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An International Conference on Generalized Functions was held in Debre-
cen, Hungary, from November 4 to November 9, 1984. The conference was organized
by the Regional Committee of the Hungarian Academy of Sciences, the Jinos
Bolyai Mathematical Society and the Mathematical Institute of the Lajos Kossuth
University.

The Organizing Committee for the conference consisted of B. SZOKEFALVI-
NAGY (chairman), E. GESZTELYI (organizing chairman), G. FAZEKAS (secretary),
I. Feny6, L. MATE and A. SzAz. The 40 participants came from Austria, Bulgaria,
England, France, FRG, GDR, Hungary, India, Nigeria, Poland, USA, USSR and
Yugoslavia.

The conference was opened at 11 a.m. on Monday, November 5 at the House
of the Academy. In the name of the organizers, Professor GESZTELY! welcomed
the participants and expressed that this conference was intended to be a continua-
tion of the succesful conferences organized previously in Poland, Yugoslavia, GDR,
Bulgaria, FRG, and USSR. The opzning speech was held by Professor SZOKEFALVI-
NAGY who made some comments about the historical aspects of the subject and
stressed the increasing role of generalized functions in mathematics and mathe-
matical physics.

The scientific program of the conference started immediately after the opening
ceremony with the lectures of Professors MikusiNski, VLADIMIROV and SZOKEFALVI-
NAGY. The regular sessions of the conference contained 35 scientific talks mostly
followed by discussions. Moreover, at the end of the conference, there was a special
session devoted to open problems and free discussions. The chairmen of the sessions
were P. ANTOSIK, I. FENYO, B. FISHER, B. FUCHSSTEINER, E. GESZTELYI, G. L. KRABBE,
H. S. ScHuLTZ, B. SZOKEFALVI-NAGY, B. STANKOVIC, V. S. VLADIMIROV and
L. Zsiné.

The social program of the conference consisted of a reception given on Tues-
day evening at the House of the Academy and a bus excursion on Wednesday which
included a visit to the famous college and the castle of Sdrospatak and wine tasting
in an old winery in Tokaj.

The conference was closed by Professor GESZTELYI at noon on Friday, Novem-
ber 9. In the name of the participants, Professor VLADIMIROV thanked the work
of the organizers and gave a brief account of the main topics presented at the con-
ference. Plans for a future meeting were announced by Professor STANKOVIC.
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Abstracts of contributions
Ahuja, G.: On certain products of distributions

The product of two distributions f and g was given by FisHER [1, p. 291] as
the limit of the sequence {f,g,} and then modified by him in a recent paper [2] as
follows:

The product fg exists and is equal to a distribution k& on an open interval (a, b)
if and only if

1 lim (fg,,0) = lim (f, g,0) = (h, 0)

for all testing functions @K with compact support contained in (a, b).

By the application of this definition we have tried to establish the Leibnitz’s
theorem for the ™ derivative of the product of two distributions and the distributive
law for generalized functions.

Theorem (1). If f and g are distributions such that their product is well defined
and their derivatives of r™ order exist on (a, b), then for 9cK

d? r
£ s, r—1) o)
<dxr (fg)! B> <l;l; rqf( g ] ﬂ)
i!
(r—i)lit -’
Theorem (2). If f, g and h are arbitrary distributions such that
f=F® with FeL’(a, b), g=G® with GeEL*(a, b)

where r. =
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and hWEL9(a, b), where F© denotes the r™® derivative of the summable function F
and ;}-+%= 1, then for all the products exist on (a, b)

(f+8h=fh+gh, h(f+g) = hf+hg.

Equation (1) also helps us in defining the product of three distributions in the
following way:
Suppose f, g and h are arbitrary distributions and let

g, =g%*0, and h,=h=*d,
then the product fgh exists on (a, b) if and only if
@) (fgh, 0) = lim (fgh,, 0) =

= lim (fg,, h,0) =
= lim (f(g,h,), 9)

for all testing functions § with compact support in (a, b).
By making use of this definition we have established the following theorem
and given a counter example:

Theorem (3). If f, g and h are three distributions defined on an open interval

(a. by such that
f=F" with FeLP(a,b),

g"cLP(a,b) and h“cL?(a, b)
where i-i— : +—1-—l, then the product fgh exists and

Py P2 D3

Z‘: Fe, e, (— 1! [Fglt— pD)er=n,

Example: If Re (2, u, v) <0 then
(x+io)* (x +io)* (x+i0)" = (x+io)*+r+Y

||M,

where )
(x+io)* = x4 +e**x*,

x* for x>0,
xﬁ':{o for x=0 Red>=l,
5 |x|* for x<0
x"_{O for x=0, Res =1,
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Al-Janabi, A. S. A. R.: On a generalized Riesz theorem

F. Riesz has proved the following characterization of the functions belonging
to the space Wjla, b] (see [1]). A function fis absolutely continuous and its deriva-
tive belongs to L,[a, b] iff there exists a constant K, such that for each system
{la;, b;J]a, b): IEI } of nonoverlapping intervals the following inequality holds:

5 Vo) —f@p _ o

i€ |bi—ayff?

The following generalization of this theorem is used without proof in a paper
on the characterization of the spaces W% Q (see [2]). Let (X, S, 4) be a o-finite
measure space. A signed measure o over thc measurable space (X, S) is absolutely
continuous with respect to 4 and its Radon—Nikodym derivative du/dA belongs to
L,(X, 4) iff there exists a constant K, such that for each system ({E;S: i€/} of
noiloverlapping measurable sets of finite measure A(E;) the following inequality
holds:

ln(E)IP
&1 AE)P?

Thus the proof of [2] will be made complete.

HJ".

K.
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Antosik, P.: A lemma on matrices and its applications

1. N denotes the set of all positive integers. A quasi-norm on an abelian group
X is a functional satisfying the conditions:

) 0] =0, |[—=x|=I|x|, |x+y|= |x|+]yl.
We write
X, = x iff |x,—x|] - 0.

Lemma. Assume that X is a qua.s:-normed group and x; ;€X for i,jEN. If
for each increasing sequence of positive integers m; there exists a subsequence {n;}
of {m} such that

(1) Xoi oo 0 as i - for jEN
and
(ii) > S+ 0,
J=1
then

X = 0.



158 Report of the International Conference on Generalized Functions
Debrecen, Hungary, 1984

ProoF. If the Lemma is not true, we may assume that |x;|=e>0 for i€N,
x;;~0 as j—+oo for i€N and x;—~0 as i—o for jEN. Otherwise we would
take a submatrix. By induction (see, [2]) we select a sequence {p,} such that 4;~0
with

i-1 oo
A = X L LA
i J,g;l .nml j=%'_1| mml

Let {g;} be a subsequence of {p;} such that B;~0 with

Bl . jé;. Xq q°
Hence and from the inequality
|xng“ = AI+B!

we get |x,,|—0. On the other hand |x,,|>¢ This contradiction proves the

Lemma.

lit]

2. Applications of the Lemma.

Theorem 1. (Joint continuity.) Assume that X is a quasi-normed group and at
the same time X is a linear space. 1f the multiplication ax is separately continuous,
then it is jointly continuous.

ProOF. Assume that o,—~0 and x,—0. Due to the completeness of the scalar
field, the matrix «; x; satisfies the conditions of the Lemma. Consequently, |o;x;|—0.

Theorem 2. (Continuous convergence.) Assume that X is a complete quasi-normed
group, Y is a quasi-normed group, f, for n€N are continuous and additive mappings
from X to Y and x,-0 in X. If f,(x)=~0 for each xcX, then f,(x,)—0.

Proor. Consider matrix f;(x;). Let {m;} be an increasing sequence of positive
integers. Since X is complete there exists a subsequence {n;} of {m;} such that x, +
+X,,+...=x for some x in X. We note that {j;,,(x,,j)} satisfies (i) and (ii). Con-

sequently, f,(x,)—0.

Theorem 3. (Banach—Steinhaus.) Assume that {f,} and {x,} for n€N are as
in Theorem 1 and Y is a quasi-normed linear space. If { f,(x)} is a bounded sequence
Jor each x€X, then f,(x,)—0.

ProorF. Let {m,} be a sequence of integers such that m,—< and m,x,~0.
We note that
Ju(x) = mg* £, (m,x,)

and {m;'f(m;x;)} satisfies the conditions of the Lemma. Consequently f;(x;)—~0.

Theorem 4. (Nikodym.) Assume that X is a o-ring of sets, Y is a quasi-normed
group, u, for n€N are countably additive set functions from X to Y and {E,} is a
pairwise disjoint sequence in . If p,(E)—~0 for EcX, then u,(E,)—0.

Proor. Note that {y;(E;)} satisfies the conditions of the Lemma. Consequently,
w(E)—0.
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Theorem 5. (Nikodym.) Assume that p, and {E,} are as in Theorem 3 and Y
is a quasi-normed linear space. 1f {u,(E)} is a bounded sequence for each E€ZX, then
the sequence {u,(E,)} is bounded. ‘

ProoF. Suppose that {a,} is a scalar sequence and a,—~0. Then the matrix
{o:u(E))} satisfies the conditions of the Lemma. Consequently, o E;~0 which
proves the Theorem.
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Bittner, R.: On the foundations of a non-linear operational calculus

There can be given four principles of Non-Linear Operational Calculus con-
cerning

1° any (non-linear or linear) non-contradictory given Equation S(x)=v called
Differential Equation.

2° Surjection S from X onto ¥V called Derivative.

3° Element x€X called Solution.

4° Element veV called Known.

Principle 1. There can be given a full description of an orbit Orbg v i.e. a set
of solutions x for any known v by the limit condition of solutions. This set has a
structure of a group.

Principle II. There can be defined an Exponential Flow. i.e. a solution of an
(in general non-linear) Equation S(x)=v(x) with right side depending in x by
logarithms v of the Equation and given limit condition x,.

Principle 111. There can be defined a superposition x of elements xi, ..., X,.

Principle IV. There can be defined a superpositions of derivatives S, ..., S,
and a method of succesive iterations ¢, for the Exponential Flow of the non-contra-
dictions Equation S(x)=v(x). One can define a nonhomogeneous metric by which
the sequence ¢, is convergent in the set of nonsingular elements, i.e. for with limit
conditions different from 0. There are given examples in differential calculus, in
two valued logic, in physics.

