On P-Sasakian manifolds which admit certain tensor fields

By KOJI MATSUMOTO (Yamagata), STERE IANUS, ION MIHAI (Bucharest)

0. Introduction. G. P. PokHARIYAL and R. S. MisHrA ([5]) have introduced
new tensor fields named as W, — and E-tensor fields in a Riemannian manifold
and studied their properties. Next, G. P. POKHARIYAL has studied some properties
of these tensor fields in a Sasakian manifold ([6]).

On the other hand, I. SATO introduced the notion of an almost paracontact,
a P-Sasakian and an SP-Sasakian manifold and he had a lot of very interesting
results about such manifolds ([2], [3]).

In this paper, we shall study P-Sasakian manifolds which admit the W, — or
the E-tensor field that satisfy certain conditions. In § 7, we recall the notion of a
P-Sasakian and an SP-Sasakian manifold and the essential properties of these mani-
folds. In § 2, we shall get some formulas of the W,- and the E-tensor fields in a
P-Sasakian manifold. In § 3, we shall show that a W,-symmetric P-Sasakian mani-
fold is of constant curvature and an E-symmetric P-Sasakian manifold is an SP-
Sasakian manifold of constant curvature or an n-Einstein P-Sasakian manifold with
the harmonic structure vector field. In the last § 4, we shall prove that an E-recurrent
P-Sasakian manifold is necessarily of constant curvature.

In this paper, we always assume that manifolds and tensor fields are differen-
tiable.

1. Preliminaries. An n-dimensional P-Sasakian manifold M™* is a Riemannian
manifold with positive definite Riemannian metric g which admits a unit 1-form n
satisfying

a) V,n,—V,n,=0,
(l.l) L My

b) vvvp M= —gqul—gviqp"'zqrquh

where V, denotes the covariant differentiation with respect to g and the indices
v, 4, ..., A run over the range 1, 2,...,n. If we put

(1.2) & =g, o=V,

then we have
né&=1 ¢>§=0, 7.9, =0,

(1'3) Q’m\. = q’u (@,; = Q’p' gﬂ)v mnk (q,nl) == ls

P 0 =0, =1, 8% 8,070 = B —NuMa-
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In an n-dimensional P-Sasakian manifold M™", the following identities are estab-
lished ([4]);
(1'4) Ram"fl = gﬂpﬂv_gu"nn R;u 6. = —("—1)?!,.,
R @ — Ry 07 = (1=2) 05— 0z +20m,M;,
(1.5
Ru Pea = RJ. (pnu
(1'6) N an (Pn."pi., — Rmml"*'gw! gm_gulgm'*'(pmlq’w

291 (Dmu'i'z (gv_u NeoMa— BouNula + 8oally Ny— 8valle nu)9

where R,,,,; and R,; denote the Riemannian curvature tensor and the Ricci tensor
with respect-to g, respectively, and @=trace (¢,*).
“In a P-Sasakian manifold M", if the unit 1-form # satisfies the condition

¢ 75 ) SRS, Vuns =e(—=gutnn), (e==x1),

then the manifold M" is called an SP-Sasakian manifold ([1]). From (1.7), we can
easily see that an SP-Sasakian manifold is characterized by ¢@2?*=(n—1)* ([1]).

Remark. At first, I. SATO ([2]) defined an SP-Sasakian manifold as a P-Sasakian
manifold satisfying V,n,=—g,,+n,1,.

A P-Sasakian manifold is called an n-Einstein manifold if the Ricci tensor R,;
is written by the form

(1'8) Rul = agn1+bqu n.

for certain scalar fields @ and b. The scalar fields a and b are related by a+b=—(n—1)
and na+b=R, where R denotes the scalar curvature respect to g. The following
proposmon was proved in [4];

“ Proposition 1.1. An n-dimensional (n#3) non-Einstein n-Einstein P-Sasakian
manifold has a constant scalar curvature R if and only if the vector field & is harmonic.

