Asymptotic first entrance distributions in birth
and death processes

By WALTHER EBERL, Jr. (Hagen)

SUMMARY

For birth and death processes with the state space N° reflecting barrier at 0, birth rates
A;=A(j+1) (JEN®) and death rates pu;=u(j+¢) (jEN), where 4, u=0,{=>0, limit theorems
for the distribution of the first entrance time into state n for n— - are presented. In addition,
the limit distributions are stated for transition rates 1;=A(j+1+¢) (jEN®) and u;=uj (FEN).

1. Introduction

We consider time homogeneous birth and death processes with state space
N°={0, 1, ...} and reflecting barrier at 0 which start from state 0 at time 0 with
probability 1. For given transition rates, conditions for the existence and uniqueness
of a corresponding transition matrix P=(PF;;) are studied in great detail e.g. in
FELLER (1940), LEDERMANN—REUTER (1954), KARLIN—MOCGREGOR (1957a, b) and
REeUTER (1957). Particularly, for transition rates under consideration below, the
existence and uniqueness are ensured. In addition, methods have been developed
for finding the explicit form of the transition matrix. In this context see e.g. LEDER-
MANN—REUTER (1954), KARLIN—MCGREGOR (1958) and SAATY (1961a, chpt. 4).
(In the last referred book there is given a comprehensive bibliography of theoretical
and applied papers on birth and death processes.) For special cases see also HEATH-
COTE—MOYAL (1959), KENDALL (1949) and SAATY (1961b).

For birth and death processes as described, for a given level, i.e. for some
state n€N, the distribution of the random variable T,=inf {>0|X,=n} (first
entrance time into state n, first crossing of level n) is of special interest. Considering
an auxiliary birth and death process with the finite state space {0, 1, ...,n} and
with the same transition rates up to state n—1, but with n being an absorbing
barrier, let P™=(P{’) denote its transition matrix. Then, the distribution of T,
for the original birth and death process is given by P{" which can be determined
more or less explicitly by known methods (cf. the above referred papers). How-
ever, the usual representations for P§? are not informative concerning the depend-
ence on the transition rates and for large n not satisfactorily effective for the numer-
ical evaluation. Thus, in a natural way the question arises for the limit distribu-
tion of the distributions under consideration as n tends to infinity. We cannot expect
an explicit general solution. However, in SoLOVYEV (1964) there is given a nec-
essary and sufficient condition for this distribution to be an exponential one, see
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also GNEDENKO—BELYAYEV—SOLOVYEV (1969). The determination of this limit dis-
tribution for linear transition rates 42,=A(j+1), u;=pu(j+¢) and 2;=A(j+1+¢),
u;=puj, respectively, is the objective "of this paper. Note that the common special
case ¢=0 was treated in EBERL (1974).

For néN let P, denote the distribution of 7, and @, its Laplace transform.
Then it is well known that the reciprocals Q,=1/®, of @, satisfy the following
recursion formula

(1'1) AuQn+1(s) = (’ln'{'ﬂn'i's) Qn(s)_ann—l(s) (HEN)

with the initial conditions Q,=1, Q,(s)=1+5/4,. From this relation it is directly
seen that Q, is a polynomial of degree n. Furthermore, considering polynomials
satisfying such a recurrence relation, FAVARD (1935) proved that these polynomials
constitute an orthogonal system, see also KARLIN—MOGREGOR (1957a) and LEDER-
MANN—REUTER (1954). From the orthogonality and the recurrence relation (1.1)
it follows that the polynomials Q, possess exactly n simple negative (real) zeroes
such that the zeroes of Q, and of Q, ., separate one another. These zeroes are relevant
for determining P, itself. (But, it is tedious to compute again and again the zeroes
of Q, for different n.)

The above recurrence relation will be used persistently. Moreover, we introduce
the following notations: E, denotes the expectation of T,, ¢? its variance. For these
moments the following general formulas are valid (cf. GNEDENKO—BELYAYEV—
SoLovYEV, 1969, or EBERL, 1972):

(1.2) E,=0, E,=Qi0) (neN)
(1.3) ot = E2-Q[(0) (neN)
(1.4) = 2D, with D= 3t

where a.=llu ®ges® Ak—l/(‘ul Y are® ﬂk) (nEZ)

n—1 n—m

(1.5 ZD.?‘{'Z Z‘DS D Oyreitligypy (n=2).

=1 k=1

The generating function Q of the polynomials Q,, defined by

(1.6) 0(z5) = 2" 0,(5)2",

will be an essential tool for deriving the limit distributions. For the transition rates
under consideration below, it is readily seen that for any s,>0 there exists some
ro=r(s)=0 such that the right hand side of (1.6) converges for all complex z and
s with |z|<r, and |s|<s, (cf. EBERL, 1972). The generating function will be found
as a solution of a differential equation where we have to distinguish u=1 and
<A We do not treat the case u=>A; by GNEDENKO—BELYAYEV—SOLOVYEV
(1969), p. 351, it follows that T,/E, is asymptotically distributed according to an
exponential law in this case.
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I1. Limit distributions for i;=A(j+1), py=A(j+¢)
Subsequently, we use the following notations: For acR let

"“] = (1+a)/n! (nENY)

G =

@o=1, (@,=a-...-@+n—1) (neN).
Further, for aéR and néN
Lo = 3 (otm) Corim

is the generalized Laguerre polynomial of order a and degree n.

where

First we determine the polynomials Q,. From their explicit form it becomes
clear that A represents a factor of scale, only.