The Non-Linear Operational Calculus have given is consistent with linear one.
The bijections of groups-orbits (which are fundamental in the Non-Linear Calculus)
in a Linear Operational Calculus are additions. Homomorphisms of orbits in the
Non-Linear Calculus are linear operations in a Linear Operational Calculus. We
see that a Non-Linear Calculus is a well posed full generalization of a Linear Opera-
tional Calculus.
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Bittner, R. and Kobus, Z.: About eigensolutions of abstract differential
equations with mixed conditions

We consider linear differential equation of the order n with a given derivative
S: X=X

(1) a,S"x+a,_; S"'x+...+a,Sx+a,x = Ax, x€X

where A and g; are endomorphisms of X.
Onto solutions x we impose conditions on the mixed type

M=

@

.
ﬂéag)xﬁ =0, y=12,...,w; aff€KerS, x,; = a(1)S?x

J=1

Il

(o(2;)-limit condition).
Using formula

() xS Pr=N=D" Y Pty B HE'R 10,1, 048]

with Heaviside’s operator p to (1) and applying the Second Heaviside’s Theorem
we get solutions

o+1-r (- act1=r

@  x=3 |t > 3P

rr——
i=0 Lr=o k=1r=1 W (o +1-—r)!

Rul(q)] x2,

where R, are the roots of the equation
W(p» ;") — a,,p"+a,,_1p"_1+...+a1p+ao—}, =0

with multiplicaties o, e®!@ x~corresponding exponential functions.
Acting with operation ¢ onto general solution (4) and using (2) we get the
system of homogeneous w equations with unknown x9, x¥, ..., x2_,.

If the order of the matrix of this system is smaller than n then equation (1)
with conditions (2) has eigensolutions. In particular we consider the case where
polynomial W(p, 1) has non-zero roots R, R., ..., R, with multiplication one
while condition (2) is of the form

:2' AP xgy = g' B{ xy5.

f=0 f=0

We consider also a system of differential equation

(5) Sxy+anx, +aXs+... +a1,%, = 4 xy
Sxy 4o Xy + a9 Xs+ ... + gy X, = A X,

SXp+ 8 X1+ Xe+ ... Ay Xy = Ay X,

where coefficients of this system and A,, ,, ..., 4, are endomorphisms commuta-
tive with each other. '
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To obtain eigensolutions on the system (5) we impose conditions of the
mixed type
N n epx
>3 SalPo(r)Seix, =0, w=1,2,..,m
k=1 p=1p=1
Similarly as in case of linear differential equation of the order n we get necessary
and sufficient condition for existence eigensolutions on the system (5).
There are example of equation of second order with difference derivative and

of the system two equations with derivative S=%.

Bleyer, A. and Preuss, W.: On representation theorems for derivations
and their applications

The contribution was dealing with sequentially closed derivations in rings and
algebras and sequentially continuous derivations in fields. Several representation
theorems
(published in:

[1] BLEYER, A. and Preuss, W.: A note to general notions of the derivation and
its applications. Periodica Math. Hung. 11(1)/1980, 1—6.

[2] Preuss, W. and BLEYER, A.: On derivations in rings and algebras provided with
convergence structures. Abbhandlungen der Akademie der Wiss. der
DDR Abt. Math.-Nat.-Technik 1979, Nr. 4 N, 157—159)

were applied in order to give representations for derivations in c¢*-algebras and in

the Mikusifski operator field.

Brychkov, Yu. A., Marichev, O. I. and Yakubovich, S. B.: Factorization
of integral transformations

It is proved that integral transformations of convolution type such as frac-
tional integration, Hankel, Stieltjes, Hilbert, Meijer, ,F;, oF;, G and other trans-
formations can be represented by compositions of Laplace transformations.

The same is valid for integral transformations with respect to parameters of
special functions in kernel, for instance, for Kontorovich—Lebedev, Mehler—Fock,
Olevsky, Wimp and some other transformations.

Burzyk, J.: On Fourier transform of distributions
Colombeau, J. F.: New generalized functions
In “New Generalized Functions and Multiplication of Distributions” [North
Holland Math. Studies 84, 1984] (refered below as “NGF”) we introduced “new
generalized functions” to explain heuristic computations of Physics and to give a

meaning to any finite product of distributions.
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There we explained how we were led to define these generalized functions with
Distribution Theory as starting point. Here we present these generalized functions
without any previous knowledge of locally convex spaces and distributions. We
define the distributions as those particular generalized functions which are locally
derivatives of continuous functions (any partial derivative of a generalized func-
tion — in our sense — is still a generalized function so that the above definition of
distributions is quite natural).

Then we consider tempered generalized functions, i.e. generalized functions
which are in some sense growing at infinity not faster than a polynomial (as well
as all their partial derivatives). Any tempered distribution, and more generally any
finite product of tempered distributions, is a tempered generalized function. In this
setting the Fourier transform and the convolution product behave very well. We
apply these concepts to explain heuristic calculations of Physics (the Hamiltonian
formalism of the free fields and the removal of divergences in Perturbation Theory).

In our setting, partial differential equations have new solutions. As a particular
case we obtain global solutions on R* of nonlinear wave equations with Cauchy
data distributions on R?® (the study of these equations is justified by the fact that
they are scalar models of interacting field equations). These results show that our
setting is perfectly adapted to the study of nonlinear partial differential equations
and indicates some new perspectives in this field.

Creutzburg, R. and Tasche, M.: Construction of moduli for complex
number-theoretic transforms

Introduction. With the rapid advances in large scale integration, a growing
number of digital signal processing applications becomes attractive. The number-
theoretic transform (NTT) was introduced as a generalization of the discrete Fourier
transform (DFT) over residue class rings of integers and allows fast convolutions
without round-off errors.”?* Its main drawback is a rigid relationship between word
length and obtainable transform length and a limited choice of possible word length.
In order to enlarge the transform length of conventional NTT’s, complex number-
theoretic transforms (CNT) were introduced. However, it is not easy to find con-
venient moduli m that are large enough to avoid overflow, and to find primitive
N-th roots of unity modulo m with small binary weight for transform lengths N
that are highly factorizable and large enough for practical applications.® In a recent
paper®, the authors have presented a solution of this problem in the ring Z of integers
by studying cyclotomic polynomials. In this letter we present simple constructive
methods for the finding of all convenient moduli m for CNT’s under the assumption
that a special transform length N and a special element «€ Z[i] with small binary
weight are given.

Complex number-theoretic transforms. Let Z[i] be the ring of the Gaussian
integers &=¢,+i&, (&, &€2Z) where N(E)=¢Ei+¢&3 denotes the norm of . Further-
more let m=>1 be an odd integer with the prime factorization

2)) m=ph.. plgh... qh
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where p;=1 mod 4, (=1, ....s5) and ¢,=3 mod4, (k=1,...,17). Then a€Z[i] is
called a primitive N-th root of unity modulo m if

(2) o = 1 mod m,
(@"—1,m) =1 for every n=1,..,N—1.

Note that by definition (2) the integer m=1 isaso-called primitive divisor of
a¥—1.7 The following theorem'® states necessary and sufficient conditions that
a€ Z[i] is a primitive N-th root of unity modulo m. Let y, be the N-th cyclotomic
polynomial.

Theorem 1. Let m=1 be an odd integer. An element acZ[i] is a primitive
N-th root of unity modulo m if and only if one of the following conditions holds:

1) xn()=0 mod m, (N, m)=1; 3)
2) a¥"=1 mod m, (a?—1,m)=1 for every divisor d of N with N|d prime;
3) a¥=1 mod m, (N(«®—1), m)=1 for every divisor d of N with NJd prime.

A necessary and sufficient condition for the existence of such primitive N-the roots
of unity modulo m* is

(4) NIGCD(pl"']»ap.s'_L q%'_]'r’ {I;z_])

Now let x=(x,, ..., Xy—3) and y=(py, ..., ¥y-1) be two N-point integer sequences.
Note that the equality of such sequences x and y is explained by x,=y, mod m
(k=0, ..., N—1). The CNT of length N with x€Z[1] as a primitive N-th root of
unity modulo m and its inverse are defined as the following mappings between
N-point integer sequences:

(5) = j o*modm, (n=0,... N—1),

N-1
=N 3 X,o™modm, (k=0,..,N-1),
n=0
where NN’=1 modm. The CNT has a similar structure and properties like the
DFT, partlcularly the cyclic convolution property. For given transform length N
and given element o€ Z[i] one has to choose the modulus m by (3) as a divisor
of yy(2). But in general the prime factorization of yy(«) is difficult to find in Z[i].
Hence we consider some special cases in which this prime factorization is easy to
perform in Z by the help of the properties of cyclotomic polynomials. The fol-
lowing example shows the application of known properties' of yy(x) for the Wino-
grad-number* N=840=23X3X5X7:
‘s n_ P za(—x“")xa(—x‘)
x&IO(x) = Xax :lx.'ht?(x ) = Xsx5x 7( X ) = xs(_x-m)xs(_xgg) .

If one chooses the element a=1+i€ Z[i] then the calculation gives

Zsso(1 +1) = x105(4) = X105(2) X210(2) =
= 21129191 X106 681 152041664 441 <1 564 921.
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For the prime factorization of such large numbers the reader is referred to.”® Note
that the calculation of yge(1 +i) was carried out by only real operations.

Construction of moduli for CNT’s: Theorem 1 states a necessary and sufficient
condition for moduli m, so that an element «€Z[i] is a primitive N-th root of
unity modulo m. But in some important cases for practical applications one can
specify theorem 1 in the following way.

Theorem 2. Let N=2"N, (N,=1 odd, n=3) and a=+2*(1+i), (k=0) be
given. Then one has to choose as a modulus m for a CNT a divisor of
(£2(1 +1) = {Zma(zuu) = tna(R** )t (%Y for n=3,
" W : T2+ for n=>3

with (m, N)=1. In other words, m is a primitive divisor of 2®*+VN8_1_ if n=3
and 2CXUNER_ 1 if n=3, respectively.

Note that the primitive divisors of 2*—1 are listed.”®

Corollary 1. If a=1+i is a primitive N-th root of unity modulo m with 4|N,
then «?=2i is a primitive N/2-th root of unity modulo m.

Corollary 2, Let N=8p (p=3 prime) and a=1+icZ[i] be given. Then one
has to choose as a modulus m a divisor of

(6) Xep(1 1) = 2,(2) 1,(2) = (27 +1) (27 - 1)/3.
The related CNT is called complex Pseudo—Mersenne transform.