2. W,- and E-tensor fields in a P-Sasakian manifold. Let M™ be an n-dimensional
P-Sasakian manifold. We define tensor fields W, and E in M" as follows;

(2'1) Ws.,.,.,‘ = Rmmi"’ (gmpRﬂ g\m .ml)&
and
1 1
(2-2) Emvp.i — i (WI.,W; _Wl.”u) Rmmj. T 2 ( il ) (gmp "

— 8Bwa Rm + 8va Rmn X g‘m Rmt)'

In this section, we state the properties of W,- and E-tensor fields in M™. The
proof of the following two propositions.are trivial. So, we omit their proof.
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Proposition 2.1. In an n-dimensional P-Sasakian manifold, we have

1
[a) Wo8' =0, b) W, ¢ [(gu'*' o | Ry | Ny

Ja

[gvl Wi va qm} Ny = W,  —Y +* (Wl...,‘, T WS.\.‘.‘) E. Nu+

Proposition 2.2. In an n-dimensional P-Sasakian manifold M", the E-tensor field
satisfies

(2.3) { c) W, I Po P QT @:° = W’-v]u\+{

1 1
a) Emvm E' -~ ? (gm_u Hy— 8w nm) +m (Rmu My _-Rvu qm)’

(2-4) { b) Ecmke = 2 (gv).’?n gvn'fl.)+ 2(!3 (Rwlqn Rvu’fal)

1 1
~C) Es\myc {T o _"'5 gm+ﬁR\m

3. Symmetric P-Sasakian manifolds.

Definition 3.1. An n-dimensional P-Sasakian manifold M" is called W,-sym-
metric if it satisfies

(3.1 VW =0,
and an n-dimensional P-Sasakian manifold is called E-symmetric if it satisfies
(3.2) Vo E s =0.

Now, let M" be an n-dimensional W,-symmetric P-Sasakian manifold. Then
we have from (3.1) and the second Bianchi identity ([7])

(3°3) Rtxco WE",,,\-I_RﬂW' Wso, “;+Rrxﬂ.Wl¢, .;+Rtml Wi.",“ =0.
Transvecting (3.3) with £* and taking account of (1.4) and (2.3), we have
(3°4) My Wi‘,u, /B Wsm,.z — 0!
from this, we obtain
(3.5) s = 0
that is, the manifold M" is W,-flat. (3.5) implies

1
(3'6) Ra'ml e —m' (gmn le — 8w Rﬂ.ul)'
Transvecting (3.6) with g@4, we get

R

(3’7) 'R'u WS
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By virtue of (1.4) and (3.7), we obtain R=—n(n—1). Thus (3.6) and (3.7) imply
(3-8) vaul - —(3001 gu—gmu gvl)'
Thus we have

Theorem 3.1. An n-dimensional W y-symmetric P-Sasakian manifold is of constant
curvature —1.

Next, let M™ be an n-dimensional E-symmetric P-Sasakian manifold. Then
we have from (3.2) and the second Bianchi identity

(3'9) Rm' Egvnal + R-tzv. Enmul + Rﬂm‘ Emvzi. e o -Rtxl.‘ Emv,uc = 0'
Transvecting (3.9) with £*£* and taking account of (1.2), (1.3), (1.4) and (2.4), we get

1
(3' 10) Rewml o 5 (gm.l gvp % gmt 8va Y & Swally "u —&villo ﬂu) 2

1
= m (gvjl Rmi. — By Rwl Ny My -le o Nu Rva,)

The equation (3.10) implies

_ R-(n—-1*  R+n(n-1)
it Ru= =T 8™ gp—1 ™M

that is, the manifold M" is of »-Einstein. Substituting (3.11) into (3.10), the curvature
tensor R,,,; is written by

R—(n—=1)(3n-2)
Rmmj. = 2(,!_1)(2"_1) (gml Evu— Bop gwl)_

(3.12)
R+n(n—=1)
2(’!"" l)(zn_ l) (gml. My qn*gvi qw "u+g\m qw ".l_gam "v ’11.)