Theorem 2.1. Let be given a birth and death process with transition rates
=A(j+1) (JEN°) and p;j=7(j+&) (jEN) where 1€(0, =) and (€[O, ). Then
rée polynomials Q, are given by

@.1) 0.0=15(-5)-¢ 3 ~,1c—L;_"-'1 [-;-] 3 L) [
=m§; (sfizm Commmse= [ ] 7= o}'(m—J)' ZR‘ lC" St On e i

Proor. From the recurrence relation (1.1) we get for the transition rates under
consideration

(i) A(n+1)Qnsa(s) = [A2n+E+ 1) +510,(5) —A(n+8) @pr(s) (nEN)

with the initial conditions Qy=1 and Q,(s)=1+s/A. Multiplying both sides of
(1) with z" and summing over all n€N, we obtain for the generating function Q
the differential equation

1+~f

s
S| e 9-aa-
with the initial condition Q(0, s)= Oo(5)=1.
The solution of this differential equation can be found by standard methods;
it is given by
-a-orvsan g} s fa-oenltol
0(z,5) =(1-2) exp[ = 1 eof(l 1-lexp =D di.

By means of BucHHOLZ (1969), p. 138 (11a), this implies

09 = Su(-3)#-¢ S (-3 # S 1%, [%]%"

n=0 k=0

g Q(,S)—
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Therefore we have by the definition of Q

0.0 =1i(-3)-¢ 3 2 res (§) 5 (-5)

I‘.-l

which proves the first equality of (2.1). Using BucHHoLZ (1969), p. 142 (18), and
having in mind that L;% L;_, is a polynomial of degree n—1, we get

L (3 s (-3) = Z; EX 0 35 10 -

u-o[——] = Jl(m J)' mmr—e LY =$(0) L3¢ +4(0)

which due to L3(0)=C,,, implies the second equality of (2.1). O

By means of (1.2) and (1.3) we can derive from Theorem 2.1 the expectations
and variances in terms of n, ¢ and 1. First we provide a combinatorial lemma.

Lemma 2.2. For n,j, meN° and E€R it holds

> &1
(J = c) tg‘; E’ Ck—l.j-{ Cx-l’.m—j+c o Cn.m — Cn.m—j+¢ .
Proor. The statement follows from the identities

jkéck -1,j-¢=Cy,j-t1

kz]',CkJ {lcu l:m-j+§_cnm um J+3

where the second is a consequence of GouLp (1972), p. 22 (3.2). O
Theorem 2.3. Under the assumptions of Theorem 2.1 it holds for n=2:

(n+1— ,,g)/(l—é) for £:#1

I:-.l
(2.3)
!:C i 4":6‘“.{ - ZC!!.C (n+ l)(n + C) .
(l -¢) (l—{—f)(]_‘f)z 1=5(2-9% (lﬂé)s(z—f) for 122

poz =112 2 1)~ G+ Z L+ 0D for g1

-—{-’2-(3!:‘+2n‘——27n—38)+(n+l)(n+2)Zu’-’-i— for {=2.
k=1
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Proor. Fix n=2. Using BucHHOLZ (1969), p. 136 (8), we derive from Theo-
rem 2.1 the relation

0
IE, = 100) = L0 ~¢ 3§ LA O LHO+E 3 £ LHO L0 =

=.1 |
=C,. - —Ci-1,-¢Cy- = Ciu1.1-8Chp. 2
L14¢ fg; 7 Cr-1.-¢ g.1+c+ft§ % Ck-1.1-2Cn-ne
Now we consider first the case £1; then Lemma 2.2 implies
AE, = Cu-1.1+g+Cu.l_cu.ue‘!'l_iglcu.l_Cn.{] =

o s-l.l-l-d_'Cu.l+¢+(cu.l"£cn.:)/(l-C)'
Dueto C, ,—~C,_1,s=C,, a—1 this leadsto (2.2) for {#1. For {=1 we get from (i)

L |
AE,= Cy_q,2— Z % Ci-1,-1Cs—s, s+2 % Co-k1=

_"1(2),,__"nk+l "
= 2R~ 2 gt “)2;" n,

which verifies (2.2) for {=1. To prove (2.3), we first choose 1=&¢=2. From Theo-
rem 2.1 it follows with the aid of Lemma 2.2 and BucHHOLZ (1969), p. 136 (8), that

@) 2O =102 2 F Ly L0 =

= Ca-g,24¢+ Co2— G4+ 28(Co0— G2 4 91 -8 —4(C, s — G, 9I(2 =)