Corollary 3. Let N=8p* (p>3 prime) and a=1+i€Z[i] be given. Then one
has to choose as a modulus m for a CNT a divisor of

S _ @2+ @1 2%
™ X1 +H) =Gy X"@r) ~ 1"

In other words, m is a primitive divisor of 2%*—1,

Corollary 4. Let p, q be primes with 2<g<p and 29 1 modp. Then
for N=8pg and a=1+i one has to choose as a modulus m for a CNT a divisor of

3(2P+1) (2P —1)
@F+D@+) @-D@E-D)

In other words, m is a primitive divisor of 2?7 —1,

Note that the first factor in (7)—(8) is a Pseudo—Fermat number and the
second factor is a Pseudo—Mersenne number. In this direction our theorem 2 and
the above corollaries generalize known results of recent works on Pseudo—Fermat-
and Pseudo—Mersenne transforms.5 %10

®) Xspa(1+1) =
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Dierolf, P.: On A — Q-extendable distributions

Let AcCQ be open subsets of R" and denote by 7(€) the standard LF-space
topology of the space D(£2) of testfunctions on Q. The relative topology T(2)N
MND(A) is coarser than the standard topology 7(A) of D(A), and by the HAHN—
BANACH-theorem, the dual (D(A), T(2)(\D(A)) consists exactly of those dis-
tributions R on A which can be extended to a distribution 7 on 2, R=T|A.

We show that the completion P(A, Q)=(D(A), T(R)N D(A)) is a limit-sub-
space of (D(Q), T(R)). With the help of this LF-spacerepresentation of P(4, Q)
we calculate the space O, (P(4, Q)) of multipliers of P(A, Q), and the subspace
P(A, Q),, of absolutely regular distributions in P(A, Q).

References

P. DieroLF, Some locally convex spaces of regular distributions. To appear in Studia Math.

P. DieroLF, J. Voict, Calculation of the bidual of some function spaces. Integrable distributions.
Math. Annalen 253 (1980), 63—87.

P. DieroLF, Multiplication and convolution operators between spaces of distributions, In: Func-
tional Analysis: Surveys and Recent Resuits IIT, K. D. BiersTeDT and B. FUCHSSTEINFR
(eds.), Elsevier Science Publishers B. V. (North-Holland) (1984), 305—330.

S. Losasewicz, Sur le probléme de la division, Studia Math. 18 (1959), 87—136.



166 Report of the International Conference on Generalized Functions
Debrecen, Hungary, 1984

Dietzel, E.: On the Meijer-transform

I. H. Dimovski has given the following definition of the MEIJER-transform:

1 : PR e
KA/ (), p} = mL{r”‘f{l—rl)*““r;”-f(u/:,)dr,,p}
0

for functions
JEK={g/g(t) =g ()" 3, g,£C[O, =), v=0 g(t) = O(e*) for t —~=o},

where L {h(t),p} denotes the usual LAPLACE-transform. It is easy to verify, that
it holds the following

Theorem. Let fcK, fhen
K AS(0up) = LY LW, 13} p4Y/(2V 7).

This relation allows us to use tables for the LAPLACE-transform and to prove
theorems for the MEIJER-transform applying the well-known properties of the
LAPLACE-transform. For example:

1. Let f€K and f(1)~At* for t— (a>v—2, A complex). Then K, {f,p}
exists for Rep=0 and if 40 K, {f, p} has a singularity in p=0 and

K, {f. p} ~ A2 "0 (/2 —v2 4+ 1) T (2/2+v/2+1)/(p*+"+2 ¥ 7)

for p—~0 and larg p|=¢p<n/4.

2. Let F(p)=K,{f.p} convergent for real p=>0 (p>p,>0) and f a real
function of K. Further let f(f)¢~" be an increasing function and f(1)=Bt’~*-* if
t=0. Then follows from F(p)~C/p? (y=2v) for p—0(p—--<) on the real axis that

f() ~ CYr2-i+1p=v=Y[ (3/2) [ (y/2—V)] for t —oo.

Dimovski, I. H.: Operational calculi for non-local boundary
value problems in several variables

The author’s approach to operational calculi for local and non-local bound-
ary value problems for ordinary linear differential operators [1] is extended to linear
PDO. The corresponding operational calculi are build using multiplier quotients
constructions for product-convolutions. A typical example of product-convolution
1s the following: Let P and O be linear functionals on C([0, 1]). Then the oper-
ation

(e )00 = P2 [ [ flx+E—n.141-0)g(n, o) dndo—
Lt
l fff({x—-&—r.'l-f+f—6)g(l'ri,a)5gﬂ(x—é—ﬂ)ndnda}

—& ¢

i

is such a product-convolution.
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Till to now, all attempts for biulding operational calculi for PDO are intended
for Cauchy problems only (see [2] and [3]) where the technique of the distribution
theory is far more effective. Instead, for common boundary value problems in
finite domains the only effective operational method up to now is that of the finite
integral transforms. The method proposed has two advantages with respect to the
method of the finite integral transforms: it avoids expanding of the boundary value
functions in series, and the final summing of the solution obtained. The convolu-
tional representations of the solutions of the non-local boundary value problems
(the Duhamel-type representations) can be used for numerical calculation of the
solutions as an alternative of the difference methods, used now. Some non-local
b.-v. problems for the heat equation u,=uw,.+f(x,t) with lonkin’s and Dezin’s
conditions are considered in detail.
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Fazekas, G.: Tchebycheff—Markoff problems and linear programming

Let u,,u,, ..., u,, ® be continuous real valued functions on the finite closed
interval [a, f] and let b=(b,, b,, .... b, ) R™. A Tchebycheff—Markoff problem
is to determine functions ¢ in the set

V(b) = {o€ NBV. [1, ﬁ]\f () do () = by, i =1,2, ..., m}
for which the extremal values of
[
E@)= [ w()da()

are attained.

This problem can be regarded as an infinite dimensional generalization of the
linear optimization problem of form “find the extremal values of (¢, x) subject
to the constraints A.=b, x=0 where A4 is an mXn matrix and c€R"".

Our investigations were based on this fact. We characterized the extreme pomts
of V(b) and showed that the Tchebychefi —Markoff problem can be solved approxi-
mately by help of the simplex method.

Feichtinger, H. G.: Minimal Banach spaces and atomic representations

Atomic representations, i.e. the characterization of arbitrary elements in a given
Banach space as convergent sums of elements of a particularly simple form (the
“atoms™) play an important role in the modern treatment of Banach spaces of
functions (distributions), in particular in the theory of real Hardy spaces as promoted
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by R. CorrMAN and G. WEiss. A new atomic representation for the elements of
the Segal algebra S,(G) (introduced earlier by the author) on a locally compact
abelian group G will be given: For any nonzero f,€S,(G) (e.g. fo€L'(G) with
compactely supported Fourier transform) one has:

S0(G) = {f1f () = 2" a0 10 (%) fo (X = Y)s

where the sequences (y,),z1 in G and (%,),»; in G are choosen arbitrary, and the
complex sequence (a,),>; satisfies >’ |a,|=<}. This space of test functions (which

n=1
is a Banach space with a suitable norm) and its Banach dual have many interesting
properties (allowing a kernel theorem, or the rcpresentatlon of multipliers), making
them very useful tools for the treatment of questions of abstract harmonic analysis.
In the case G=R™ most of these properties can be easily derived from the above
characterization using well-known properties of the Gauss—WeierstraB kernel
=/

The same device which leads to the above characterization may also be applied,
more generally, to other so-called Wiener type spaces, [using their minimality within
certain classes of Banach spaces of continuous functions). Since the Schwartz space
&(R™) of rapidely decreasing functions is the intersection of such spaces atomic
decompositions for the elements of &(R™) are also available. Finally, it will be
mentioned that a similar technique applies to give atomic characterizations for
homogeneous Besov spaces of order zero which may directly be compared with
the above mentioned Hardy spaces.

Fenyd, I.: On the Hankel-transformation of Schwartz distributions

A definition for the Hankel-transformation of a distribution is given which is
based on an analogous statement to the Paley—Wiener Theorem.

D (a) denotes the subspace of Schwartz-testing functions with support on
(0, a) (a=0), H,(a) (n is a fixed nonnegative entire) is the space of functions with
following properties: Y€ H,(a) iff

a) Y(s) is an entire function (s€C)

b) 'Y ()| =C.exp(al|lms)) (k=0,1,2,..)
C) VY(=9)=(=DyY(s) (€0

d) [ W()ds=0, k=nn+2,n+4,..
0

e W) =0(s) (s~ 0).

For a—oo denote by D, the inductive limit of D(a) and by H, that of H,(a). We
introduce in D, and H, convenient topologies. (We remark that H, is a subspace
of the testing-functions space Z of ultradistributions.) It is proved that the usual
Hankel-transformation yields an algebraic and topological isomorphism between
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the spaces D, and H,. On account this we define the Hankel-transform H,(u) for
the distribution # as an element of the space H, by the following relation

(H, (W), sr) = (u, tH,()))

for all € H,. Now it can be proved in an easy way, that all formal properties are
valid for the Hankel-transforms of distributions which are well known for the
Hankel-transforms of functions.

Finol, C. E.: On dilation functions and some applications to Orlicz spaces

The aim of this talk to study some properties of the so called dilation func-
tions (see [2]) and applications of these to questions on Orlicz spaces and linear
bounded operators on them. A necessary condition for the existence of a transla-
tion invariant operator T: L (R", u)—~Le, (R" 4) will be given. For a submulti-
plicative function @; a sufficient condition for every linear bounded operator
T: lp,~lp, to be strictly singular, will be given in this talk.
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Fisher, B.: On defining the change of variable in distributions

Let ¢ be a fixed infinitely differentiable function having the properties
D e(x=0 for |x|=1,
(i) e(x) =0,

(i) e(x) = e(—x),
1
iv) [eadx=1.
-1
The function J, is defined by
9,(x) = ne(nx)

for n=1,2, ....

Now let F be a distribution and let / be an ordinary summable function. The

distribution F(f(x)) is defined to exist and be equal to h on the open interval
(a, b) if

N—lim [ F(f()p(dx = (h(x), 0(x)
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for all test functions ¢ with compact support contained in (a, b), where
Fo(x) = F(x)*90,(x)

for n=1,2,... and N is the neutrix having domain N'={1,2,...,n,...} and
range the real numbers with negligible functions n*In"~'n. In"n for A=0 and
r=1,2, ... and all functions which converge to zero as n tends to infinity.

