On some properties of the stable sequences of random elements

By D. SZYNAL and W. ZIEBA (Lublin)

1. Let Xg be the set of all random elements (r.e.) defined on a probability space
(2, o, P) with values in a separable, complete metric space (S, ¢), i.e.

X=X:Q0-8XY(B) c},
where 4 stands for the o-field, generated by the open sets of S. When S=R, we set
Xp={X: Q- R X"'(—o, x)€o, x€R},
for the set of all random variables (r.v.) defined on (Q, &/, P).

Definition 1. A sequence {X,,n=1} of r.e. is called stable if for every B¢,
P(B)=0, there exists a probability measure uz such that

lim P(X,€4]1B) = up(4)

for every A€%,,={AcRB: puz(0A)=0}, where dA4 denotes the boundary of 4 and
P(DNB
P(DlB)z_(Pﬁ)_)'
If up(A)=p(A) for every Bcof, P(B)=0, then the sequence {X,,n=1} of
r.e. is called g-mixing.
It is easy to observe that the sequence {X,,n=1} of r.v. is stable iff

}_i.m P([X, < x]|B) = Fy(x) for every Bcsf, P(B) =0,

and x€%p,, where Fy (x) denotes the distribution function.
Let us denote

$ Q.(B)= pug(4)P(B), Bcst, P(B) >0, AcA,
an
Q.(B) = Fy(x)P(B), Bcsoo, P(B) =0, xcR.

The measure Q4 and Q, are absolutely continuous with respect to the measure
P and by the Radon—Nikodym theorem there exist density functions o, and a,
such that

0B)= [a,dP and Q.(B)= [«,dP, Beo.
B B
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If o, is a constant a.e. for every A€Z, then the sequence {X,,n=1} of re.
is mixing. It is easy to see that the sequence {X,,n=1} of r.v. is mixing iff a, is a
constant a.e. for every xcR.

The aim of this paper is to give some properties of the stable sequences of
random elements taking values in a metric space. The main theorem (Theorem 4)
extends results of [S] concerning the stability and the density function of a sequence
{g(X,,Y), n=1}, where {X,,n=1} is a stable sequence of random variables, g
is a real function, and Y is a random vector to the case when X,, n=1, Y are ran-
dom elements taking values in some metric space and g is a continuous mapping.
Moreover, we generalize some results of [1], [10], and [11].

2. First we shall give a characterization of a probability space in terms of
the equivalence of some kind of convergence of a sequence {X,,n=1} of re.

In what follows we shall use the well known result [3]: X, L. X, n+e (P—in
probability) iff

N lim P(X,€A]A[XEA]) =0 for every A€%y,,

where AAB denotes the symmetric difference of 4 and B.
It is well known [7] that any sample space Q can be represented as

@  O=BUUB; BNB=8 muns BNB.=6, m=12..

k=1

each B, is either an atom or an empty set, and B has the property that, for any given
Acof such that ACB and any g, O<g<P(A), there exists Cesf, CC A, such
that P(C)=e¢. Random elements are constant on atoms.

Theorem 1. The following statements are equivalent:

a) every stable sequence {X,,n=1} of r.e. converges in probability; .

b) for any re. X and any sequence {X,, n=1} of re. XL X, nros. iff
X n 2& X ’ n—+ cn,'

¢) Q is at most a countable union of disjoint atoms.

Proor. The part b)<>c) has been proved in [10].
c)=a). Let Q=) B; and {X,, n=1} be a stable sequence of r.e. Then
i=1

If P([X,£AINB) - pp (A)P(B), Bicst, AcAR.
X,(w)=a,; for w€B;, i=12,.., n=12,...,

then

Bg if ﬂ"’(EA,

[X'EAIOB""{O if a A

For every A€%’,B‘ the limit
lim P(X,E41NB)
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exists, so there exists n, such that a, ;€4 for all n=n, or a, 4 A for all n=n,,
which proves that the sequence {a,;, n=1} converges. Indeed, by the stability
of the sequence {X,, n=1} we know that {X,, n=1} is tight, i.e. for any given
e>0 there exists a compact set K< S such that

sup P[X,éK] <e.