After elementary transformations this leads to
22000) = Comg 045~ C24:+2GC, o/[(1 - 2 - D] +E(C,, e —2GC,,14+ /(1 =)
Thus, by (1.3) and (2.2) it follows that
(ii)) 02 = BE2—12Q}(0) = Cy,z4g—Cosarg+2Consef(1— O+
+(n+1)*+Cp s —2(n+1)C, (J/(1 -8 -G, ¢/(2— &) —2C,,o/[(1 - 2 -]

Now, from (iii) by elementary, but tedious combinatorial transformations which
are omitted the validity of (2.3) for 1=£#2 is established. In the cases =1 and
£=2, respectively, the only difference is that the terms

n l n
ZRUHOLHAYO = 3 £ CoosseComasoc
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in (ii) for j=¢{=1 and j={=2, respectively, cannot be evaluated according to
Lemma 2.2; instead one verifies that

® ] 1 LI I
Z Tck..l_uc,l_;‘g = E‘(ﬂ+l)(ﬂ+2)k§“—c‘—'z‘(3u+5).

k=1
Then, the rest of the proof goes through quite analogously to the former case. [J

Of course, subsequently our interest will not focus on the explicit expressions
given in Theorem 2.3. However, the behaviour of E, and ¢ for n—< will be of
essential importance.

Corollary 2.4. Under the assumptions of Theorem 2.1 it holds:

n/(1-¢) for 0=¢<1
(2.9 AE, ~Vinlnn Jor E=1
RE-DIrA+8)] for 1< <<

n[(1-*2-¢8] for 0=¢(<]1
(2.5) 2202 ~ {n?[In n)? for &E=1
n¥[(1=)r(1+9PR for 1<¢§ <o,

The proof follows from Theorem 2.3 by the well known relations

nt n ]
a9’ &7
Determining the limit distribution now, let us consider first the case £=1. Then,

due to Corollary 2.4 it holds that o~ E? Therefore we obtain the following
theorem.

Theorem 2.5. Let be given a birth and death process with transition rates
Ay=A(j+1) (JEN®) and p;=Ai(j+¢&) (jEN) where A€(0, ) and &(€[l, e). Then
the normalized first entrance times T,=T,/E, converge in distribution to the expo-
nential distribution on (0, =) with the parameter 1.

Since o}~ E? is equivalent to the condition (6.4.27) on p. 350 of GNEDENKO—
BELYAYEV—SOLOVYEV (1969) which is necessary and sufficient for the convergence
of T, in distribution to an exponential law, Theorem 2.5 follows directly from
Corollary 2.4.

From the just mentioned necessary and sufficient condition for convergence to
an exponential law and Corollary 2.4 it gets clear that the limit distribution cannot
be an exponential one for 0=¢<1. From the proposition on p. 351 of GNEDENKO—
BELYAYEV—SOLOVYEV (1969) it follows that the birth and death process does not
become stationary in that case. For the birth and death processes of Theorem 2.5
}t is readily verified that there exists a stationary distribution for ¢>1, but not
or &=l.

Cpe~ In n.

1) We write f,~g, iff Eme8n=1-
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Now, we turn over to the case 0=£&<1. In view of Corollary 2.4 we introduce
the normalized first entrance times 7,=7,/n (n€EN). For the oorrespondmg poly-
nomials §,, the reciprocals of the Laplace transforms &, of T,, which are given by

Go=0=1, 0,(s)=0Qu(s/n) (n€N),

the following lemma holds.
Lemma 2.6. Under the assumptions of Theorem 2.1 it holds for 0=¢<1:

"‘ _ (s~
m= ﬂm'(l &)

Proor. By Theorem 2.1 and Lemma 2.2 we have for néN

0.0 = 2 (%) (Comere ¢ 3 LD CunsCunsed ) L (2

0@s)= lim 0,(s) =

Now, we split up the above sum into three sums and then determine their limits,
separately :

@ 0.0=~ 2 () 7 ComreCommms)-

n=1( ¢ m m (_l}l
-t 2 () Com 2 TG0 T

m=0
n—=1

2 [%]-E,. fz(m(—})lz)(jf—c) Com-reetor : [;"]

mmsl

Let us start with the first sum. With the aid of GouLp (1972), p. 7 (1.49), we obtain

(i) 0=2Cnit—Co-nmtt= 2 Cim-14¢ZmMC, qursg-

k=n—m+1

Further we have

Gl B P_Tgﬁ [1+ k] = (2n)-
and therefore
Sak Cn.m+{_cn-m.m+{ 2"
(iif) VR = ea—Diml
with
(iv) o T, - S
ey A™(m—1)!m!
Since it holds for méN
F(n+m+¢§) 1

i = (=14 = lim p~-1+0 -
nhﬂ" Cu.u-1+: ,}L‘E," r(m+¢)n! r(m+¢§)’
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it follows in virtue of 0=¢<1

(V) lim n=™ Cn’,,._]_.pg =0 (m€N).