Substituting (3.11) and (3.12) into (1.5) and by the straightforward calculation,
we have

(3.13) (R—=Tn*+11n—4) (N, 11— 8u) +(2n—1) {R—(n—1)(3n—4)} ¢, = 0.

Thus it is sufficient to consider the following two cases;
(i) @#0. Then, transvecting (3.13) with g®*, we have

(3.19) —(n=1D)(R-Tn*+11n-4)+2n-1){R—(n—-1)(3n—4)} =0
By virtue of (3.13) and (3.14), we get

y (n=1)Part@(Mafr—8a2) = 0,
that is,

(3.15) Por = &(—Zar+NuM)-
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Moreover, the equation (3.14) gives us
(3.16) R =—n(n-1).
Thus we have from (3.12) and (3.16)

R«wpul = '—(gawl g\m o gm'l gvi)$

that is, the manifold M" is of constant curvature —1.
(i) ¢=0. Then we have from (3.13)

(3.17) R = (n—1)(3n—4).
Substituting (3.17) into (3.12), the curvature tensor R,,,; is written by

(3°18) Rumd. L 2 (gmi Bvu— Bop gv&)_

73—

2(n—1
2(:: )(Sm My M= 8va Moo M 8w Moo M2 — B My 112)-

Thus we have

Theorem 3.2. For an n-dimensional E-symmetric P-Sasakian manifold M", we
have the following two cases;

(1) If @#0, then the manifold M" is SP-Sasakian with constant curvature
—1, and

(ii) If @=0, then the vector field &* is harmonic, the manifold M" is n-Einstein
and the curvature tensor R,,,; is given by (3.18).

4. Recurrent P-Sasakian manifolds.

Definition 4.1. An n-dimensional P-Sasakian manifold M" is called W,-recurrent
if it satisfies

4.1 VeWss = 0Ws,,..

for certain non-zero vector field 0,, and an n-dimensional P-Sasakian manifold M™"
is called E-recurrent if it satisfies

4.2) ViEgyps = 0, E,,,,

for a certain non-zero vector field 6,.
It is trivial that a W,-recurrent P-Sasakian manifold is an E-recurrent one.
Let M" be an n-dimensional E-recurrent P-Sasakian manifold. Then we have
(4.2) and this equation means

1
Vwavlll-!- m (gm_uvx‘Rﬂ. = gmlvx R\m + gvl.vx Rﬂm S gmleml) oo
(4.3) ;

— ex {mei i — ( ¥ | ) (gm.l vi— Boa Rm +8va an B le)}
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Transvecting (4.3) with g®4, we get

4.9 nV.R,, = nb,R,,—RO,g,,+8,, Y R.

Moreover, transvecting (4.4) with g"*, we obtain

4.5 V.R = RO,+n(n—-1)0,.

By virtue of (4.3), (4.4) and (4.5), we have

(4.6) VaRowis = O (Royust 8az 8vn— Bap8rva)-

Covariant differentiation of (4.6) gives

@n VeV Rovua = V2 0u(Rovua + Bwa Bun— B 8v2) +
40,0, (Ryyur+ Bwa Bvu — B Bva)-

From this, we obtain
me. Rem& + R‘K!Il" Rmnl + ‘Rﬂjl‘ Rmul + Rnrl' waa —

= (Vt Bx —Vx at) (Rmmi. + 8o Bvu— By & v).)'

Transvection of the above equation with £*&* gives that the manifold M™" is of con-
stant curvature — 1. Thus we have

Theorem 4.1. An E-recurrent P-Sasakian manifold is of constant curvature —1.

Corollary 4.2. A Wy-recurrent P-Sasakian manifold is of constant curvature —1.
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