Therefore, for every i€N we can choose a compact set K;CS such that
1 3

sup P([X,¢ K;]ﬂB,)'cz- P(B;) and ,u,,(K;):-E-. Thus a, €K;, n=1,2,.... Assume

that the sequence {a,;, n=1} does not converge as n—o-. Then there exist sub-

sequences {a,, ;, k=1} and {a, ;, k=1} such that

Qpi ™ a, k =+ 0O, a,,;,, - ﬁ:, k —co, and Q(a‘, a;’) = 0.

Putting now A={s€S: o(s,a;)<r}, where r<p(a;,a;) is such that AE’G’”‘ we
see that lim P([X,€A]NB;) does not exists for every i which contradicts the assump-
"—.m

tion that {X,, n=1} is a stable sequence. Let

a=Ilma,; i=12..,
f=—=oco

and put
X(w) = a; for wEB,.
Then

a.s,
X 2o X, N,

a)=c). Assume that Q=BU CJ B; and P(B)=0. Then there exists a mixing

i=1

sequence {D,, n=1} of events such that BoD, €4, P(D,,)=-;—P(B), and

lim P(D,NB") = %P(B’), B'CB, Bcd.

Indeed, let B/, Byc B with P(By)= —-P(B), and put B,=B\B,. Now let

Blg.ﬂéd’ Bf:.UCB!], With P(.beo)=5 P('BII.)’ i1=0, l, aﬂd put ‘Bﬁ»1=‘B‘l\B‘lvo‘

By the induction argument we see that there exist sets

] B issoits0€ s By, . 5,0 Biy i, .ot
with
1
P(Bh. iy ....fk,O) — _i— 'P(Bh.fl. wnnnlpet?

and
-Bh. Risadiad T Bh.lg. \Bi; [ 79
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Setting
D,=B,, D= BO.IUBI.19 ey
D, = B
B T B ikr=ElJor oL T acies oo
we see that

P(D,NDy) =-;—P(D,‘), k <n,
which proves, by the Rényi theorem 3 of [8], the existence of the mixing sequence
{D,, n=1} given above. Let

¥ {a if weD,
@) =1, i w¢D,, a,beS, o(a, b)=0.

It is easy to see that the sequence {X,, n=1} of r.e. is stable but it does not con-
verge in probability. Indeed, if

a, wtH

X(@) = {b, w¢H, Hcsf, HCB,
then

lim Po(¥,, X) =5 o(a, b = lim (P(X, = b, X = a) +

+P(X, = a], [X = b)) = % P(B) >0,

which proves that X, »E X, n—co, Thus Q is at most a countable union of disjoint
atoms.

3. In what follows we shall use the following

Lemma 1. Suppose that {X,, n=1} and {Y,, n=1} are sequences of r.e.
such that

3) e(X,,¥)—=+ 0, n-—oo.
If {X,,n=1} is stable, then {Y,, n=1} is also stable with the same density function.

Proor. Note that for every B, P(B)>0, and any given A€%,,, we have for
any given g=>0,

P([Y,€A]|B) = P([Y,€A]N[e(X,, Y,) < &]| B)+ P([Y,€A]1N[e(X,Y,) = £]|B).
We see that
P(IX,£(A11N[e(X,, Y,) < &l|B)+P((Y,£4)N[e(X,, ¥,) = €]|B) = P([Y,€A]|B)
= P([X,eA1N[e(X,, Y,) < €l|B)+P([Y,€A1N[o(X,. Y,) = ¢]|B),
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where 4=0\4, and A*={x: }?ﬁ o(x,y)=e}. Hence, if 4%, (4)*c%,,, then by
the assumption that {X,, n=1} is stable and (3), we get

ua((4)) = lim P((X,€(A)]|B) = lim inf P(Y,€ 4]|B)
= lim sup P([Y,€4]|B) = lim P([X,€ 4| B) = pup(4").
Letting now &—0, we obtain
up(4) = lim P([Y,€4]|B),
what completes the proof of Lemma 1.