Fuchssteiner, B.: Distribution algebras and elementary shock wave analysis

Describing the evolution of a dynamical system from its infinitesimal view-
point is certainly in many respects superior to any other description. For example,
finding for a completely integrable nonlinear flow on some infinite dimensional
manifold the symmetry group explicitely seems to be an impossible task, whereas
finding the infinitesimal generators of one-parameter symmetry groups is a routine
matter nowadays.

This would not be possible if we were not able to describe the flow by its infi-
nitesimal behaviour. In fact, the strength and the beauty of areas like theoretical
mechanics, with all the impact it had on the development of pure mathematics,
is based on the infinitesimal aspects of the systems under consideration.

To include also noncontinuous solutions into this framework is one of the
reasons which led to the invention of distribution theory. But alas, distributions
do not constitute an algebra and may of the relevant flows are nonlinear, at least
when interaction is involved. So it seems as if noncontinuous solutions (for example
shock waves) of nonlinear systems cannot be treated from the infinitesimal view-
point thus forbidding the application of the heavy machinery of classical mechan-
ics to these systems. To show that this is not necessarily so, is the content of this talk.

Moreover, we demonstrate that the usual computational concept for shock
waves imposes a canonical algebraic structure on a suitable subspace of distri-
butions.

We review the main features and the structure of this algebra of almost-bounded
distributions and it is shown that this algebra is the canonical extension of a well
known construction in shock wave analysis. All results are discussed in context of the
evolution eqvation of shallow water wave theory (lowest order). The impact of
distribution solutions on the Hamiltonian structure and the existence of symmetry
groups and conservation laws is discussed.

Gesztelyi, E.: Tchebycheff systems and color recognition

Let KV be a convex closed cone of the topological vector space V. Let
A: V—-R™ be a linear transformation of finite rank. The element x,€K is said to
be recognizable by A if

(nH VYxEK: x # x5 = A(x) &= A(xy).
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We investigate the recognizability of elements by A, when K=S5(a, f)=
={x=s¢|{¢ NBV . («, f)} and A may be written in the form

8
(2) Ax)= [u@®di@) (s¢=x, EENBV, (,B)),

where y(r)=(u1(t), ...y Uy(?)) 1 a continuous vector valued function such that
u(x)=u(B)=0. This case plays an important role in the color recognition.

A transformation A of the form (2) is said to be normal if exactly the spectral
colors (i.e. elements of the form pe~*, i¢€(x, f), p=0) are recognizable by A.
We prove the following theorem:

Theorem. A transformation of the form (2) is normal iff m=3 and the func-
tions uy, s, Uy form a Tchebycheff system on (x, f).

Glaeske, H. J.: Some remarks on asymptotics in the theory
of integral transforms of distributions

The first investigations in question the asymptotic behaviour of integral trans-
formations of distributions are connected with the names of Lighthill, Jones, Lavoine,
Mangad and Zemanian. They considered only semiregular distributions. To include
singular distributions too, Lavoine introduced in 1975 the definition of equivalence
of distributions in the origin and in 1973 resp. 1977 DroZinov and Zavjalov have
published the concept of quasiasvmptotics in the origin and for x- 4o respec-
tively.

Here we want to present another definition. which is fit for the transfer of
many well-known Abelian and Tauberian theorems from integral transformations
of functions to such of distributions (see also D. Miiller: ,,Abelsche und Tauber-
sche Sitze fiir einige Integraltransformationen von Distributionen®, dissertation,
Jena, 1982). :

As usual let 27, resp. 9, ,; be the spaces of distributions form 2’(R,) with
support in [0, =) resp. [a.b]. Furthermore let Cf, ,; be the space of functions
on R with support in [0, =), which are continuous in [a, b]. N, is the set of non-
negative integers.

Definition. Two distributions f, gc2’, are called similar for x—-0+, (f~g,
x—+0+), if the following conditions are fulfilled:
(a) It exists an interval [a, b], a<0<b, functions f;, g,€Cf, 5y and an integer

keNu S0, that
f=D"f,, g=D"g,.

(b) It exists a real valued function my€C, 5y, not changing its sign in [a, b],
so that fy(x) and g,(x) are asymptotic to my(x), if x tends to 0+.

The similarity of two distributions is symmetrically and transitively. Moreover,
if two continuous real valued functions are asymptotic if x tends to 0+, then
they are similar considered as regular distributions. The converse is not true.



172 Report of the International Conference on Generalized Functions
Debrecen, Hungary, 1984

Proposition 1. A distribution f€2’, is similar to the delta-distribution iff there
exist an interval [a, b], a<0<b, a function f,€C ;; and a natural number k=2
so, that f=D*f; in 2|, ;;, and fy(x) is asymptotic to x*~1/(k—1)! if x tends to 0+.

Using the concept of similarity one can prove as well Abelian theorems of
real and nonreal kind as Tauberian theorems for the Laplace transform of distribu-
tions. For example we have

Proposition 2. If two Laplace transformable distributions f, gc%’, are similar
for x—+0+, then their Laplace transforms F(s), G(s) are asymptotic for s-»+ oo,

Proposition 3. If fc9’, is Laplace transformable, and if its Laplace trans-
form F(s) is asymptotic to s9, g=>—1 if |s|>+< in a half-plane Re(s)>a«,
then for x—-0+4 we have

[ = D3 (3 9Ir [3—{q})),

where g=[g]+{q}, g€ No, 0={g}=<1.

Analogous one can define the similarity if x tends to + <. These definitions
are fit for the proof of a lot of Abelian and Tauberian theorems as well for the
Laplace transform as for the Mellin- and the Stieltjes transform.

O cxopumoctd paaos Gypbe B PasjH4HbIX KJaccax 0000ménubix QyHrumii

B. U. lopbauyk, M. JI. T'opbauyk:

ITycte A — caMoconmpskEHHBIH MOJyOr pAHHYEHHBIA CHH3Y ONEPATOp C AUCKPET-
HBIM CTIEKTPOM B TiJbGepTOBOM npocTpancTe H((-, +) — CKaJsipHOE NPOH3BE/E-
uue, | .|| —mHopMa) ¥ {e;}i1 — OPTOHOPMHPOBaHHbIH 6a3MC B HEM, COOTBETCTBY-
FOLIMIA TOCHEAOBATENLHOCTH {4 Jiey COBCTBEHHBIX YHCEN, PACHOJIOKEHHBIX B MOP-
SIIKe BO3PACTAHUS; NPH 3TOM IIpeAnoJiaraeTcs, 4ro cyluecrsyer p=0 Takoe, 4To

D, AgP<co. TMonoxum
A1

.= ) DA, 6= (xeH..: |4"x] < Ca"n, >0, =0}
n=1

(D(A) — obnacts onpenenenust onepatopa A). Muoxectso ®f o6pasyer 6anaxoso
IPOCTPAHCTBO OTHOCHTEJIBHO |Ixi|°; =sup (|A"x||la="n="") u GF cGf npu o’ <a”.

OGo3nauum

B npocrpancTBe H., TAKKE BBEIEM TONMOJIOTHIO MPOSKTHBHOIO Npeaeia runbbepro-
BBIX TIPOCTPAHCTB
9 =D(4"), |xlg, = (Ix]*+]4"x]?)"2.

Conocrasam x€$9 pan ®ypee > x*e, xX*=(x, ¢).
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Teopema 1. Humerom mecmo pasencmea
Gy = {x€H|3IN = N(x): x"=0, n> N},
Gy = {x€H|Fa >0, 3¢ > 0: |x*| < cexp(—aii/f)},
G = {x€H|Va = 03¢ = 0: |x*| < cexp(—ai}/h)},
Heo = {x€H|Va = 03¢ = 0: |x*| < ciy?}

(k docmamouno 6oavuiue); pad Pypve s1eMmenma Kaxo20-aubo u3 yKaA3aHHbIX Npo-
CMPaHcmMe cX00UMCA K HeMy 6 IMOM e npocmpancmee.

Conpsaxénnbie ¢ H.., Oy (=0) n G, (f=>0) npocrpancTBa 0603HAYHM
gepe3 H-.., Gy 1 Gy, coorBercTBerHO. B cily miotHocTH Bioxenuit ®C
Gy Gy cé.,, C 9 nosyqaeM LENOYKy

By < By < Bpy © H. © H © H-. © By < By, < By

IUIOTHO M HENpepHIBHO BJIOKEHHBIX APYr B JApyra mpocrpaHcTs. ITpocTpaHcTBO
By, cocTOsMIIEE M3 KOHEUHBIX CYMM BHIA ) x“e;, HA30BEM OCHOBHBIM, a By —
npocTpancTBOM 0606mennbix snementoB. Ecmn x'€Gy, a x€Gy), TO mOA
(x’, X) moHMMaeTCAd pacIIMpPeHHE CKaJIAPHOTrO mpowmsBeneHus (-, -) Ao OumamAHEH-
HO#t hopMmel Ha B X G-

IMycts C* — NpOCTPaHCTBO BCeX mociegoBaTeabHocTell {c* )i, KOMILIEKCHBIX
YHCEeJI ¢ MOKOOPAHHATHOM CXOAMMOCTHIO. OTo6paxenue

Gioy3X ~ (XM €C™, X% = (¥, ),

B3aHMHO O/IHO3HAYHO ¥ B3aHMHO HempephBHO. C ero moMomisio G, oTONKIAECTBIS-
€TCS C MPOCTPAHCTBOM (OPMAJIbHBIX PsARoB Pyphe, T. €. I NPOH3BOJIBLHOIO e~
menTa x'€®, ero pam Pypee 3 x*e, cxomutcs k x’ B G,; o6paTHO, MmoGoi
pan > c*e, cxomurest B Gy k HEKOTOpOMY 37eMeHTY X', mpHyém x™*=c*.

Teopema 2. Eciu x'€ Gy, mo
(X'€Gp) & (Va > 03¢ = 0: [x*| < cexp (x4}/P)),
(x’€Gg) < (3o =0, 3¢ = 0: |x*| < cexp (a/}/F)),
(X€EH_)e (3a>0,3c=>0: |x* < ci).

Ha3zosém npeoGpa3sosaunem [aycca—Beiiepiirpacca psga ®ypee > x*e¢, Bek-
TOpP-DyHKUMIO

(X)) = 3 e~Mixte,.
k=1

IMpu x’€G; u t=0 oma GeckoHewno auddepeHppyeMa B IPOCTPAHCTBE $H
(naxe B Gy) u (I'x")(1)—x’, t-0, B G,.

