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Summary. Let A be a linear bounded operator from the Hilbert space X into the Hilbert space
Y, and A* denote its generalized inverse. In this paper we find an estimate for the difference A*y —x,
when y belongs to a suitable subspace of Y: exactly we show that

lA*y—x/l = O(e) (0 <e&—+0)
where x,=(AA*+el)"'4*y

Introduction

Let 4 be a linear bounded operator from the Hilbert space X into the Hilbert
space Y, and A* be the generalized inverse of it, [1]. Consider now the element
X,€X defined as follows:

(1 X, = (AA*+el)"* A%y

for every e>0, where A* is the adjoint of 4 and I the identity in X. If 4 is a com-
pact operator then, as it is well known, [2] (theorem of Tikhonov),

e
@ A y_o-]-zlmnx‘

holds iff y€ R(4)®R(A)*+, (R(A) is the range of A).

Recently it was shown [3], that (2) holds even if 4 is not compact, but only
linear and bounded.

Now the following problem arises: how fast is the convergence in (2)? A partial
answer was given to this question in [4], where it was proved that, if 4 has a special
property, then a subspace of R(A4)® R(A)+ can be constructed such that for every
element y of this subspace |4*y—x|*=0(e) holds.

In this paper we will give a similar estimate for |4*y—x,|, without making
any special supposition on A of the type as above.

Some preliminaries

Suppose X and Y are separable Hilbert spaces of the same dimension and
A: X-Y a linear bounded operator. We will now construct for 4 two systems of
numbers and two systems of orthonormal elements {x;, x,, ...}, {¥1, s, ...} In X
and Y respectively, which we call generalized eigenvalues and eigenelements of 4
according to [5], [6, p. 150].
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Let us start with an element y,€Y, with |y,|=1 and y,€(ker 4*), other-
wise arbitrary. The elements x; and y;, as well as the numbers k; and m;, will be
defined by recurrence:

3y Axj_1=kj_1yji-1=m;_1y; ”J’J“ =1
4) A*yj_ﬁj—lx;—l = ijj "xjﬂ =1

(m0= Iki:lz 0’ x0=01 Yo =0|j= 1’233s “')'
It can be proved that:
(i) kj?éo (j= 11 2) "')s
(ii) the systems of elements {x,, x,, ...} and {y,y,, ...} are orthonormal,
(iii) all x; are orthogonal to ker 4 and all y; are orthogonal to ker 4*.

If for some j it turns out that Ax; ,—k;_,y;_,=0, then let us put m;_,=0
and choose y;€Y such that |y;|=1 and y; is orthogonal to ker 4%, (y;,»)=0
for k=1,2,...,j—1. In the case that 4 is of finite dimension it can be shown that
the systems above are finite.

Interesting is the case if A4 is of infinite dimension. It is shown in [6 p. 150]
that is not a loss of generality if we suppose that the system {y;} is complete in
(ker A*)+, and then automatically also {x;} appears as complete in (ker A)-. We
can also suppose, without the restriction of generality, that k;=0 for all j [6, p.158].
In the same way it is possible to see that the construction of the systems of gen-
eralized eigenelements and eigenvalues can be chosen so that also m;=0 holds.

By the systems of generalized eigenvalues and eigenelements an arbitrary linear
bounded operator A has the following expansion, [5], [6 p. 153]:

4) A% = %‘ k;(x, x,)y,+%' m;_1(x, x;-1)y; (x€X).

where these series are convergent in X.
If we consider another operator A(¢) depending on a positive parameter &,
defined as follows

&) A@)x = %' (kj+a)(x, x;)y;+(2”' mj—l(xs x;-1y; (x€X),

then we see at once, that
(A@e)—A4)x = e%‘ (x,x,)y;
and therefore by the completeness of the system {x;} in (ker 4)* we have

||(4@E@)—A4) x| = & % |(x, x))I2 = &2 [|x]2,
hence
(6 1A()—A4]? = &

Obviously the same is valid for the adjoint too.
From this it follows, first of all, that if é=0 then A(g) tends strongly to A.
This implies obviously, that A(g) is bounded in the neighbourhood of zero:

™ 14@)] = [4(@)—-A4]+]4] = e+]4]
and the same holds for its adjoint.
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Let =0 be a fixed number and 3=0, then let us consider with respect to
A(e) the expression corresponding to (1):

(8) x3(e) = (A(e) 4™ () +01) "1 A* (¢) y

and let us consider an y€[R(A)DR(A)*]N[R(A(e))DR(A(e))*]. Then by the
quoted generalized Tikhonov theorem x;(g)—x,(e)=A4(e)*y.
We will use further on the following lemma:

Lemma. A(e)*y—~A*y in X for every y€[R(A)@R(A)*1N[R(A(e))BR(A(e)*].
Proor. (1) implies
Nx,:= (AA*+eD)x, = A*y,
Mx;(e) = (A(e) A* () +01)x5(e) = A* (&) y.
The difference of the operators on the left side can be estimated as follows:
IN-M| = |44 - A(e) A* )| +|e 9| = [A]e+|A* ()] +|e—3] =
= ce+|e—9|

where ¢ is a constant independent of &.

We will now consider the restriction of (AA*+el)~* to the subspace
A*(R(A)®R(A)*-) and denote it, for brevity, by the same symbol. This operator
is bounded with respect to &, because for all elements ncA*(R(A)SR(A)*),
(AA*+el)~'n—~A*y, where A*y=n. Let us now choose ¢ and ¢ little enough in
order to have

[(4A4* +e1)~| (ce+le—3]) < 1.
Apply now the Proposition 1 in [8 formula (9)]; we get by (6):

_ 1(44™ +el) 7| (ce+]e—d]) [4*yll
%Ol = e e T et le—o)

Let now 0<=4§-0, then by the choice of y, x;(e)—~A*(e)y and we can write

+l(44™ +eD)| eyl

_ o l(A4* +eD)1] [A*y]
=4t @yl=¢ e e 1]

+e|(44™ +eD)7 [yl

The right hand side can be arbitrarily small by choosing &=0 little enough. But as
x,~A*y the estimate above shows that A*(e)y—~A*y for all ye[R(A)BR(A)*]N
N[R(A(e))®R(A(e))~]. This completes the proof.

We conclude this section by indicating the following notations:

&) a; = (x, xj),
(10) Bi=0y) (G=12..),
(1) a;(e) = (x., x,).
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The theorem and its proof

Theorem. Let A be a linear bounded and closed operator, A: X—Y, where X
and Y are real separable Hilbert spaces of the same dimension. Consider the systems
of generalized eigenvalues {k;}, {m;} and the corresponding generalized eigen-
elements {x;}, {y;} in order that {y;} is complete in (ker A*)*, k;=0 and m;=0
(/=12 .). If for any y€int [R(A)D R(A)+]

(12) g’:k;' 51--(%)‘7(kj_1+k1)ﬁ,_1+...+(— 1)-1x

my...mj_
: — kemrkgryo kjBy| <o

j
— k..
Xl 2
holds (where now ko=1, if s=j then ky.1=1), then
(13) l4*y—x] =0@) (0=>¢&~0).

Remark. We can equivalently formulate our statement as follows: Let S be
the subset of int [R(A)®R(A)*] of all elements for which (12) holds; then (13) is
valid for every element of S.

PrROOF. Let us choose &>0 in order that if y€int [R(A)PR(A)+], then
y€R(A(e))®R(A(e))* should be valid too, where A(e) is the operator defined by
(5). This is possible by definition of A(e):

A(e)x = % k;(x, x;)y;+%' mj;_y(x, X;-,) y;+e %‘ (x, x;)y;.

If y€int R(A4), and denoting for a moment by x the element corresponding to y,
ie. Ax=y, then ||A(¢e)x—yl=¢|x||. This means that A(¢)x is in a &| x| neigh-
bourhood of y.

