Expectation of nonlinear functions of Gaussian processes

G. TERDIK (Debrecen)

1. Introduction, notations. This paper has two aims one is to show that the
formula of Bonnet [1] for calculating the expectation of nonlinear function without
memory of a Gaussian stochastic process is valid under weak assumption ; the other
one is to examine — as a consequence — the Generalized Appel—Wick polynomial
system of several variables.

The vector space of rapidly decreasing functions in the n-dimensional euclidean
space R" will be denoted by %, i.c.

o ={elg€$=(R), sup sup (1+1x)(D,)(| <e=, N=0,1,...}.

Here |x|*= 2’ x{, « multi-index is an n-tuple of nonnegativ integers a;, |a|= 3 «;,
1 1
D, is a differential operator defined by

— :—|al

et St e xé‘x;) (:3x,,

and C=(R") is the set of complex function g defined in R" for which D,g is con-
tinuous for every multi-index «. The elements of te dual space %, of &, are called
tempered distribution, they are the continuous linear functionals on &%,. It is known
that every f€LP(R"), 1=p=oo, every polynomial and every measurable function
whose absolute value is majorized by some polynomial is tempered distribution.
It is customary to identify the tempered distribution u, with the function fif

us(g) = R[ gfdm,, gc,

(m, denotes the normalized Lebesgue measure on R" defined by dm,(x)=(2n)~"/2 dx)
and to say that such distributions are functions. The Fourier transform of a func-
tion g€ L'(R") is the function ¢ defined by

g(n) = f g(x) e~ dm, (x).
e

Note that if g€%, then g€L'(R") and the Fourier transform is a continuous,
linear, one-to-one mapping of %, onto &, of period 4, whose inverse is also con-
tinuous ([2] 7.7). Associate with each tempered distribution u its Fourier trans-

form 4
i i(g) = u(@).
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It is known ([2] 7.15) that the Fourier transform is a continuous, linear, one-to-one
mapping of &, onto &, of period 4, whose inverse is also continuous. The space
&= (R") with the topology defined by the uniform convergence of differentials D, g,
for every « on every compact set K(SR") will be denoted by €,. The dual space
of €, is €,.

The n dimensional random variable ¢ is Gaussian with expectation u and
covariance matrix G if its characteristic function has the form

@ (1) = exp {i(s, p)—1/22'Gz}.

It is easy to see that ¢,(1)€%, and so the associated distribution function g,€,
too, if it exists.

2. Expectation of nonlinear functions
Lemma. a) The convergence

. 3t IVEC 1
(2.1 nl}.ll'l'ké[—i == 1/2x'T. =cxp{——2-x’Gx}

is valid in €,, where G=I+C Iis the covariance matrix of a nonconstant random
variable § and I' is the diagonal matrix of diagonal elements of G. b) If ; iflfl |x’Gx|=0,

and
'Gx |,,_1lx’1‘x|){ :

then the convergence (2.1) is valid in &, too.

max (sup

{x]—l

Proor. It is enough to show that for each multi-index «

—1/2x' Cx|"

im sup |x*] e~ ¥3¥ 1% g~1abx'Cs |

= 0.
e n!
This, using the Stirling’s formula follows from the inequality
sup sup sup |x?| Alel+ g-G¥x (r+30)x X’ Cx|" _

|x|=1 A=00=98=1 ¢ PR

= sup sup |x* Alel+2n l"rl—(-:-ffl--(e“""“"" Ix 4 e=1R28x'I+C)x) =
|x|=1 A=0

|°-'| "+(|¢In)
e—m+(lal/2) [ﬂ +T]

2lal/z
n! gl [|il|'-?1

ﬂ__ ; + sup
xX(T'+C)x x| =1

X' Cx
I

)

where
= min ( inf |x'Gx|, inf |x'I'x]).

|x|=1 |x|=1
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Let the function f be tempered distribution and the density function g, of the
Gaussian random variable ¢ exist then the expectation of f(£) exists and

Ef(¢) = Qn)y" R_f £ (%) g (x) dm, (x) = (27)"* u,(g,) =

= (2’5)”"31((&)') = (27')“9:(‘?{)

where g(x)=g(—x). So we can define for each u€%, and Gaussian random vari-
able ¢ the expectation E(u, &) by the formula

(2.2 E(u, &) = 2n)"*4(op,).