R—~oo

As a consequence of Tannery’s Theorem for series (cf. BRomwicH, 1931, p. 136),
(ii), (iii), (iv) and (v) imply

n—1

() lim 3 (2] =5 (Comet—Coommsd = 0

ngiad T |
For the second sum of (i) we use the identity

R o ) 1 1

Jé; 1m=NIG=8  &Cp-gm! (10

where the first equality follows from GouLp (1972), p. 6 (1.47). Then, by similar
arguments as for the first sum we get

. 3 - (=1y s

(vii) im=¢ 3 () Cun 2 mio=o -
A\ Cun S (G

i ’}lrgmno [_ (I—Ou % m=0 m!(l_ﬁ)m.

Finally, in virtue of

Cu.m—-j+¢ = Cn.u—l-ﬁ-c (1 Ef = m)
and of
L] (—1y = 1 ... [m] - o
A Tm-NG=9| = a=amt Z\j) = T=—m
the third sum in (i) can be treated analogously like the first one which yields

(=1
(viii) lim £ Z (An 1-1 Tm—DIG=0 Com-y+=0.

m=1

Now, (vi), (vii) and (viii) verify the claim. [

Now we come to the actual limit theorem for the transition rates under con-
sideration. This theorem represents an extension of Theorem 2.1.3 in EBERL (1974)
which corresponds to the case {=0. At the same time, the proof given here is
simpler and more illustrative than the former one for ¢=0.

As usual, let J, denote the Bessel function (of the first kind) of order v. For
vE( 1, «) all the zeroes of J, are simple, real and symmetnc w.rt. z=0. Let
J,,. (mEN) desngnate the positive zeroes of J,, arranged in ascending order: 0<j, ;<
<Ju2< .o <Jym=<-... . With these notations the following theorem holds.

Theorem 2.7. Let be given a birth and death process with transition rates
=4(j+1) (JEN?) and p;=2(j+&) (JEN) where A€(0, =) and Z€[0,1). Then
r}{e normalized first entrance times T,=T,/n converge in distribution to the dis-



Asymptotic first entrance distributions in birth and death processes 257

tributton concentrated on (0, =) whose distribution function F and density f are
given by

(2.6) Fo=1-—22_ 5 -4t utll)

r(l-E) m=1 jl-l'-gfm'll-{(}-g.m)

(t>0)

-~ 4 5 S Emexp{—Atemt/4}
.7 f(n= 2 (1-0) .4, Ji—sU-zm) s

Remark. As will get clear from the subsequent proof, F and f are the distribu-
tion function and the density, respectively, of the infinite convolution of the expo-
nential distributions with the parameters ;2 ;,/4, 2j%0/4, ... . Thus, starting from
our birth and death model with the assumed transition rates, the limit distribu-
tion of the normalized first entrance times is found to be the (weak) limit of a sequence
of general gamma distributions (with the above mentioned parameters). These dis-
tributions are of great importance for application fields like queuing theory, reliability
theory or psychology and were treated for special parameters e.g. in LIKES (1967,
1968) and McGILL—GIBBON (1965).

Proor. We consider without loss of generality the case A=1. If A, is the
function defined by

o) A,(2) = F(14+v)(z/2)~" T, (2),
then we have
(ii) A,(2) = .12 (1=(zlj,.0?)

(cf. ErDELYT IT (1953), p. 61 (1)). With the help of the fundamental series representa-
tion of J,, the limit function J of Lemma 2.6 may be represented by

O6) = A_,(2/=3) = J.}: (1+4s/2. ..

Therefore the Laplace transforms &, of the distributions of 7, converge to the
function & given by

- T
i i

which in the complex half-plane {s|Re s>—;%,,/4} is the Laplace transform of
the infinite convolution of the exponential distributions with the parameters
J2e1/4, /% 5 5/4, ... . Thus, the random variables 7, are converging in distribution
to this infinite convolution. We determine the distribution function F as the limit
of the distribution functions of the corresponding finite convolutions. To this end,
consider the distribution functions £, of the (finite) convolution of the exponential
distributions with the parameters ;2. ,/4, ... , % ,/4, which can be readily seen to
be given by

(iii) Fn(‘) =1- 2”' [lign(l —js-c.an?—c,u)_l] exp {—j%smt/4} (t=0)

m=]1
kstm
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(see e.g. JounsoN—Kotz (1970), p. 222). From (i) and (ii) we get
AZe(j-gm) = _"‘r(l_‘:)(j-{.ujz)cjl-g(j-c.n) (meN)

and

’ . _2 . o
AZi(j-em) = S !I (I =jLemliZen)
e~

with A’ ]5( J-&m)#0 (since the zeroes of J_, and J,_,; separate one another). Thus,

we have for meN
@) dim JT (=i emlted) = T~/ %0t elimga)/2*
k#m

where due to the ascending order of the j_; , it holds for 1=m=n<e

| H (=L mlite )] 2T (=8 j 0 nl N1 G- g ml/21*%.