In the following let x be A*y (A*y=x) (it is known that dom A*=
=R(A)®R(A)*, see [7]), and x, the element defined in (1). Because of the com-
pleteness of the orthonormal systems {x;} and {y;}, the relation

(14 4ty —x]|* = %' lo, — s (&)

holds. In [3] (formulae (2.3) and (3.3)) it is proved that the Fourier-coefficients «;
fulfil the system of linear equations:

(15) m1_1a1_1+kjoc_, =ﬁ1 (j =1,2, ...).
This system is uniquely solvable and the solution is:

myMg...Mj_q

1 mj_ 25 i
1 o= {p -T2ty R L =120,

In [7] it is also proved that for every y€ R(4A)®R(A)* 3 |o;|*< <= holds. On the
other hand, it can be seen [3], that the Fourier-coefficients of x, form the unique
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solution of the following system of equations:
(17 mj-1k1“1-1(5)+(kf+ Im;|2+e)a; (&) +m;k;10y41(8) = k; B+, B4
(my=0,j=1,2,..).

Now in order to find an estimate for (14) we need to consider the following linear
system of equations:

my_1 k; & (@) +(kj+|m|2+k;e)&;(e)+im (ki1 +8)8;.1(8) =
=k1ﬁj+mjﬂj+l (j=l,2,u.).

We see at once that the system (18) can be rewritten in the following form:

k,{m_,_ldj_l(a)+(k1+8)&1(a)—ﬁj}-l-iﬁ_,{mjﬁj(s)-l-
+(kj41+8)&j51(8)—Bj41} = 0.

The system {&;(e)} fulfils (19), obviously, if

(20) m;_18;_1(e)+(k;+e)&;(e) = B,

(20" mjaj(8)+(kj+l+8)aj+1(e) = Bj+1

are satisfied. We note that (20) and (20") are members of the same system of equa-
tions and (20) is the equation (20) with the index increased by one. But system
(20) has the same form as (15), only k; has to be replaced by k;+¢. So we see that
the solution of (20), i.e. that of (19), is the following:

(18)

(19)

. i _my 8 g My...Mj_
o) A ki+e {ﬁ kj_,+sﬂ"“1+"'+( e (k1+a;...(k,_i+s) ﬂ‘}'

We recognize at once, that &;(e) are exactly the Fourier-coefficients of A*(e)y
by means of the system {x;}. But if so, by the lemma

18,(&)— ;| = |[(4*(@)y, x;)—(A* y, xp)| = (A @y —A*y, x))| =
= [|4*@y—-47y] ~ 0,
i.e. &;(e)~a; uniformly with respect to j. Hence
2 lo(@F =A%)y

@)
is bounded with respect to ¢. Obviously, as x,~A4%*y [3], we see that

lxd* = %’ lo; @1 ~ [4*y]* (e—~0)

which implies the existence of a constant I'y such that
Z |°‘_;(3)|2 <T,.
W)
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Let us now return to (14) and write
(22) oy —ot; () = [o;—&;(e)] +[2;(e) —; (e)].

Find first an estimate for «;(g)—&;(e).
Introducing the notation

(23) 3’1(3) = aj(s)—aj(e)

we get from equations (17) and (18):

(29) my_y k;yj—1(@)+ (ki +1m;%) y;@)+ M kjir7541(8) =
= g[o;(e) —k;&;(e) —; &;4,(8)).

Let now be

(25) C,:(B) = “1(3)_kjaj(3)_mjaj+1(3)

and so

(26) 1@ = (1+Kk3+my[2(lo; (@)1 +12; ()2 + 18541 (&) [?).

Let us consider now the fact that
0<k;=|[4], |my=]|4l,
[6 p. 161], then we obtain
(27 2151 =C 2 @)1+ C 3 2,0
7)) @ 7))

where C, and C, are positive numbers. Estimate (27) implies the existence of a
unique element ((¢)€X such that:

(28) (C(a), xj) o aj(a)—kjaj(s)_ﬁj&j-l-l(s) (G=12,..).
Definition (23) yields

2 @r=23 o, +2 2 18;E)* <<,

@ 1]) W)
which shows the existence of a unique element z(g)é X such that

7;(8) =(2(e)x;)) (j=1,2,..).

It is not difficult to see that the relation between z(¢) and {(e) is as follows:
(29) (A* A+el)z(e) = &{(e).