Paccmotpum GamaxoBo mpoctpancTBo B Takoe, uro &g Bc Gy, npu-
4€M BJIOXKEHHS IUIOTHBI M HENpPepHIBHBL. ByJaeM roBopuTh, 4TO METOJ CyMMHPOBa-
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uus (1) B-perynspen, ecau (I'x’)(1)—-x’, 10, B npocrpancree B. 0503Hd‘!HM
yepe3 A pacmmpenue omepaTopa A, JeiicTBylomiee B o) xax A i X L%

Teopema 3. Memoo cymmuposanus (1) B-pezyaspen mozoa u moavko moada,
xo20a onepamop —A|B cenepupyem noayzpynny kaacca C, ¢ npocmparcmee B.
3nece —A|B obosnauaer cyxenue onepatopa —A Ha B.

Kadlubowska, E. and Wawak, R.: Local order functions and regularity
of the product of distributions

W. Awmsrosg introduced in [1] the notion of the local order functions for dis-
tributions, which he used for defining a product of distributions. The product turned
out to be a generalization of Sato—Hormander product connected with the notion
of the wave front of distribution. The local order function considered by Ambrose
is bound with the class L® In this paper we define other local order functions, con-
nected with L?. Let (x,/)ER"XS"L.

Definition. O%(x, )= {a€ R |there exist neighbourhoods Q of x and L of /
such that for all wéD(Q):
(0U)" () (1 + 2 PeL?(I)y)

where I'y={rx|x¢L, re R*} and “A” denotes the Fourier transform.
Lemma. Let 1=p, g= + and %+&§l. Let U, VED'(R") and x€R". If

for all 1€S" 10} (x,1)+ Of(x, —1)>O0*, where O =(—oo,0] then there exists
a neighbourhood Q of x such that for all o, YyeD(Q)(@wU) (YyV) €LY (R") and
we can define in a natural way the product UV.

We give now an estimation of the order function of product of distributions,
depending on the values of the order functions of its factors. It is a generalization
of the well known inclusion:

WFUV)YCWF(U)UWFWV)UWF(U)eWF(V)).

First we define, for k€S" k* ={(I, m)eS"" ' X S"~!|there exist a, b€ R* such
that al+bm=k}, and [k]=the closure of k*.
Theorem. Let p, q, r be such that 1=p,q,r=+ - and %4»"];:!-1-%». Let

U, VED'(R") be such that
0% (x, N+ 0%(x, —1) o O* for all (x,)ER"XS".
Then:
Oy (x, k) = min ( min. (0 (x, 1)+0% (x, m), OF (x, k), O (x. k)

Jor k€ S"~1, x€R".
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Now we give a sufficient condition for associativity of product in terms of
local order functions. Let:

St = {(/, m, k)€(S"")? | there exist a, b, c€RT such that al+bm+ck = 0}

and [S]- the closure of S*.
Theorem. Let 1=p, q, 5= + ==, %-P%«l—%’:’l Let U, V, W be distributions.
If (U, VYEM, ,(n), (V.W)EM, (n), (U W)eM, (n) and U, V, W satisfy the fol-
lowing condition:
Op(x, )+ 0% (x, m)+ Oy (x, k) o OF

Jor all (I, m, k)E[S]. x€R" then the product U, V, W exists and is associative ( The
space M, (n) consists of all couples (U, V) satisfying the assumptions of the
Lemma.)
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Krabbe. G. L.: Some definite integrals of generalized functions

A ““test-function” is a C=(R) function whose every derivative vanishes at the
origin. If F(r)eL'**(R), then {F(r)} is the operator which assigns to each test-
function ¢(r) the test-function ¢z(7) such that

0
@p(1) = — f F(t—o)p(e)do for 1€R = (—eo, o).

A “D-function” is a piecewise-continuous function whose domain consists of
the points in R where it is continuous. Let D, (R) be the family of all the D-functions
G(t) having no removable discontinuities and whose derivatives G'™(¢), ..., G™V(1)
are D-functions such that 0=G"™ (0" )=...=GY(0")=G(0"). An “operand”’ is
the composition {G(1)}os™. where G(1)€L'"(R) and where s™ is the operator
which assigns to each test-function ¢(7) its derivative @™ (7). Thus, if /'is an operand,
then f={G(t)}os™ for some G(r)€L'"(R) and some integer m=1, if G(t) is a
member of the family D, (R) and if m=1, then f(r) £ G™(¢) and Dfﬁ sof —
—f(07)s% If g={H(t)}os", where H(r) is a member of the family D,(R) and
n=1, then g is called a ““D-operand” and g(t)=H™(1).

Operands form a commutative subalgebra of the algebra of linear operators
which assign test-functions to test-functions; since fos®=f for every operand f.
the operand s° is the multiplicative unit.

Given x€R, a D-operand g gives rise to a D-operand e~ *Pg such that e *Pg(1)=
=g(t—x); if h={H(t)} for some D-function H(t) having no removable dis-
continuities, then h(z)=H(t); such D-operands h can be identified with the D-func-
tions h(t) they give rise to. Let y be a D-operand: the operand Dy is a D-operand
if (and only if) the usual derivative dy(t)/dt is a D-function; if so, then Dy(t)=
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=dy(t)/dt. Let U(t)=0 for 7<0 and U(r)=1 for 7=>0: if x€R, then .=
=D {U(t—x)} (by definition): unlike the operand s°, the operand é, is a D-operand;
also, d,(1)=dU(t—x)/dt=5.(t), where 8,=D65, (by definition); moreover, 8,=
me=*Dj,.

Let f be a D-operand. There is a unique D-operand y such that soy=f; it
turns out that Dy=f; if « and B are real numbers, then

g+
J F@0dt=yBH-y@).
Theorem. /f ) 2
H(x)= [ f@dt for all xcR,

then HV(0)=f(o) at each point ¢ where f(0) is defined. If g and Dg are D-oper-
ands, then

'i
gBH—g@) = [ Dg(dr.

Let F(t) and G(t) be D-functions such that F(z)H(t) is also a D-function.
If h={H(t)}, then
B+ [

FORE{FOH®} and [ FOh@dt= [ F(o)h(o)do;

if F®()H®(t) is a D-function when 0=k, r=m, then the D-operand F(t)D™h
is easily defined; in particular, if F(t)H(t) is continuous except at a point x, then

| A B B}
[ F)Dh(dt= [ F(e)H®(o)do +[F(x*)H(x*)—C] [ 5.()dt,

where C=F(x")H(x™). Equally obvious is the consequence
F(t)Dé, = F(x)d,—F™(x)4,,
which implies the equations

B p+ _ 1) &
[ Fos,(dt=—-FOx) [ 5@£={ FO(x) for a=x=p

otherwise

— provided that F*(¢) is continuous at the point x.
To each x€R let there correspond a D-function H, (t). If m is an integer
=0, then

f s™o{H_ (1)} dxﬁm{ f H, (1) dx}

— provided that the right-hand side is a D-operand. If F(t) is a D-function, then

{F()} = f F(x)o,dx = f F(x)e **dx.
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Kucera, J.: Convolution of temperate distributions

Laurent Schwartz’ space @, of convolution operators consists of all distributions
which convolve with every f€@&’, where €’ is the space of temperate distribu-
tions. However, for each particular f€&’, the space of distributions which con-
volve with fis strictly larger than (.. We study such “enlarged” convolution spaces.

Denote by | -], the norm in the space L*(R") of square integrable functions
and put L,={¢: R"~C; |f¢;a||:=I 1 |Z| |x*DP @||g< + <=}, k€N. Each space L,,

x| +| Bl =k
and its dual L_,, is Hilbert, = prﬁ)j limL,, and & =indlimL_,. For each
géN, let 07 be the space of all f €&’ for which the convolution f*g makes sense
for any gEF_,, and the mappmg g—f*g: L_,~€" is continuous. Then @;C
c2(L_,, €) and we may equip @ with the bounded topology of 2(L_,, é')
This makcs 0; a reflexive, completc, and bomolog:cal space. The convolution on
each product 0"‘><L_,, g€ N, is continuous while it is not continuous on @.X&".

If W(x)=(1+|x])"®, x€ER", we can characterize the elements of ¢ as fol-
lows: fe@; iff Wi([f* (p)EL“(R") for any @€S. It turns out that each map
po: f—| f*o¢l,, @€, is a continuous seminorm on @ and the topology of @ is
generated by the family {p@; @€&}). Schwartz proves that fe@. iff f* (oEG
for every @cD. Hence 0;=N{0;, gcN}. Moreover 0,=projlim @;.

We have another characterization: fc0; iff f= 2 Dx(W-1f), where AcN*

is a finite set and each f,€L*(R"). This implies :.U"‘—md llm (1—4)?L,, where

4 is the Laplace operator and the topology in (1 —A)"L is chosen so that the
mapping fi~(1—A4)*f: L’——(l —A4)? L, is an isomorphism. As another consequence,
the identity map: @; &’ is continuous.

Mité, L.: Remark to the Figa—Talamanca theorem

Translation-invariance and commuting with convolution are the same things
for function spaces which are L'(G)-modules. Hence secking translation-invariant
linear operators in function spaces has its counterpart in seeking linear operators,
commuting with the module operation in a module. Moreover, the results on such
operators in Banach modules resp. Banach algebras have frequently a non-trivial
meaning in the theory of translation-invariant operators.

A dual space representation (i.e. a representation by a Banach space of bounded
linear functionals) for translation-invariant linear operators of LP(G) 1 =p<- was
given by A. FIGA—TALAMANCA in 1965 for Abelian G and thus a connection also
had been given between the operators of convolution by a “good” function from
C,(G) and all translation-invariant linear operators. Figa—Talamanca’s results were
generalized by P. EYMARD for any amenable G in 1971. We remark, that in this
case every translation-invariant linear operator is (“‘automatically”’) bounded.

In this lecture we give the counterpart of Figa—Talamanca’s construction for
a wide class of reflexive Banach spaces which are modules and it will be shown
that the constructed functionals “are” operators commuting with the module oper-
ation.
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What are the conditions for the representability of all such operators by this
construction?

We express the amenability of G with the properties of C.(G) resp. M,(G)
considered as convolution algebras and we show that for reflexive Banach spaces
which are modules possesing this ‘‘amenable” property, the Figa—Talamanca
type construction is a dual space representation for all module homomorphisms.