hém

In virtue of |[Ji_;(j-gml~ = B

005 (J-emt- 22| VI 804 g

ot [m—%-—%] (cf. WATSON (1966), p. 199 and p. 506) the Dirichlet series

Z (M mT1-g (- gm) 2 exp {—j2 g, m 1/4}

converges absolutely for all 7€(0, «). (In fact, it does not converge for 7=0.)
Therefore we may apply Tannery’s Theorem for series (cf. BRomwicH (1931), p. 136)
to get the limit in (iii) for n—-oo, which together with (iv) yields the validity of (2.6).
From the absolute convergence of the Dirichlet series in (2.6) for #€(0, =) follows
its uniform convergence in any intervall [T, «) with T=0. Hence, F can be dif-
ferentiated term by term, which leads to the density stated in (2.7). 0O

If £, and £ denote the expectations of T, and of their limit distribution and
a2, ¢* the corresponding variances, then we obtain from Corollary 2.4 and Theo-
rem 2.7 the following corollary.

Corollary 2.8. Under the assumptions of Theorem 2.7 it holds

1 : 1
E=1lmE'= ——5; &=Ilimé= g
e % (1=0) peos 2A-52-0
Remark. By means of the representation of the limit distribution as the infinite
convolution of the exponential distributions with the parameters ;2 ,/4, /% ; /4, ...
we obtain

1 = faliy i 1
DA = PR e, e
These identities for the zeroes of J_, have been proved by Rayleigh (1874) (cf.

also Watson (1966), p. 502) who used them for computing zeroes of Bessel func-
tions. Thus, we found a probabilistic verification of these known identities.
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II. Limit distributions for A;=A(j+1), p;=p(j+&) with p<Ai

The conclusions of this section represent generalizations of the corresponding
ones in section I1.2 of EBErRL (1974) which cover the case £=0.

First we provide a lemma on the behaviour of E, and o} for n—oe.

Lemma 3.1. Let be given a birth and death process with transition rates
4=A(j+1) (JEN®) and py=p(j+&) (neN) where 2, pe(0, ), &€[0, ) and
O<a=pu/A<1. Then it holds:

G.1) E,,rvw;—ln[(l—a)n] i B deis
(.2) ot = lim o2 <o,

Proor. Using (1.4) we obtain for jEN
LIt (148, (G=1-R! ,
A5 (14+8)j-1-4 J!

From (1.4), (1.5) and (i) it is clear that D;, E, and o, are nondecreasing w.r.t. ¢.
Particularly, putting =0 it follows that

0] D;=

1 I gt
=57 2 d=U-DE) (e
and
. 1 21—/ 1
T oy g o s e | 1- .
(i) "= J;I 7 B n[(1—a)n]
Next we will show that for fixed (€N with =2 there exists a constant K, ,>0
(not depending on ;) such that it holds

ot
Tty =2

Fixing any €N with =2 we have for j=2

(iii) D=

o 00 G=1-B _ U=k ¢ e ox j_
P T, T =0

Now, (j—k+¢&), can be represented in terms of powers of j—k, say

—k+8e = (K +G(j—k)

k=1
with G,(j—k)= 2 g, (j—k)' where the (positive) coefficients g, depend on ¢,
v=0

SD
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but not on j. Therefore it follows for j=2

G-k+8 __G=RF %' (=R _
TR T *5 & G ers =

()
= 1 Ly (1=k=min(¢ j-1)
=7rG-D; & & R~ o
min (¢, j=1) k=1
Writing g= 23 3 &,,(iv) and (v) imply for j =2
k=1 v=0
_ min(, j-1) (1+§);-1 (j—1-=k)! [ ]min(e..i’—l)
- o = n
i) ico  (1+8)y-1-2 J! % (J—'l)J k=0 .

Now, (i) and (vi) yield (iii) for 2=j=¢+1. Considering the case j=¢42, we
obtain for k€N with {<k=j—1

. (A+8)y-2 G-1-K)! 1 ()
R Oty IT - T O-H
Further, it holds for {<k=j—1
I I I
(viii) G- 1+'§k SO (k+ip-...-(k+i)] ' =
- ¢ (1+k)*
1+v§(})r[]_l J

where the sum > extends over all integers iy, ...,i, with j—k=i<..<i,=
=j—k+&—1. From (vii) and (viii) it follows that

: St (49, G-1-K)! & _
. k=g+1 (1+8)j-1-x Jj! e
s+ 3 o+l 5 +kiet
J k=g41 bl

Inequality (iii) for j=¢&+2 follows from (vi) and (ix). Now, (3.1) is an immediate
consequence of (ii), (iii), (1.4) and the above stated monotony of E, w.r.t. £.

To prove (3.2) we consider first the second sum of (1.5) for arbitrary {=1;
for n=2 it holds

S oy 2 PTG, o s © TR g

m=1 w1 kmr (m41) m=1

with A= 3 (&) /kl<w. Therefore (1.5) yields for n=2
k=1

®) o = [1+24] > Dt..

m=1
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Now, (iii) implies for any €N with =2 that Z D}, <eo. Thus, (x) together
with the above stated monotony of ¢} w.r.t. & venﬁes (3 2). 0O

In view of Lemma 3.1 we introduce the normalized first entrance times T,=T,—
—%ln [(1—&)n] (n€EN). The reciprocals (0, of the Laplace transforms &, of T,
are given by

0,(s) = [(1 —x)n] =2 Q,(s).
In the next lemma we state the limit & of the Laplace transforms &,.