We have only to consider the scalar product of both sides of (29) with x; (j=1,2, ...)
and we get by (3;) exactly the system (24). For &>0 the operator A*A+el is
obviously not singular, so we get by (29)

z(e) = e(A* A+el)"L(e)
and then

(30) ;8 = (z(e), x;) = e((4* A+eDL(e)y x;) (J=1,2,...).
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We will now prove that n(e)=(4*A+el)~*{(¢) is bounded as ¢ varies. On the
other hand, as we have seen,
%‘ 1&;(e)|* < I,

independently from &. Therefore by (28)
> (€@, %)= Zla@P+C Z 8@ =T

for any &>0 small enough. This means that [{(g)| is bounded, which proves
the boundedness of n(g). By this and (30) we have our partial result

G FlaE-xElR=_ ly@EPr=2e3|nE),x)? =@l = Cs,
W) U )]

where C is a positive constant.
We have now estimate az-—-&J(s). By (16) and (21)

kj+kj..1+8

k+e k I (ky—r + &)k

k1—21_1+kj 2J+kj 1k1+8(k1 3+k1_,1+k1)+8’
(kj—o+e) k;_a(k;_y+e)k;_4

(32) &,(8) m1_1ﬂ3_1+mj_1 mj_,X

Xﬂ;-s

Zkl :—1 s+1---kj

_ag s=1
(=1 m1ms~-m1-1ﬁl (k1+g)k1...(k_;-1+3)k1-1+

s=1]

(k]_ +8) kl ces (kj_1+8) kj—l

8 Z SRR Y ST TS S ]
+

holds. Let now be

(33) 0,0 =+ (48 ©F @=0)
and

(34) Ve =—0,6) 0.
Therefore we have:

1 ki+k;.,+¢
{ﬁj“’ P B ot

d’j(s) =(k!+3)kj (kj_1+8)kj_,1 mJ_lﬂJhl-'_".

(35)

Z‘k]_ a—lkl‘f‘l k.’
£ -1
e+ (1Y ml"'m.i"-ﬁl (kl-[-g)kl...(kj—l"*'s)kj-l il

1.

j=1
" f T el SR Tapr NTTC

s=1

=5
Fito) k... (k1 TO k1

4*
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Now we observe that the following statements hold:

(36) @;(0) =0,
37 @;(e) = Y;(e)*+2ey;(e)y;(e), hence
0;(0) = ;(0)* = {ﬁl k(:—k)s my_y Bjat...

2
m
oo (= 1)"'1—_‘!_1 Zkl ks-1 s+1---k1ﬂ1}

-1 s=1
(obviously ¢;(0) = 0, S R T IS
If the following two conditions are satisfied

(38) %‘ ¥;(0)? < oo,

(39) ?j0) <0 (j=12,..),
then for ¢ small enough we obtain

(40) 0;) =29;(0) (G=1,2,..).

We emphatize that condition (38) is the hypothesis (8) of our theorem, hence let us
only calculate @7 (0).
kij+kj_y

@) #50) = OV = 75 (BTt myoa st

et (— l)j_lﬂ"ﬂ'_l' 2 ky.okgo1Kgpy o kjﬁl}x

-1 s=1
1 Mye..Myy

1 kj+k;_, " rs Mg
x{—g[ﬂ;—-——(k - m;_yBj-1+...+(—1) B.E, B X

X 2 b kuei sy g 1] 2 0P

=1
Now we must distinguish between the following two cases:
I k=e¢=>0 j=12,... 1II° k;~0 for j=—= .

In the first, (31) and (32) yield directly the thesis, regardless of hypothesis (8).

In the second case, as k;—0, for jlarge enough |b;|<y;(0)%. As eigenelements
and elgenvalues have been chosen such that k;=0, we have from (41) ¢j(0)<0,
that is (39) holds. Thus we have shown that

(42) 5 |y —8;(e)|* = cyet.
w

Finally our thesis descends from (31) and (42). O

We recall that in the particular case of m;=0 (j=1,2,...) an analogous
result was shown in [4] for complex Hilbert spaces and for ye R(A)®R(A)*.
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