Mieloszyk, E.: Operational calculus in algebras

Let an operational calculus CO(L®, L%, S, T(g), s(¢), Q) be given, where L'C L,
L', L° are commutative algebras with unity 1 over the field of real numbers and
with the multiplication such that for f, g€ !

(1) S(f-8) =(Sf)-g+f-(Sg),
2 s(@)(f-8) = (s(9)1) - (s(9)g).
T(@p

Definition 1. We will say that there exists an element u 2LE{" if and only
if E{“? is a solution of the abstract differential equation

3) Su=p-u
with condition

4 s(q)u=1, where ucL!, pcL® and E; “"cInv.

Theorem 1. If there exists an element E[ ‘97 then three operations:

&) S‘,uiSuﬁp-u,
(6) T,(q) f £ [T(q)(f- E/")]- ET 7%,
©) sp,(q) u L (s(q)u)- Ey TP

satisfy axioms of operational calculus, where ucL*, fc L.

Operation S, is a derivative, operation T,(g) is an integral, operation s,(q)
is a limit condition.

Theorem 2. If a,, a,€L°, a,€Inv and if there exists an element E {(‘""l' "% then
the abstract differential equation

(8) ay-Su+tay-u=f
with condition
9 s(Q)u = uy, where ucL', f€L® ucKerS

has only one solution defined by formula

(10) = T (s PO BT S fng i By TR,
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Definition 2. If there exists an element E] @7 then for the elements x, yeL®
we will define the multiplication xoy by the formula

(11 xoy X Ef".x.y.

The multiplication O satisfies condition (1) for the derivative S, and condi-
tion (2) for the limit condition s,(q).

Example. In case of the operational calculus with the derivative

S0, Xps s TN} - {Z”' b, au(xléx-i--, x) }

i=1
where u€L'2LC*H(R™1x(x}, x2); R),
PEL® = CY(R*1X(xt, x2), R) € (xh, x2), bR for i=1,2,...,n, b, = 0
the multiplication o has the following form

xoy = {x(xy, X3, .-, X))o {¥(x1, Xz, --0s XD} =

b, .,

(x,,—1),t) dr

xn bl
f Po (xn—b— (Fp=1) cos Xy oy =
x, - b TR, 2 LR e ,.)}-

. S
b,

= {e

Mikusiniski, J.: On the logarithm of the differential operator
Mitrovi¢, D.: A new proof of some distributional relations of the Plemelj type

It is well known that the distributions
1 . 1

T, o R S =y L . W,
M o = aETﬂ 2mi(x+ig) ’ 03 : al-lTo 2mi(x —ig)
satisfy the Plemelj relations
o 1 1

g T e
@ 2 2 2 Px’

s i SN
3) oz ——T—z—m'ﬂp';s

where the limits are taken in the D"=D’(R) topology (weak).

Developing the theory of the distributional spaces @,=@,(R) Bremermann
has proved ([1]) the relations (2)—(3) taking the limits (1) in the @, topology (x<0).
His proof here will be considerably simplified by

Proposition 1. The relations (2)—(3) with the convergence in D" are equivalent
to relations (2)—(3) with the convergence in @, (x<0).

Also, the similar statement holds for the first and second part of Theo-
rem 2 ([2]):

12*
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Proposition 2. Let T<0, for —1=a<0,

- 1 1 3 1
T(z)= 3 <T‘, ‘_z> and suppose T(z):O[m]

as |z|-+ce. Then the relations

X T 1 1
2o} e + . ) R—
@ :ETO T(etie):= T = 2 2ul [T* P x]’
. o s TG 0 1
2 Jim Pty i= £ == (reen )

with the convergence in D’ are equivalent to relations (4)—(5) with the convergence in
0 (for the same o).

Proofs (based on some results in [3]), details and complements will appear at
a later date.
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Ortner, N.: A fundamental solution of the product of Laplace operators

From the beginnings of the theory of elasticity and electrodynamics, one was
looking for fundamental solutions of the operators

4,(03+ad3) (or equivalently 9f+2(1—2¢*070;+0;) and 4,(4,+ad?),

4, denoting the n-dimensional Laplace operator (cf. BRiouLLIN 1918, BUREAU 1947,
1948, GARNIR 1952, STEIN 1959). This fact inspired G. HERGLOTZ in 1926—1928 to
work out, more generally, an explicit expression for a fundamental solution of a
product of Laplacean’s, i.e.

(]) (An-1+0133)---(4u—1+0m3§),
Qyy .oy @y =0, MEN, neN, m = 2.

In contrast to his results concerning the fundamental solution of a product
of wave operators (compare: G. HERGLOTZ, Gesammelte Schriften, p. 556, Van-
denhoek & Ruprecht, Gottingen 1979; N. ORTNER, Die Fundamentalldsung von
Produkten hyperbolischer Operatoren. 1. Preprint, Innsbruck, 1983), his construc-
tion of a fundamental solution of (1) is complicated and does not yield explicit
expressions (p. 560 and 561). Even for n=2 and m=2 1 did not succeed to derive
an expression for a fundamental solution of the operator of the anisotropic ortho-
gonal plate using his method.
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Therefore, to give an explicit expression for a fundamental solution of (1),
I apply the new method of “parameter-integration”, developed by P. WAGNER in
his thesis (Parameterintegration zur Berechnung von Fundamentallésungen. Disser-
tationes Math. CCXXX, Warszawa, 1984).

If the numbers g; are all distinct, proposition 3 (p. C3) gives a fundamental
solution E of (1), namely,

@ E= (m—l)g"'1 cj‘;f’ (a,—AYy"*E, dA.

Here, E; denotes a fundamental solution of

(d,-1+203)™, and c; is the product ¢;= [ (a;—a)7?,
k=1
k#j

and a,>0 is an arbitrary constant. Furthermore, E; has to be chosen such that
(i) (1 +|x[®)~@m-n+D2E € B’ (= space of distributions vanishing at infinity),
(ii) A—E; is continuous on the interval determined by the greatest and the

smallest of the numbers a,, ay, ..., a,. These requirements are fulfilled by

3) PRI (R e
A= “Am,n ﬁ(@ ).
with

(—1)"I(n/2—m)
ez=x¥+...+x§_1, 22=x=, Am,n = zxmnllﬂ(m_l)! ”

n odd or n even and 2m<n.
For n even and 2m=n we can take

" 1 » z2 ym=n[2 2 z3
@ Ei= Buai (45 g+ )

with
- (_])n,-‘2+l
T 2m B (m—1) (m—nj2)!”

'BM. n

So the construction of a fundamental solution of (1) reduces to the evaluation
of definite integral of type (2) with the expressions (3) or (4) for E;.

One can show that a, disappears in the final results.

Theorem. A fundamental solution of

Il (4,-1+a;0D) (m=2, a;=0 pairwise distinct)
j=1
is given
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(1.) for n=21 even and 2m—=n, by:
22--(;3112:;1—2)! [a(é:r*')*]l_m_l i Zﬂ CJ{T_Z_S[(m; 2] =45~

X (k—1 (Va, e)”“’]
ks 3 m—2—k 2k—2r—2
(a;0*+2* EZ.,[ r ] 343 1T

+(aja‘+z’)""[gyra_j—z arctg [—-— l/a_,]]}
(2.) for n=21-1 odd and 2Zm-<n, by:

( )l—lr l—m—1/2 l—m=—1 5 o
22 =1 (] (m)r(mil)ﬂ) 3(92)] i ch(ajgz 4+ Zm-32,
(3.) for n=21—1 odd and 2m=n, by:

) rA-m=12) g = m—2
22 =13 (m —2) 1 (m — 1)1 © ukﬁ‘?&“ {Cﬂ Z J[Ln k ](_ A

r—1 b 24 A2y +3/2
.[a,-cc’+(c—l)z’]'_""r=2; [[kr I]C'(—zz)k_l-r (ajgri3/)2’ ]+

~+VW]]”
2+ Vela, e+ 2

+lajce®*+(c—1) "2 [—]/0193+22+ 5 log

(4.) for n=21 even and 2m=n in').

Remark. As in the well-known formula for the fundamental solution of the
wave equation in 21 —1 (1=2) space variables the expressions (1.) and (2.) arise by
means of differentiations with respect to p*=x7+... +x3,_,.

Pap, E.: Semigroups of operators on the space of generalized functions Exp of’

Pandey. G. S.: On the initial value problem for a distributional
Meijer—Laplace transformation

Let @(#) be a right- sided locally integrable function satisfying the conditions:
1) @(1) (1)=0 for —cc<t<T.
1)) There exists a real number such that the function

1) In a talk on this subject 1 gave a final formula and a sketch of the proof of this formula
in the case n even, 2m=n. An abstract was published: N. O., Fundamentallésung von Laplace-
operatoren. Oberwolfach, Tagungsbericht, 10, Partielle Differentialgleichungen, 1983, p. 14
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is absolutely integrable over — eo<f<oo, where

Gh

= Gre(2st [yb3 757)

is Merijer’s G-function, P+¢g<2(h+u) and w is a fixed positive number.
The Meijer—Laplace transformation of a distribution is an operation L which
assigns a distribution F(S) to each locally integrable @(7) such that

-4

Lo() = F(s)= [ e="Gh

b)) D(1) dr.

The function F(S) is called Meijer—Laplace-transform of @(r). Our assump-
tion that
®(t) =0 for —ee <t =T implies
that

Lo(1) L F(s) 2 f e~ Gha (251 | 32) @ (1) dt.

We write p=min Re (by, b, .. b)

The object of the present paper lS to establish a theorem which relates the
initial value of a distribution to the final value of its Meijer—Laplace transform.
Precisely, we shall prove the following:

Theorem. Let ®(t) be a Meijer—Laplace transformable distribution with the
support in 0=t<=-<c and Jet ®(t) be a regular distribution corresponding to a Lebesgue
integrable function y(t) in a small neighbourhood of the origin such that

3
[UOL G _ g a5 g,
F I

then
. (wo)"*'F(o) _
A T B
where
.
G@lw) = :f:[——l =)
RMb;+y+1)=0; j=12,...,h
and

B+y=0.

A corresponding result for the final value of Meijer—Laplace transform also
holds.
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Pilipovic, S.: Class of spaces of periodic ultradistributions

We introduce a new class of spaces of periodic ultradistributions. Elements
of these spaces can be uniquely expanded into a Fourier series. We give the char-
acterization of elements of these spaces by the growth rate of their coefficients.
We also give a structural theorem for elements of these spaces. The obtained results
are compared with the known results.