For the local density o,(w)=a(A4, ®), we have the following

Lemma 2. Let a(A, w) be the local density of the stable sequence {X,, n=1}
of r.e. Then there is a variant 1.(A, w) of a(A, w) such that with probability 1 A( -, ®)
is a probability measure on (S, #) i.e. P{w: A(4, w)#a(A, w)}=0 for every ACR.

Proor. If A,CA,, A,, A,€%, then by the stability of {X,, n=1}, we have
(©)] Pl{w: a(4,, w) = a(4;, w)} = 1.

Moreover, we see that for every n=1

(5) P{w: a(‘o A‘, CD);"5 Z”IG(A“ (D)}=0, A;ﬂAJ=ﬂ, i'iéj, A1€Q,
=] : |

I=

and also that
© Plo:a(d,w)= 3a(d, )} =1, where 4,NA;=0, i#j, A= 4.
i=1

i=1

Let {s;, i=1} be a dense subset of S and K(s;,r), i=1, I=1 be a family
of all balls such that €W — the set of rational numbers. One can see, by (4),
that there exists a set 7€&/ with P(7T)=0 such that for every wé¢T K(s;, 1)<
cK(sp,ry) implies o(K(s;,r), o)=a(K(sy,r), ®) where i, i’, I, I’ are positive
integers. Let X be the field generated by the finite sums of finite intersections of
balls and their complements [4], p. 23. Using (4) and (5) one can conclude that
there exists a set T/, TCT° with P(T°)=0 such that for w¢7°% a(-,w) isa
finitely additive set function on X"

Let now for wd T?

#,(4, ©) = inf{ 3 a(K;, o), KicH,d(K) <e, Ac ) K},
i=1 =1
where d(K;) denotes the diameter of K;. Then

) ie(A4, ®) = lin"]l 2, (4, w)
defines an outer metrical measure on the class of all subsets of S and its restriction
A to @ is a probability measure on (S, %) [6].

Put 2*={A4: a(4, ®)=1(4, w) as., AcRB}.

6D



276 D. Szynal and W. Zieba

If A€X, then we see that

(4, @) = inf{lé:: a(K;, w): K€, d(K) < %, A D K‘} ==

i=1

- inf{fa(x,', w): KieX,d(K) <, A= U K, K/NK] =9, i;éj}.

i=1 n i=1

Let {KI", i=1, m=1} be a family of sets of & such that

d(K,")-:%, i=zl,n=1, UKr=A, KPNKP=0, i#j, n=1, m=1
=1

and
dyyu (A4, a))+£,— > Z“'ac(&‘. w), w¢T’ n=1, m=1.
i=1
By (6), we have for m=1
24, )= S a(KP", @), 0¢T,, P(T,)=0.
i=1
Hence, for n=1
(4, ) = 2(4, w) as. (ie. w¢T°U O 7o)
mm=1
and by (7),

as A€A. Thus A cB*.
We shall now show that #* is a o-field. Indeed, if A€%*, then by (4)

A(SN\4, -) =A(S, -)—-A(4, ) =a(S, - )—a(4, -) =a(S\4, -) as.
If now A,€#* n=1, A,CA,,,, then

A(4, ) =0a(4, -) a.s.

J.(”l:JlA,, )= lim A(4,, -) = lim a(4,, -) = a(ﬂQlA,,, -) as.

as a satisfies (6). Therefore, O A€ #*, which completes the proof that #* is the

n=1

o-field generated by X, ie. #*=2 [4], p. 27. Thus we have proved that there

exists a variant A(A4, w) of a(A4, w) such that A(-,w) is a probability measure
on (S, %) with probability 1.