As the Fourier transform of »€% is function ([3], Theorem 4. § 3, VI) i.e.
0(y) = (2m)~"Po (e~"*)

we get that the expectation (2.2) equals

E(, &) = @ny"20(p) = [ 0e(¥)ve(e= =) dm, ().

Formula (2.2) leads to the following useful calculation of the expectation.

Theorem. Under assumptions

a) u€¥, and & is an arbitrary Gaussian random variable with mean 0.

b) #€S, and & is such a Gaussian random variable EE=0, that assumptions b)
of Lemma are fulfilled.

The expectation E(u, &) can be calculated by the formula

(2.3)
E(u! 5) 2 ED‘(“9 5’) ﬂ k ' s{a _— 01“( ‘2'1 kjl+ Z kih klj = 0}

+1

Where &* denotes such a random variable whose components are uncorrelated and
EE*=E¢, var §{f=var §=G.

Proor. Since for each multi-index «
d(x*@g) = 4(x*(8p)") = 4(((—x)*8e)") =

— l“‘(( -‘Dlgc‘)“ v) - (Du u)A ((050).
We get

E(u, &) = (2n)"?4 ((p-c 2y ﬂ ku

- " s Sy
= 2 (2n)"*(D*u) (@a)‘g’ k!

where sum is over {a=0|a;=Sk;;+ 3k}
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Corollary. One can compute the expectation EF(£) by the formula (2.3) for an
arbitrary Gaussian random variable £ with mean 0, F(y) is an analytical function of
complex variables and for some constants C, N and B

(24 |FO)| = C(1+|y])¥ eBllml,

Proor. By the Theorem of Paley—Wiener ([3] § 4, VI) under the assumptions
of the corollary there exists such a »€%, that

F(y) = 2n)~"v,(e~"*?) = 6(y).

In the following we shall show some illustrative examples for the use of the
above theorem i.e. formula (2.3).

Examples. Let ¢ denote a Gaussian random variable (0, G).
1. If Fe€, and F(y)= [ Fi(y;) then by (2.3)
[=1

EF(¢) = EF®) H
If n=2, then {'-°|¢c=§;;+zt.,] r=1

EFRG)Fi) = 3 EFP GEFY (&) % .
If n=3 then

oo 4 I h
ER@FRGIRE) = 3 EFGYEREPERG) T Sndh.

2. As there is no restriction on the components of ¢ in the Theorem (if FE€€))
they can be equal, E{=0, D*£=0? that is why then

lel
EF(&! 59 seey &) - ZM_‘ED‘F(Efv seey 5:)'
In this case if F(x)= ]‘] F,(x;) then

EJFO=3 m I EE®.

3. The polynomial
P(x) = é‘ G
0=|a| =N

belongs to €,, its Fourier transform can be easily calculated
= C,(-Dp))é
ke ﬁ\:- , Ga(=D)

where & is the Dirac measure on R". Thus

EP({) = 2y P(pg) = n)"* 2 E’N Co(=D,99)(0)
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or
= a * H :UJ
: G ugiq;uED PE) i<y Ky’

4. If z(1), t€R, is a stationary Gaussian process with mean 0 and covariance
function I'(t), F€%, then Y(¢)=F(x(r)) is stationary too with mean EF(z(0))
and covariance function

Iyy(7) = tg ESF(")(Z(O))‘FE;!)

I'y.(t) = I'(t) EF’(z(0)).

From this follows that the normed cross-covariance function yy,(7) does not depend
on Fi.e.

_ I'y@® IR
7@ =T 0 = TO"

5. If z(t), t€R, is a vector valued stationary Gaussian process with mean 0
and covariance matrix I'(t)=(I;;(r)), F€E, then Y(r)=F(z(r)) is stationary too
with mean EF(z(0)) and covariance function
r:?ﬂ':_, (0)

1sfallel i<s  ly!