Rao, G. L. N.: The space H_, and a generalized L—H transform

V. K. Karoor and S. Masoop discussed an integral transform whose kernel
is a Meijer’s G-function. This reduces to generalization of both Laplace and Hankel
transforms as particular cases. Further, these authors proved a complex inversion
formula for the same transformation in the classical sense. The purpose of this
paper is to develop the generalized Laplace—Hankel or simply the generalized
L—H transform in the distributional setting and extend the complex inversion
formula to distributions interpreting convergence in the weak distributional sense.
A week version of a uniqueness theorem also would be given.

In 1983 January, the author presented some results on the distributional com-
plex inversion theory for Varma's second generalization of Laplace transform at
the Conference of Indian Science Congress Association. A brief mention about
these results would be also made in the present paper.

Rjabcev, I. I.: To the abstract perfect operators

The method of perfect operators modifies, unites and in an abstract form
also generalizes the theory of generalized functions (distributions) and the algebraic
operational calculus.

The general scheme of the method is such. The generalized objects are intro-
duced not as functionals but as Weston’s perfect operators — the operators
a: ad= ® on the commutative algebra @ without zero divisors, commutative
with every operator of multiplication by an algebra element. The operational cal-
culus characterizing algebraization of the initial linear system L, with respect to
some non-zero linear operator S: SL,=M_,C L, is achieved with enlargement
of L, not to the quotient field but to the ring P=P[®] of all perfect operators on

the algebra &= ﬁ S"M,, S M, CL,CP. For this purpose for some pairs of
n=1

elements of L, the operation = is introduced of internal multiplication of the type
of Dimovski’s convolution — bilinear, commutative, associative and commutative
with the operator S. It is supposed that the zero divisors are absent, L,*M,SL,,
M, M, M, and & {0}.

The ring P=P[®] is not a field (if we except the trivial case P=®), P is
isomorphic to the part of quotient field & for the ring @. But this does not restrict
the possibilities of the method, in so far as both the algebraic and the infinitesimal
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calculus of perfect operators may be constructed without turning to the notion of
quotient field.

The ring P=P[®] enlarges the initial system just as much as it may for tracing
the initial system inherent structure with respect to the operator D=S"1, just
the representativeness of all elements (in the sense of some specific convergence)
in the form vliin” D™ f, (n,€{0,1,2, ...}, f,EM,_). On the concrete model [I, 2]

this signifies the distinction of the class of all such objects which still may be inter-
preted as the (finite at left) generalized functions with the corresponding local pro-
perties. In the general case [3] also the analogy with generalized functions is observed.

The following two theorems, in difference from the corresponding Mikusifiski
theorems in his quotient field, are proved without the help of prolonging on all the
axis, that permits here also to manage with the apparatus of rings without the use
of the notion of quotient field.

Theorem 1. There exists not more than one function u(4) with values in P= P[®],
satisfying, on the bounded set AR, the equation ay*u'(A)=a*u(A)+f(1) and
the condition u(lo)=1u, (o, a, us€ P, ay50, f(A)S P).

Theorem 2. There exists not more than one function u(2) with values in P=P[®],
satisfying, on the bounded set AZ R, the equation ay»u"(A)=axu(A)+f(2) and
the conditions u(Ag)=uq, u'(Ag)=ug(ay, a, ug, ug€ P, ay#0, f(A) S P).

These theorems permit to introduce, together with the notion of exponential
function as the solution of the corresponding Cauchy problem on all the axis, the
notion of right (left) exponential function as the solution of the same problem
on the right (left) semi-axis. On the concrete model no difficulties arise in applica-
tions of these functions to the solutions of problems for the equations in partial
derivatives.

Here some principal questions of abstract perfect operator theory are touched
that are elaborated in detail in a monograph prepared by the author (the summary-
article has been adopted for publication).
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Shultz, H. S.: Two-variable operational calculus

For 0<a=< and 0<b=< define L to be the set of locally integrable com-
plex-valued functions of two variables on the subset J=[0, a)X[0, b) of the plane.
These functions are extended to be zero for x<0 and y<0. For fand g in L
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we define the convolution

f*gx,p) = fff(x—u,y—v)g(u, v)dudv (x,y in J).
o0

This operation is commutative and associative.

Let Q be the subset of L consisting of those functions which are infi-
nitely differentiable and which, along with all partial derivatives, vanish on
{Cx,»)€J: x=0 or y=0}. A mapping A from Q into Q is said to be “perfect”
if A(p*q)=Ap#q for all p and ¢ in Q. By defining {f}g=f*q we inject L into
the commutative algebra P of perfect operators. Since this injection maps convolu-
tion into multiplication it serves as a generalization (there are no growth restrictions)
of the two-dimensional Laplace transform.

Suppose g is a locally integrable function of one variable on (— <=, a) which
vanishes on (— o, 0). We define

*

(g}, ) = [ gx—u)q(u, y)du

and define {g(y)} similarly. The operators {g(x)} and {g(y)} are perfect.
The algebra P contains the two operators of partial differentiation and admits
operational formulas such as

{£} = DAS}—{/10, y)},
{g'(x)} = D.{g(x)}—2(0),

and

{g(x)} ,
D.+D, {g(x—»)}.

There is an algebraic isomorphism between P and the space of distributions on
(— =, a] X(— =, b] having support in J; this isomorphism yields a natural definition
of the convolution of two such distributions.

Simon, L.: On generalized solutions of nonlinear elliptic equations
on unbounded domains

Consider an elliptic differential operator of the form
urs AW +Bw) = 3 (=)D fi(x, u, ..., DPu, ..)+

la| =m

- ;’ (—1yDrelxu,....,D,..), HEV
lal =t

A=l n ¥
where D’=m. |a|=j§aj, Bl=m, p=>=1, p—l=q=p, O<l<=m-—
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—%(l —p+q): Vis a closed subspace of the Sobolev space W73 (), QCR" is

a possibly unbounded domain. Assume that f, satisfies some conditions formulated
by F. E. BROwWDER such that 4 is a pseudomonotone operator; further g, (essentially)

satisfies
g:(xs CO, rasy éﬁg ---)éc = 0‘

|g:(x, &)| = C(In)(1 4L

where ¢=(&, ..., &, ...)=(n,{) and n contains those coordinates ¢, of & for

and

which |ﬂ]cm—%, C is an arbitrary fixed continuous function.

Then for any linear continuous functional F on ¥V there exists u€V such that

(1) |=é'mnff;(x, 4, ..., DPu, ...)D*vdx+

+ g.(x, u, ..., DPu, ...)D*vdx = (F, v)
iléfnf

for any veVv.
Similar existence theorems were proved by L. BocCARDO, F. MURAT, J. P. PUEL
for second order equations on bounded domains, in the case g=p, V=W35°(Q).
The proof is based on the fact that 4+B; is a pseudomonotone operator
where B; is defined by

B;(u) = [él(— L) o T TR

g(x,8) if |x|=j, |g.(x Ol =],
8. (6, &) = Jﬁ% it (x| =j, lg;0 3>,

0 if |x[=>j.
Thus there exists u;€ V" such that
(A +B))(u)) = F.

By using an argument of J. L. LIONS it can be shown that (#;) contains a subsequence
which converges to a solution of (1) in W} (w) for any oc Q.

Stankovic, B.: Abelian and Tauberian theorems for Stieltjes transform
of distributions

J. LavoiNe and O. P. MisrRA gave a definition of the Stieltjes transform of
distributions which belong to a subspace of tempered distributions with the support
in [0, ==). This definition was used by many authors, especially by those engaged
in proving Abelian theorems for this transform.
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S. PiLipovi¢ and me, we changed slightly this definition of the Stieltjes trans-
form in such a way that it was available for the whole space

S’ = {feS'(R"), suppf < R%}

(S’(R") is the space of tempered distributions in n dimension). In case n=1, this
definition includes the mentioned one.

Using the notion of the quasiasymptotic, introduced by V. S. VLADIMIROV and
his pupils, we proved a theorem of the Abelian type which is more general than

those we know.

In the second part we proved a relation between the Stieltjes transform of a
tempered distribution and the itereted Laplace transform of a numerical function.
This put us in the way to use the well elaborated theory of classical Laplace transform.

In the third part of our results we deal with the Tauberian type theorems for
the Stieltjes transform of tempered distributions.

Szaz, A.: Continuities in relator spaces

By a relator space, we mean an ordered pair X(2)=(X, %) consisting of a
set X and a nonvoid family Z of reflexive relations on X which we call a relator

on X.
We define a function f from one relator space X(Z) into another Y (%) to be

continuous, or more precisely (2, &)-continuous if f~'oSofe R for all S€2,
that is, f~ oL ofC A.

By introducing appropriate operations on relators, we can get all the important
continuity properties of a function as particular cases of the above definition.

For instance, to obtain uniform, proximal, resp. topological continuity of f,
we have to consider the following refinements of Z.

R* = {SCXXX: ARER: Rc S},
R*={Sc XXX: YVAC X: RER: R(4) < S(A)},

R ={Sc XXX: Vx€X: IRER: R(x) c S(x)}.

In this general, unifying framework, we have proved generalized forms of
several standard theorems about continuities. For instance, we quote here the next
two theorems:

Theorem 1. A function f from a directed relator space X(R) into an arbitrary
one Y(¥) is
(1) uniformly continuous iff y.€Limgx, implies f(y,)éLimg f(x,);

(ii) proximally continuous iff B€Clg(A) implies f(B)€Cly(f(A));
(iii) topologically continuous iff x¢€limgx, implies f(x)€limy f(x,), or equi-
@ @

valently x€clg(A) implies f(x)Ecly(f(A)).

Theorem 2. A function f from a directed relator space X () into another directed
one Y (&) is uniformly continuous if any one of the following conditions holds:
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(i) f is topologically continuous, R is locally uniform and compact and & has
the neighbourhood property;
(ii) f is proximally continuous and & is symmetric, uniform and precompact;
(iii) f is proximally continuous, R is linearly ordered and & is symmetric and
uniform.

Because of the inadequancy of closed (or open) sets in non-topological relator
spaces, we call a locally directed relator 2 on X compact if

adhgx, = N (1 U R7(xz) # 0

RERacA pf=a

for any net (x,),c. in X. The local directedness of £ is equivalent to the directedness

of 2.