We now shall prove the following

Theorem 2. Let (S, o), (S, ¢’) be metric spaces, and g: S-S’ be a con-
tinuous map. If {X,,n=1} is a stable sequence of r.e. with density a4, then the sequence
{g(X,), n=1} is also stable with density given by

@® B4, @) = a[g(s)EL’, 0], ACH.
Proor. By the assumption for every B¢/, P(B)=>0,

(Pg)x, = pp, n— =, (=-weakly converges)
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takes place, where values of (Pg)x_ are defined by P([X,€4]|B), Ac¢#. Using Theo-
rem 5.1 of [2], p. 30, we have

(Pp)x, 87" = 1pg™" (us8™(4) = pp(4"), A'€X’),
what proves that {g(X,), n=1} is stable, and moreover,
nfﬂs- dP = Q/.(B) = pp(A’) P(B) = pp(g~"(4")) P(B) =
= Q-yay(B) = Bf tg-1andP,

where f,. is the density of the stable sequence {g(X,), n=1}. Hence
ﬂA' = l!,-—l(_‘-) a.c. A'ég'.

Remark 1. It is easy to see that Theorem 2 is true when g: S-S’ and
pa(D,)=0, where D, denotes the set of all discontinuity points of g.
From Theorem 2 we get the following well-known facts:

Corollary 1. If {X,, n=1} is a mixing sequence of r.e., then {g(X,), n=1}
is a mixing sequence.

Theorem 3. Let {X,, n=1} be a stable sequence of r.v. with the density a,=0
or 1 a.e. for every xcR. Then the density a,=0 or 1 a.e. for every A€A.

Proor. Let 5 stand for the class off all sets Hc R such that
lim P(X,EH]IB) = 5= [ ogdP
uaald n P(B) F H ]

and the density az=0 or 1 a.e. (of course, (— e, x)€#). We shall prove that
M is a o-field. By Lemma 2 we can assume and do that the density a, of {X,, n=1}
is a probability measure with respect to A for almost all w¢Q. Therefore, -

a(H, :)=1—a(H, ) ae., HcH,
whence Heof,
Since

«((a, b), -) = a((— oo, b), - )—a((—==,a), -),

it follows that (a, b)€#.
Let now Hlv H,E.?f’, H10H3=ﬁ. Then

0= a(HIUHg, ') = a(Hl, ')+a(H3, ') =1 ae,

what proves that a(H,UH,, -)=0 or 1 a.e., so H,UH,c#. Thus we have proved
that 5 contains a field of the sets of the following form:

©) H=£Jl(a,,b;), (@, byN(ay, by =0, i#j.

6*
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Let H,c#, n=1, HcH,c...CH,C..., and Hy=J H,. Then

n=1

“(Ho- ') = Pﬂa(Hn’ ')

which implies that «(H,, -)=0 or 1 a.e., so H,c#. Therefore, by Theorem A
of [4], p. 27, we see that # is a o-field, which completes the proof of Theorem 3.

It is known that if a stable sequence {X,, n=1} of r.e. contains a mixing sub-
sequence, then the sequence {X,, n=1} is mixing.

We see that the following facts hold true [12].

Lemma 3. If a stable sequence {X,, n=1} of r.e. contains a subsequence which
converges in probability to ar.e. X (X,— X, k—<s), then the sequence {X,,n=1}
converges in probability to X.

Remark 2. Let {X,, n=1} be a sequence of r.e. convergent in probability
to X. The sequence {X,, n=1} is mixing iff X is a degenerate r.e.

4. Let (S,0), (S, ¢) and (S* ¢*) be nondegenerate polish metric spaces
with Borel o-fields 2, #" and 2#*, respectively. By Z, &’ and Z* we denote the sets
all r.e. defined on (Q, &, P) taking values in S, S’ and S*, respectively.

To prove the next theorem we need the following lemma.

