

by
where p,€ Pf* and all other variables are suitably choosen and constant.

Theorem 6. Let consumer k’s expenditure function be a solution of the aggrega-
tion problem (2) as represented in Theorem 5 by functions of the form (36) with respect
to condition (34). There remains no individuality, that is,

;xk(bk) =0 (l = l’ vesy "):

if either property (37) is safisfied or the properties (38), (39) and (40) are satisfied
simultaneously.

EXI""‘:I!

The PROOF is given in FUNKE (1982, Theorem 3).

We have shown that all consumers behave equally if at least one of the fol-
lowing holds: Firstly the consumers have no money illusion or they reduce their
expenditure shares sufficiently strong for those commodities whose prices are increas-
ing more than others. The consequence of this is, that consumers reacting reasonably
on changing prices and budgets do not have any individual demand. Moreover, the
“individual” Engel-curves

{xERilx,-=e"‘(p:p;"b"), b€B,, i =1, n}

i
(a,€4;, pEP;, k=1, ..., m)

are straight lines. The concept of inferiority and superiority for commodities is
ruled out by this fact. Roughly spoken, the commodities have no individuality, too.
However, this does not seem reasonable: We would expect a consumer whose
budget is increasing to raise his expenditure shares for luxury goods and to reduce
those for basic goods.9) Obviously, such a behaviour is impossible for straight
Engel-curves.

On the one hand, these disadvantages are very strong objections against using
such demand and turnover functions. On the other hand, such functions have a
number of advantages compared to the linear demand functions usually employed.
Firstly, they satisfy the budget constraint, secondly, they never have negative values,
and thirdly, the functional class is much larger than the one of the linear functions.
Of course, the last property guarantees much better properties for approximation
than was possible for linear demand functions.

Is it possible to escape from this dilemna? If the “absence of money illusion”
or “arbitrary reduction of expenditures™ is to be maintained one has to drop out
another property. If we do not require “independence of irrelevant information” we
loose the nice functional form on the left hand side of equation (2), also. A reason-
able way out of the dilemna is to weaken the aggregation problem. This can be
done in two ways at least:

9) This does not mean that the demand for such commodities has to be reduced necessarily.
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Firstly, until now we have required our equation of aggregation (2) to hold
for bEB, i.e., we have to allow that a consumer has no money to live on. The suit-
able way would be to introduce

B, := (b}, b) with bf > bl =b*>0,

where we may call b* a subsistence level.
Secondly, we have assumed that the demand of a consumer does not depend
on other consumers’ budgets.
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