Lemma 3.2. Under the assumptions of Lemma 3.1 the Laplace transforms &,

of the normalized first entrance times T,= T,-l]n [(1—a)n] are converging for all

B
s with Re s>—f to the function & given by
_ Tr(+sip)
20 = Fo. ¢ 1+ D

Proor. From the recurrence relation (1.1) we obtain for the generating
function Q the differential equation

9 1+s/B , a($— SIB) —af
F T o T ]Q( e

(3.3) )

with the initial condition Q(0, s)=1 whose solution turns out to be given by
@ 0(z,5) = I(z, 5)(1 —2)~ O+ (1 —az)—¢+3/#
with
(i1) I(z,5) = 1—af f‘(l—:)’!3(1_05;):—1—:;”,
L]

where the integral on the right-hand side of (ii) is taken along the straight line con-
necting 0 and z. (Note that the solution (i) of the above differential equation is
obtained at first stage for all reals s, z with s> —f and |z]<1. Then, with the help
of analytic continuation it follows that (i) holds true for all complex s with Re s>--f
and all complex z within the domain arg (1—z)<n.) By Cauchy’s integral formula
it holds for néN

(iii) 0. ()—

a)n] R

fQ(z s)z=*+dz

where € is a circle around z=0 such that the singularities z=1 and z=1/a of
Q(z, s) are outside of ¥. By means of the substitution z=n/(w+n), (i), (ii) and

*) As usual, F(a, b;c;z) denotes the hypergeometric series }f. (@) (b)i /()i k1)

s‘
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(iii) yield after some elementary transformations for n€N the validity of

(i) 0, = 57 J ha HI(0/Cw-+ 1), 5) v
with 3

o =) o o)

where €, is a simple closed positively oriented contour enclosing the singularities
w=0,w=—(l—a)n and w=—n of the integrand. The next step consists in showing
that it holds

W)  lmG,)=06=

(1_“)4.1(1'3) [ w-atsmgw gy
2ri A

where the contour €* starts at —eo on the real axis, encircles once the origin in
the positive direction and returns to its starting point. Note that the (improper)
integral in (vi) exists and that it holds by Hankel’s representation of 1/I'" (see
ErpELYI L. (1953), p. 13)

1 1
11 il =(1+5/P) pw RN o
(vii) 7 o w evdw Ta+sp)

Without going into elementary, but tedious technical details we sketch the con-
clusions leading to (vi), only. To this end, fix some g€(0, 1/2). For any wy>1
let €; consist of the straight line connecting —w,—ig and —ip, the semi-circle
|[wl=¢ with Re w=0 and the straight line connecting ig and —w,+ip. Further,
for nEN the path of integration €, in (iv) is specified properly by choosing €, in
the same way as ¥, with w,=n+p¢ and connecting the end points —(n+ g)+ig
and —(n+¢@)—ip by the straight line between them. Then, for J(s) being given
by the right-hand side of (vi) it holds for any wy€(1, ==) and any néN with n>w,

2110()—0,(9)l = (1—a)~¢|I(1, 9)| | [ w=C+sPevdw — fw-<1+=me~dw|+
e <,

(viii) +I _[ [(l —a)~¢I(1, syw—C+sPev —p, (w, 5)I( wj—n g s)] dw , +
cﬂ

f.h,,(w, s)I[w_T_ 4 s] dw

?_-q.

+

n

Now, by the existence and finiteness of the (improper) integral over %™, the first
termn on the right-hand side of (viii) can be made arbitrarily small, if w, is chosen
large enough. The second term for any fixed w, tends to 0 for n-<-, since it holds

lim h,(w, )I(n/(w+n), s) = (1—a) =2 I(1, sw=C+s/P)ex
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uniformly (w.r.t. w) on the compact path of integration €. Note that for Re s> —
and z=1 the (improper) integral occurring in J(1, s) is given by

1
1+s/p

(cf. ErDELYI I (1953), p. 59 (10)). For the remaining term on the right-hand side of
(viii) one gets an appropriate upper bound for the absolute value of the integrand
which ensures that the integral can be made arbitrarily small, if w, is chosen large
enough. Now we get from (ii), (vi), (vii) and (ix) that it holds for Re s>—f

®
. - —a)~¢
lim 0.9 = 06) = s (1= PO 14518 ~E 2+5/8; ).