Lemma 4. Let {X,€Z, n=1} be a sequence of r.e. such that X,2+ X, n—co.
If a sequence {Y. €X', n=1} of r.e. converges in probability to a r.e. Y, then for
every continuous function g: SXS’—+S*, we have

Q*(g(xﬂl Yu)! B(X.., Y))—P"" 0, n —+oo,

Proor. Since {X,, n=1} and {¥,, n=1} are tight, then for any given &>0
there exist compact sets Kc S and K’cS’ such that

P([X,eKIN[Y,eK']) > 1—¢, n=1.

The function g is uniformly continuous on the set KX K’. Thus there exists a >0
such that

o*(g(x, y), g(¥, ¥)) <& if Vei(x, x)+0%(»,)') <.
Let {D;, i=1,2,...;m} be a sequence of sets such that

UD,DK',d'(D) <5, and Dic%s,
i=1

(@’(D) denotes the diameter of D). It is obvious that
P(Q*(S(Xm Y), g(X,,Y)) > g’) =
= 'Z;P([a*(g(xu! Yl)’ g(Xu! Y)) :“8’], YED‘, YHG‘DU XHGK)'*'

+ ‘ZM; P([Q*(E(Xn Yu)! g(Xan Y) C g", YQDh YnE‘Dh X.EK)-FE.
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The first sum equals 0 and
Jlim P(e*(2(X,, Y,), g(X,, Y)) > ¢&) =

= lim 3 P(Y¢D,, Y ,€D)+e=z¢,

Rwe i1

which completes the proof.

Definition 2. A sequence {X,, n=1} of r.v. is said to be w-star convergent to
arv. X(X,=+X as n-o) if for every Dcof

lim [X,dP = f XdP.
D

N0

Theorem 4. Let {X,€Z, n=1} be a stable sequence of r.e. with the density
function a(A, -). Suppose that a sequence (Y. €Z’, n=1} of r.e. converges in
probability to are. YEZ'.

If a function g: SXS’'—+S8* is continuous, then the sequence {Z,cZ*, n=1}
of r.e. defined by Z,=g(X,,Y,), n=1, is stable with the density B(A*, -), given by

(10) B(4*, w) = a([x: g(x,Y(@)EA"], w), A*€R*.

Proor. Let Z,=g(X,Y), n=1. From Lemmas 4 and 1, we conclude that it
is enough to show that the sequence {Z;, n=1} is stable with the density (10).

Now by results of [1] it is known that a sequence {X,€Z, n=1} of r.e. is stable
iff for every re. VeZ’ the sequence {(X,,V), n=1} converges weakly in
(SXS’, #X%’). Hence, we see that the sequence {(X,, ¥), n=1} is stable with
the density o'(4’, -), A’€BXA’, and Theorem 2 establishes the stability of the
sequence {Z;, n=1}.

We see that the measures

(1n Q%(D) = P(X,€4], D)

are absolutely continuous with respect to the measure P, so by the Radon—Nikodym
theorem there exist measurable functions «,(A4, -) such that

(12) Qu(D) = [o,(4, -)dP.

We can assume and do that o,(4, ) for almost all w are measures on (S, #).
Moreover, by the stability of {X,, n=1}, we have for every D¢/

(13 lim [a,(4, )dP = [a(4, -)dP=0,(D) = pp(A) P(D), AE%,,.
D D

Hence
%4, )=+ (4, ), n~=, for ACE,,
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Note now that for Y€2”, BE#" and Dc«f, P(D)>0, we have by (11) and (12)

(14) P(X,€4L[YeBLD)= [ «,(4,-)dP=
[YeBIND

= ffufsn] (4, -)dP = fﬂr(—)(B)un(A. +)dP,
D

where pyy(B)=Iiyem(-).