7752 £pe, F(2(0)) Do F(2(0))

Iyy (1) = H &,
’J »

where
oy = 2 (ly+1Li)+ 23 (kij+kyp)
i J
ay = 2 (ly+1)+ 2 (kyy+kj).
j=i 7
The cross-covariance function and the normed one are

Mo = Tu@® 3 [T 12 EDF(0)

where

o = 14+ 5 hy+lp, o= 2 (Li+1), i#k.
i=k J=i

= Frz,.(“) L Iy (7)
1 = T = T

3. The Generalized Appel—Wick polynomial system. The Appel polynomials
play an important role in the examination of nonlinear stochastic systems such as
Uryson and Zadeh models [4], [5]. The one-variable Appel polynomials of degree n
which differ from the Hermite polynomials only in a constant factor were mentioned
by BONNET [1], CAMPBELL [2] and SHUTTERLY [5]. The n-dimensional Hermite poly-
nomials can be defined by the same way as the standard Hermite polynomials i.e.
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differentiating the joint density function (GRrAD [3]) of » independent standard
Gaussian random variables. This method does not work in the dependent case. We
define the n-variable Generalized Appel—Wick (GAW) polynomials of degree n
by the following rules:

a) A°=l

0
b) —Aa(xls seey x,.) = Au—l(xla ooy Xj—1s Xjg1s eoen xn)
3x;

c) EA (%, ... %)=0, n=1,2, ... where (xl, ..., X,) 15 a Gaussian random
vector with mean 0 and covariance matrix G=(G,, ).
One can get the GAW polynomials by the following recursive formulas
A (%1 00 X)) = Xp Ay 1 (014 cios Xpmgs Xgp1s s00s X)) —

"‘Z; GuAyg(Xyy -oos Xiats Xpg1s oo0s Xam15 Xat1s o203 K)o
-

Indeed Ay=1, A;(x))=x;, A3(x;, X2)=X3X3—Gyy so for n=1,2 b) is valid
and by induction from n—2 and n—1 follows that

0

'E'x"‘-An(xll weey xn) — An—l(xls vy Xpm 19 X1y 200y xn)'
Assumption c), fulfills as well
EAn(xl’ sevy x,) - Exl;As—l(xln ooy Xp—1s Xgg1s ooes n)""

_‘z; GuEA,-sfxla cors Xjm1s Xjg1s coos Xgpm1s Xpt1s oes xn) =
o

3
= 2 GuE Ay s (Xrs ooy X1y Xag1s 0es X)—
ik
—‘2; GﬂcEAu-l(xls veey Xials Xpg1s o009 Xp1s Xpt1s ooep X)) =0,
=

Let us consider now the second order moments of the GAW polynomials when
the variable (x, z)=(xy, ..., X4, 21, ..., 2,,) is Gaussian with mean 0 and cov (x;, z;))=
=G,,,,. Using formula (2 3) we gct

G.1) EA (%, . %) An(21y s 22) = 3 EDuA (X)ED%A,, (Z)Hii?__
ch” ij
e 6:2* ﬁ le:ll’
n! I=1

where

“uzg?m “ti=¥?ﬁ-

From this and the definition of GAW polynomials it follows that the expectation
(3.1) is zero except |o|=|op|=n ie. y;=1, I=1,2,..,n where iy, ..,i, is a
permutation of numbers 1,2, ...,n, y,;=0 in other cases, so the summation >'*
has to be extended to all possxble permutations iy, i,, ..., i, of numbers 1,2, ...,n
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These propositions for the GAW polynomials remain true also in the case
when the variables are not different. Let us introduce the following notation for
the k variable GAW polynomial of degree n (k=n):

An'h' B 2 (x]_, ceny xk) = Az,,'(xl ces x1: eeny Et, seny x,!).
kX By

As a special case we get for the Gaussian stationary process z(7) with mean
0 and covariance function I'(t) the GAW polynomials are quasi orthogonal i.e.

EAn;.u;. ....n.(z(fl), “oih Z(fk)) =
EAH"”" """"(z(rl)’ e z(!ﬁ))AMh -...lll;(z(sl)' ceey Z(Sl)) -

=t gpnt 2 (0™ ) o T (4™ > I L reso

Where
m!

k -1 m
= i, fi=m—T jit=0 and [ P i
m= 2o fi=m— 2 ks oo i) = TR

In a special way
EA;, ((2(0), 2(5)) Am,n(z (), 2(W)) =

m
S Ll Jriwto rizst () Pla-o Foct

(n.) [
J’-m(ﬂ.u-—m) m-—=]J

EA,(z(0)A(2(s)) = oLk! T%_,.

and
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