1
(ix) f A= (1 —at)s-1-5dt = ——F(1, 1 +s/f—&; 2+5/B; @)

Expanding (1 —a)~¢ in a binomial series and with the help of ERDELYI I (1953), p. 64
(23), we obtain

—a)~ 6[1- —= _F(, 1+s/B—¢; 2+s/ﬁ,a)]—-

1+s/p

= (3.
DAyl v

(9) (1+5/B-1) _
. l+k§; kxi[ (1+S/ﬁk)t1] o

F(1+s/B,1+8;2+s/p; o) =
(xi)

(& /B
_l+g§ k'k /ﬂ+kat F(s/B, &3 1+s/B; o)

for Re s> -f. Finally, (x) and (xi) ensure the validity of the lemma. [0

The linit function #=lim &, of the Laplace transforms of T, stated in
Lemma 3.2 is continuous on the imaginary axis. Therefore it follows by the cele-
brated continuity theorem for characteristic functions that the normalized first
entrance times 7, are converging in distribution and that & is the Laplace transform
of the limit distrlbutlon For &=0 the limit function @ is given by ;(.s') =I'(1+s/p)
which for Re s> —f is the Laplace transform of the distribution with the Lebesgue

densit
ensity j’(‘) s ﬁe—ﬂlcxp{—e_ﬂ} (t€R).

(Note that vhis case was treated in Eberl (1974).) In the case >0 we apply the
method provided in Eberl (1983) for the inversion of meromorphic functions of
the form

o) = )| 2 as+i)|
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with nonnegative coefficients a; (j€N°) such that O< > a;<e<e. To this end, we
i=o
introduce the meromorphic function

G(s) = jg: a,/(s+J)

with the coefficients a;=(&);a’/j! (jEN®). Since it holds a;>0 (jéN’) and
0< 3 a;=(1—a) %<oe, Theorem 1 of EBERL (1983) implies that the only zeroes
=

of G are located in the intervals (—m, —m+-1) and that in any such interval there
is exactly one simple zero s,, of G (m€N). The zeroes of G are the only singularities
of #=T/G. Using the representation of & by

___ra+sp  _ I[P
B(s) = FG/B. & 1+s/B;0)  G(/P)

we obtain as an application of Theorem 2 in Eberl (1983) the following theorem.

= @(s/p)

Theorem 3.3. Let be given a birth and death process with transition rates
Ay=A(j+1) (JEN®) and p;=p(j+<&) (JEN) where 2, p,%€(0,o) and O<a=

=ufi<1. Then, the normalized first entrance times T, ,,=T,‘—-;—ln [(1—a)n] with

B=A—pu are converging in distribution to the limit distribution with the Lebesgue
density f given by

oo .o =1
10 = ~8 S r6eten{ S @G+ GeR,
The following remark is of relevance for the numerical evaluation of the density f
of the limit distribution.
Remark. With the aid of Theorem 1(b) of EBerL (1983) it follows that

_ Qme" (1 —a)f b
0<m+s,<c, = m=D1 Fm+&,1; m;a)
holds for méN where it is readily verified that c,~ (&), 2™ (1—a)*~Y/(m—1)!.
Particularly, we obtain s§,~ —m.

1V. Limit distributions for A;=A(j+1+8), p;=uj

This final section is devoted to the determination of the limit distributions of
the (normalized) first entrance times for transition rates 2;=A(j+1+¢) and p;=pj.
As indicated at the end of the first section, the stationary case u=/ is not to be
considered, since in this case 7T,/E, is asymptotically distributed according to the
exponential law on (0, =) with parameter 1.

We start with the case u=A. We call back to mind that j, ,, (m€N) denote the
positive zeroes of J,, the Bessel function of the first kind of order vé(—1, =)
(arranged in ascending order).
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Theorem 4.1. Let be given a birth and death process with transition rates
2j=A(j+14¢) (jEN°) and p;=Aj (JEN) where 2€(0, =) and Z€[0, «). Then,
the normalized first entrance times T,=T,/n converge in distribution to the dis-
tribution concentrated on (0, =) whose distribution function F and density J are
given by

g 2% = exp{-—A . 1/4) o5
(4.1) Fi=1 r(+¢ le. Jem S eUgm e

A s Jemexp{—4j¢,m 1/4}
@2 JO) == : —
21°r(14-&) mah J14:(em
Proor. We introduce the polynomials

R=("1")o.= Lo  (men.

Then, the recurrence relation (1.1) for the transition rates under consideration may
be rewritten as

(i) (n+1) R, 11(s) = [2n+&+1+5/A] Ry () —(n+&) R,—1(s)
with the initial conditions R,=1, R,(s)=1+¢+s/A. Comparing (i) with the recur-

rence formula satisfied by the Laguerre polynomials it follows R,(s)=L{(—s/4)
and therefore

G 0.0 =i~ [("FY)  mem,

To determine the expectations E, and the variances o7 of T, we differentiate Q,
twice:

i i =rui-sn [ @=p

(t=0).

@ 0:0= w1t [("3) =2

where we have used the differentiation formula — i L‘(x)— —L1*4(x) for the

Laguerre polynomials. Now, (iii) implies

V) E= Q,(O)—A("J’E]/[”’Lf] A(l+c) (n=1).