Now we see also that the measures Q% (D) defined on the space (9 of) by the
formula
(15) Q4 (D)= P((X,, Y)EA'],D), A'€BXH

are absolutely continuous with respect to the measure P and that there exists a
measurable function o,(A4’, -) such that -

Q% (D)= [ay(d’, -)dP.
D
In the particular case with A'=AXB, we have
Quxs(D) = [ (AXB, -)dP.
D

Similarly, as above, we can assume that o, (A", -) are measures on (SXS’, X %’),
and state that

ty(AXB, ) = Iyep ()2 (4, <) = py\(B)a, (4, -) a.e.
Moreovcr, we have

#,(4XB, +)= #Y(—)(B)au(’{’ ')K" Uy (B)a(4, -),

w,(AXB, )=+ o’(AXB, -), for A€%,, and BcGp,,

and

whence
o (AXB, -) = py,(B)a(d, -) ae. AcC%,,, BcEs,.

Let now A;={y: (x,y)€4’}, and 4;={x: (x,y)€A’}. Then
a4, )= fa'(A;XS' o' (SXdy, -) = fI[resﬂ(A;, ')#r(-)(dy)“(& )=
s s

= [a(4y, -) prey (@) = a(4y(y, -),
b

what proves that the density function of the sequence {(X,, Y), n=1} is given by
(16) o' (4, ©) = a(Ay@y, ®) = «([s: (s, Y(@))EA’], »).

Therefore, if a function g: SXS’—S* is continuous, then, by Theorem 2, the
sequence {Z,, n=1)}, Z,=g(X,, Y), n=1, is stable with the density function

B(4*, ») = a([s: g(s, Y(w))€4*], w),
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which gives the proof that the density function of {Z,cZ™* n=1} is given
by (10).

The following example shows that the assumption of the stability of the sequence
{X,, n=1} cannot be omitted.

Example. Let X be a r.v. having the normal distribution with mean 0 and
variance o®. Put

X, when n is even,
Ay o {—X, when 7 is odd.

Setting Y,=X, and g(x, y)=|x—y|, we get

0, when n is even,

gX, ¥) = {2 |X|, when 7 is odd.

Hence, we conclude that the sequence {Z,, n=1}, Z,=g(X,, Y,), n=1, does not
converge in law.

Theorem 4 allows us to prove the following property of the stable sequence
{X,, n=1} of re.

Theorem 5. Let {X,, n=1} be a stable sequence of r.e. Then for every r.e.
YEZ there exists a limit

(17) a(¥) = lim r(X,, Y),

where r(X, Y)=inf {e>0: Plo(X, Y)=>¢]<ée}.

Proor. Define the function g by g(x, y)=e¢(x,y). It is obvious that g is con-
tinuous. Thus, by Theorem 4, the sequence {g(X,,, Y), n=1} converges weakly to
a r.v. Z. Hence, for every &€%;, there exists

lim Ple(X,, Y) =¢] = b(¥, o).
Let

a(Y)=inf {e > 0: b(Y,¢) <e&}.
We now prove that

lim r(X,,Y) =liminf {&¢ > 0: P[o(X,,Y)>¢]<e}=a(Y).
For every 6=>0, 6¢%p,, there exists n, such that for n=n,

a(Y)—é = Ple(X,,Y) > a(Y)—8] - b(Y,a(Y)-9),
and
a(Y)+é = Ple(X,,Y) > a(Y)+68] - b(Y,a(Y)+9).
Hence
a(Y)-d=r(X,,Y)=a(¥)+6, n=n,.

Letting 6-0, we get
P_EJ. r(X,,Y) =a(Y),

which completes the proof of Theorem 5.
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Theorem 5'. Let {X,, n=1} be a stable sequence of r.e. Then for every r.e.
YEZ, there exists a limit
al(Y) e ’!ilg rl(Xu! Y)v

o(X,Y)
Hek.Y)"
0(X,,Y)

Proor. We see that the sequence {m, n= 1} is uniformly inte-
grable, and by Theorem 4, it is also stable. ’[her;fore, by Theorem 3 of [5], there

exists
}ira ry(X,,Y) = a,(Y).

where r(X,Y)=E
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