Moreover, we remark that by applying our basic definitions to relations instead
of functions, we get some new kinds of continuities of relations which are much
weaker than the corresponding upper and lower semicontinuities. However, by
using a straightforward notion of a hyperspace of a relator space, these mild con-
tinuities can also be reduced to continuities of the induced set-valued functions.

Concerning the historical development and the bibliography of the subject the
interested reader is refered to our extensive paper ““Relafor spaces” to appear in
Acta Math. Acad. Sci. Hungar.

Székelyhidi, L.: The Fourier transform of exponential polynomials

The Fourier transform of exponential polynomials on topological Abelian
groups is introduced by defining a polynomial-valued linear operator M on the
space of all exponential polynomials, which is homogenecous with respect to the
ring of polynomials and commutes with all translations. If fis an exponential poly-
nomial, then its Fourier transform f is a polynomial-valued function on the set of
all exponentials defined by f(m)=M( f-ni), where m is an exponential and 7i(x)=
m(—x).

The fundamental properties of the map f—f are investigated. This Fourier
transform can be used to determine all exponential polynomial solutions of some
functional equations, linear differential and difference equations with polynomial
coefficients, some types of partial differential equations, etc.

Examples for the possible applications are also given. .

Szigeti, F.: New characterization of certain Sobolev spaces
by generalized Riesz theorems

The following Riesz’ theorem characterizes the Sobolev space W(a, b). An
absolutely continuous function f: [a, b]=R (or C) has its derivative f’€L,(a, b)
if and only if, there exists a real number K=0, such that for any system ]a;, b[C
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C[a, b] (i€l) of nonoverlapping bounded subintervals the inequality

< ) —fal _

r |bi—a?

holds. This theorem can be generalized for a pair of measures. From this generaliza-
tion we can characterize the spaces W%(Q) when k is integer, and Q€R" satisfies
some regularity condition. This result is much more complicate then the original
version of the Riesz’ theorem. Thus, in this talk we show another characterization

for the Sobolev space W5 (Q2) where s>1 +%. A corollary of this theorem is

a direct generalization of the original Riesz’ theorem with interesting consequences
in the study of the composition law of functions belonging to certain Sobolev
spaces.

Reference

F. Sziceri, Necessary conditions for certain Sobolev spaces, Acta Math. Hung.

Székefalvi-Nagy, B.: Geometric characterization of the set
of positive functions in L*

Takaci, A.: On the distributional Stieltjes transform

We prove Abelian theorems for the distributional Stieltjes transform, provided
that the observed distribution has quasi-asymptotic behaviour at infinity related
to a regularly varying function o(f)=r*-L(t). Here a€R and L(¢) is a slowly
varying function. The cases «¢Z_ and acZ_ are analysed separately.

Viadimirov, V. S. and Volovich, 1. V.: The Wiener—Hopf equation,
the Riemann—Hilbert problem and orthogonal polynomials

The discrete Wiener—Hopf equation with
l "
ap-j =— [ cosl(k—)01f(0)d0, =0, feB,, InfcB,
L]

is reduced to a generalized Riemann—Hilbert problem for the unit circle which is
solved in the Nevanlinna—Smirnov’s algebra A4, . The results are applied to some
problems in statistical physics. Details are in Theeretical and Mathematical Physics,
1983, JAN.
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Zayed, A. 1.: Generalized functions and the problem of uniqueness
of the boundary values of analytic functions in the unit disk

Let 2 be the unit disk, 92 be its boundary; the unit circle and 3 be the class
of all analytic functions in Z. Let H* denote the Hardy class of index 1 and N denote
the Nevanlinna class of analytic functions in 2, i.e.,

H'={f: feo#, lim [ |f(re)|d0 <=},
0

N={f: fe#, Tim fhlog*r f(re"”)| df <o}
0

It is known that if fEN, then f(z)=0[expa[l+|zl]] as |z|]—-1. We define
the class #(x) (0=ax=1) as the class of all analytic functions f(z)€# such that
f(z)=0(expo((1—|z|)~#) as |z|=1 where ﬁ=T%. We have the inclusions

HENEHQEH, 2=a=1.

Two of the most important problems in the theory of the boundary values of
analytic functions in the unit disk are the problems of existence and uniqueness of
the boundary values. As for the existence problem, Fatou’s theorem asserts that
if feH', then the radial limit Jim f(re®®) exists almost everywhere on 02. This

result was extended to the class N by Nevanlinna. Since there is a function f€#
such that rlirln_ f(re') exists almost nowhere on 0%, there is no hope of extending

Fatou’s theorem to the class . However, Kothe showed that if the radial limit is
replaced by the limit in the sense of hyperfunctions, then a Fatou-type theorem
exists for the class . As for the uniqueness problem, the uniqueness theorem
of F. and M. Riesz asserts that if f€ H' and rIirlq f(reé®)=0 on a set of positive

measure on 02, then fis identically zero. Hence, if fand g are in H' and lirln f(re'®)=
Jm
= liIP_ g(re”) on a set of positive measure on dZ, then f=g. This result was also

extended to the class N by Nevanlinna. Again, since there exists an analytic function
f(z)#0 such that lirp f(re’®)=0 on a set of positive measure on 92, there is no
rocs -

hope of extending the Riesz’s uniqueness theorem to the class #. The purpose
of this talk is to show that a uniqueness-type theorem exists for the class #(x),
if the radial limit is replaced by the limit in the sense of Beurling distributions.

Zharinov, V. V.: Holomorphic functions with Fourier hyperfunction
boundary values

Holomorphic functions in tubular domains over open cones are considered.
It is supposed that these functions satisfy some estimates and have Fourier hyper-
function boundary values on the real part of the boundary. It is proved that such
functions are in fact holomorphic in the convex hull of the original domain and
satisfy there more exact estimates.
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Zsido, L.: The invertibility of ultradifferential operators
with constant coefficients

Let @ be an entire function of the form

o@= ]I [1+-=],
k=1 I '
where 1,1y, ...€(0, + ], ;<4< are such that > —<+-<co. Then one can

k=1 g
consider the space Z,, of all w-ultradifferentiable functions on R, which is inductive
limit of Fréchet spaces ([3]). The elements of the dual space 2, are the w-ultra-
distributions on R.
An o-ultradifferential operator is a linear operator T: 2,2, with
supp (Tp) C supp @, @€9Z,.

T is called with constant coefficients if it commutes with each translation operator.
Fverv m-ultradifferential operator with constant coefficients is of the form

f(D)
where f is an entire function of exponential type o such that
/)] = colo (@)™, 1€R

for some integer ny=1 and some c¢,>0 ([3]). Here f(D) is understood as pseudo-
differential operator:

e, _
(fD)o)1) = find(1), €D, I€R,
where ¢ denotes the Fourier transform of ¢. If

f(2= kg  2*

is the Taylor expansion of f then the series

J@)= 3 aD*
converges if and only if
If(2)] = clo(lz])", z€C

for some integer n=1 and some c¢=0.

Let f(D) be an w-ultradifferential operator with constant coefficients. f(D) can
be extended to a continuous linear operator 2’,—~2’, and we have f(D)2,=2,
if and only if fis w-slowly decreasing on the imaginary axis:

sup  [f(is)| = g lw()|~™, t€R
scéR
ft—s] Zmpln ()]

for appropriate my,=1 and &,>0 ([2]). In this case we say that f(D) is invertible
in &',
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Let us consider the “union” |J 2’, of all w-ultradistributions. We remark
o
that |J 2’,, is equal with the “union” of all usual Beurling or Roumieu ultra-
[ ]
distribution spaces as these are defined in [6]. If f is an entire function with

<+ co

[ in* (sup L) dr <+

1

then there is an @, and a constant ¢,>0 with

1f(2)| = ¢ [wl)(lzl)ls z€C,

so f(D) is a convergent w,-ultradifferential operator with constant coefficients.
Of course, f(D) is a linear operator on |J 2;, which maps 2’,, in 2’,. In [1],

@
Chap. II, §2, No. 1 it is asked: is f(D) automatically invertible at least in some
D' 0,22 ,,? Equivalently: is the linear operator f(D) on |J 2, always surjec-
@

tive? Equivalently: is f o,-slowly decreasing on the imaginary axis for an appro-
priate @,?

In [4] it is shown that f(D) is invertible in the union of all ultradistribution
spaces whenever f satisfies the additional condition

+ oo

() [ in* (sup 7o)

1

r dr = + oo,
In* (sup | £(2)])

lzl=r
Now, in [5] it is proved that if o: [0, + =) [0, + =) is an increasing function with

i | . r
f Sa(r)dr <+ but [ Za()in——dr=+e,

1 1 r ot(r)

then there exists an entire function f with
If(2)] = eh,  zeC,

such that f is not w-slowly decreasing on the imaginary axis for any w.
Therefore:
1) The answer to Chou’s question is negative.
2) Moreover, () is the optimal majorization condition which guarantees the
global invertibility of an ultradifferential operator with constant coefficients.
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Problems
Boehmians and their extensions

By a delta sequence we mean a sequence of smooth functions 4, satisfying the
conditions

1° 5,(x)=0 if |x]>a, with o,+0; 22 f[5,=1; 3 [I5|<M.

If £, are continuous functions for n€ N and {9,} is a delta sequence, then the
sequence of pairs (f,, d,) is said to be fundamental if f, #4d,,=f, %9, for m, n€EN.
Two fundamental sequences (f,,d,) and (g,,d,) are equivalent if f,, *d,=g,*d,,
for m, n€ N. Boehmians are classes [( f;, d,)] of equivalent fundamental sequences.
Operations on Boehmians are performed, as on pairs.

A Boehmians x is zero on an open interval (A4, B) if for each closed interval
[A4,, B,J<(A4, B) there exists a sequence ( f,.d,) such that x=[f,.4d,] and f,(x)=0
on [A,, B,] for sufficiently large n.

Problem. Assume that x is a Boehmian and ¢ is a positive member. Is there
a Boehmian y such that y=0 on (—e, —&) and x—y=0 on (0, =)?
The problem was posed by J. BURZYK and P. MIKUSINSKI.

Dimovski, I.:
Is each function f of the DUHAMEL convolution algebra C[0,1] or CJ[0, =)
with f(0)=0 factorizable in this algebra, i.e., does there exist functions g and h

of C[0,1] or C|0, =) such that
f&) = [ gx=0h@)de?

-

(Compiled by G. Fazekas, E. Gesztelyi and A. Szdz)