From (iv) and (v) we obtain
5 + +
or = E;—Q,(0) = A’(l"+ e p " 6] / [n C] -

_ n* o (n—Dn "t
= Fa+o Fa+pern =D

(vi)
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On account of (v) and (vi) we consider the normalized first entrance times T,=T,/n
(n€N). Due to (ii), the reciprocals §, of their Laplace transforms &, are given by

0.0 =1(~siom) [("5%)  mem.
Now, it 1lds

lim p=8L3(—s/(An)) = (—s/2)~ T,(2) =5/A)

(cf. Erdélyi II (1953), p. 191 (36)). Additionally using the relation [" ﬁ 2f] ~né [l (14§),
we obtain

0(s) = lim §,(s) = F(1+&)(—s/D)~ " T(2/ =5/3).

Thus, the limit function § of the reciprocals J, of the Laplace transforms &, is
of the same kind as in Theorem 2.7 with —¢€(—1, 0] being replaced by £€[0, ).
Therefore the remainder of the proof follows along the same lines as in the proof
of Theorem 2.7. (Note that the used formulas for the zeroes of J, with vé(—1, 0]
hold for the zeroes of J, with v€[0, =), too.) 0O

Remark. From the proof of Theorem 4.1 (see (v) and (vi)) it is immediately
¢lear that the expectation £ and the variance 2 of the limit distribution are given by

E=1R01+9) & =1/20+5*Q+9)

Now we switch over to the case pu-<A. First we provide a lemma on the behaviour
of the expectations and variances for n--eo.

Lemma 4.2, Let be given a birth and death process with transition rates
Aj=A(j+1+&) (JEN) ‘and p;j=pj (jEN) where A, p€(0, =), S€[0, =) and O<a=
=u/A<1. Then it holds:

4.3) .E,,~%ln[(1—at)n] with B = i—p;
(4.4 02 = lim 02 < oo.

M-

The proof may be accomplished similarly like that of Lemma 3.1 and is omitted.

Theorem 4.3. Let be given a birth and death process with transition rates
2i=2(j+1+&) (JEN°) and p;=pj(jEN) where 2, u€(0, =), (€[0, ) and O<a=

=puji<1. Then, the normalized first entrance times T,= '}",,-—l In[(1-a)n] are
converging in distribution to the limit distribution with the Lebesgue density f given by

“.5) f@o= 'F"(T%Tf")'e‘mﬂ). e (leR)
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Proor. Introducing the polynomials
n n+ -n
Ro=a("3)0. = 1+ Duaroint (e

and their generating function R(z, s)= 2 R,(s)z", the recurrence relation (1.1)
n=0
for the transition rates under consideration leads to the homogeneous partial dif-

ferential equation

[A22 = (A+ )2+ p) a2 3R(z, 5)

—[s+2(1+&1-2)]R(z,5) =0

with the initial condition R(0, S)E 1. The solution of this differential equation with
the required initial condition turns out to be

R(z, 5) = (1=2)"8 (1 —z/a)=C+2+3/8) |
where f=A—pu. Therefore it follows by Cauchy’s integral formula for n€N

0.(5) = —F5R.(s) =

(1 +f),.
0]
n!o®
2m(l +&), &

where » is a closed contour encircling the origin once counter-clockwise such that
the singularities z=1 and z=a of the integrand are outside of &. Passing over

to the normalized first entrance times T, = T,—% In [(1—a)n] (n€N), the reciprocals

of the Laplace transforms of T, are given by 0,(s)=[(1—a)n]-*#Q,(s) (nEN).
Thus, for any n€N performing the transformation w=n(ax—z)/z, we obtain from
(i) for all néN

(ii) 0,(s) = 2n1(l+§),. f[l a)] [1 l] -

where &, is a closed contour encircling the origin w=0 once counter-clockwise
and containing the singularities w=0, w=—n(l—«) and w=—n of the integrand
in its interior.

Now it holds

MY (PR [ 1PE" () P

_l_
- 2mi g

f(l— )’f‘(l—z/a) A+3+5/p) z—(n+1) 45

eww—(l +§+sfﬂ)dw

where &* is a contour with |arg w|=n for all weé %* which starts at — <o, encircles
the origin w=0 once counter-clockwise and returns to its starting point. This can
be seen completely analogously like for £=0 in the proof of Satz 2.2.3 in EBERL
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(1974). With the aid of Hankel’s representation of 1/I" (see e.g. ERDELYI I (1953),
p. 13) and by the well-known relation (1+¢),/n!~n®/[(1+¢&), (ii) and (iii) yield

the validity of
0(s) =1im 0,(s) = I (1-+ &I (1 +&+s/p).

Thus, the Laplace transforms &, of T, converge to the limit function & given by
() = lim &,(5) = F(1+&+5/p)T(1+2).

Finally, it is readily seen that & for Re s> —f(1+¢) is the Laplace transform of
the Lebesgue density f given by (4.5). 0O

Remark. The expectation E and the variance &2 of the limit distribution of
Theorem 4.3 are

- 1

. SO T AN A
E_ﬁ B & k(k+9)

(y = 0,57721...: Euler’s constant)

y Pz (k+¢)*

This may be seen by diﬂ'erentlatmg the Laplace transform & twice and using the
corresponding representation of the function y=I"/I".
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