On some properties of the stable sequences of random elements

By D. SZYNAL and W. ZIĘBA (Lublin)

1. Let \mathfrak{X}_S be the set of all random elements (r.e.) defined on a probability space (Ω, \mathcal{A}, P) with values in a separable, complete metric space (S, ϱ) , i.e.

$$\mathfrak{X}_{S} = \{X \colon \Omega \to S, X^{-1}(\mathscr{B}) \subset \mathscr{A}\},\$$

where \mathcal{B} stands for the σ -field, generated by the open sets of S. When $S=\mathbb{R}$, we set

$$\mathfrak{X}_{\mathbb{R}} = \{X \colon \Omega \to \mathbb{R}, X^{-1}(-\infty, x) \in \mathcal{A}, x \in \mathbb{R}\},\$$

for the set of all random variables (r.v.) defined on (Ω, \mathcal{A}, P) .

Definition 1. A sequence $\{X_n, n \ge 1\}$ of r.e. is called stable if for every $B \in \mathcal{A}$, P(B) > 0, there exists a probability measure μ_B such that

$$\lim_{n\to\infty} P([X_n\in A]|B) = \mu_B(A)$$

for every $A \in \mathscr{C}_{\mu_B} = \{A \in \mathscr{B} : \mu_B(\partial A) = 0\}$, where ∂A denotes the boundary of A and $P(D|B) = \frac{P(D \cap B)}{P(B)}$.

If $\mu_B(A) = \mu(A)$ for every $B \in \mathcal{A}$, P(B) > 0, then the sequence $\{X_n, n \ge 1\}$ of r.e. is called μ -mixing.

It is easy to observe that the sequence $\{X_n, n \ge 1\}$ of r.v. is stable iff

$$\lim_{n\to\infty} P([X_n < x]|B) = F_B(x) \quad \text{for every} \quad B \in \mathcal{A}, \ P(B) > 0,$$

and $x \in \mathscr{C}_{F_B}$, where $F_B(x)$ denotes the distribution function. Let us denote

$$Q_A(B) = \mu_B(A)P(B), B \in \mathcal{A}, P(B) > 0, A \in \mathcal{B},$$

and

$$Q_x(B) = F_B(x)P(B), \quad B \in \mathcal{A}, \ P(B) > 0, \quad x \in \mathbb{R}.$$

The measure Q_A and Q_x are absolutely continuous with respect to the measure P and by the Radon—Nikodym theorem there exist density functions α_A and α_x such that

$$Q_A(B) = \int\limits_B \alpha_A dP$$
 and $Q_x(B) = \int\limits_B \alpha_x dP$, $B \in \mathcal{A}$.

If α_A is a constant a.e. for every $A \in \mathcal{B}$, then the sequence $\{X_n, n \ge 1\}$ of r.e. is mixing. It is easy to see that the sequence $\{X_n, n \ge 1\}$ of r.v. is mixing iff α_x is a

constant a.e. for every $x \in \mathbb{R}$.

The aim of this paper is to give some properties of the stable sequences of random elements taking values in a metric space. The main theorem (Theorem 4) extends results of [5] concerning the stability and the density function of a sequence $\{g(X_n, Y), n \ge 1\}$, where $\{X_n, n \ge 1\}$ is a stable sequence of random variables, g is a real function, and Y is a random vector to the case when X_n , $n \ge 1$, Y are random elements taking values in some metric space and g is a continuous mapping. Moreover, we generalize some results of [1], [10], and [11].

2. First we shall give a characterization of a probability space in terms of the equivalence of some kind of convergence of a sequence $\{X_n, n \ge 1\}$ of r.e.

In what follows we shall use the well known result [3]: $X_n \xrightarrow{P} X$, $n \to \infty$ (P = in probability) iff

(1)
$$\lim_{n\to\infty} P([X_n\in A] \triangle [X\in A]) = 0 \text{ for every } A\in\mathscr{C}_{P_X},$$

where $A \triangle B$ denotes the symmetric difference of A and B.

It is well known [7] that any sample space Ω can be represented as

(2)
$$\Omega = B \cup \bigcup_{k=1}^{\infty} B_k$$
, $B_m \cap B_n = \emptyset$, $m \neq n$, $B \cap B_m = \emptyset$, $m = 1, 2, ...$

each B_k is either an atom or an empty set, and B has the property that, for any given $A \in \mathcal{A}$ such that $A \subset B$ and any ε , $0 < \varepsilon < P(A)$, there exists $C \in \mathcal{A}$, $C \subset A$, such that $P(C) = \varepsilon$. Random elements are constant on atoms.

Theorem 1. The following statements are equivalent:

a) every stable sequence $\{X_n, n \ge 1\}$ of r.e. converges in probability;

- b) for any r.e. X and any sequence $\{X_n, n \ge 1\}$ of r.e. $X_n \xrightarrow{P} X$, $n \to \infty$. iff $X_n \xrightarrow{a.s.} X$, $n \to \infty$;
 - c) Ω is at most a countable union of disjoint atoms.

PROOF. The part b) \Leftrightarrow c) has been proved in [10].

c) \Rightarrow a). Let $\Omega = \bigcup_{i=1}^{\infty} B_i$ and $\{X_n, n \ge 1\}$ be a stable sequence of r.e. Then

$$P([X_n \in A] \cap B_i) \to \mu_{B_i}(A) P(B_i), B_i \in \mathcal{A}, A \in \mathcal{B}.$$

If

$$X_n(\omega) = a_{n,i}$$
 for $\omega \in B_i$, $i = 1, 2, ..., n = 1, 2, ...,$

then

$$[X_n \in A] \cap B_i = \begin{cases} B_i & \text{if } a_{n,i} \in A, \\ 0 & \text{if } a_{n,i} \notin A. \end{cases}$$

For every $A \in \mathscr{C}_{\mu_{B_{i}}}$ the limit

$$\lim_{n\to\infty} P([X_n\in A]\cap B_i)$$

exists, so there exists n_0 such that $a_{n,i} \in A$ for all $n \ge n_0$ or $a_{n,i} \notin A$ for all $n \ge n_0$, which proves that the sequence $\{a_{n,i}, n \ge 1\}$ converges. Indeed, by the stability of the sequence $\{X_n, n \ge 1\}$ we know that $\{X_n, n \ge 1\}$ is tight, i.e. for any given $\varepsilon > 0$ there exists a compact set $K \subset S$ such that

$$\sup_{n} P[X_n \notin K] < \varepsilon.$$

Therefore, for every $i \in N$ we can choose a compact set $K_i \subset S$ such that $\sup_n P([X_n \notin K_i] \cap B_i) < \frac{1}{4} P(B_i)$ and $\mu_{B_i}(K_i) > \frac{3}{4}$. Thus $a_{n,i} \in K_i$, $n = 1, 2, \ldots$. Assume that the sequence $\{a_{n,i}, n \ge 1\}$ does not converge as $n \to \infty$. Then there exist subsequences $\{a_{n_k,i}, k \ge 1\}$ and $\{a_{n'_k,i}, k \ge 1\}$ such that

$$a_{n_k,i} \to a_i, \quad k \to \infty, \quad a_{n'_k,i} \to a'_i, \quad k \to \infty, \quad \text{and} \quad \varrho(a_i, a'_i) > 0.$$

Putting now $A = \{s \in S: \varrho(s, a_i) < r\}$, where $r < \varrho(a_i, a_i')$ is such that $A \in \mathscr{C}_{\mu_{B_i}}$ we see that $\lim_{n \to \infty} P([X_n \in A] \cap B_i)$ does not exists for every i which contradicts the assumption that $\{X_n, n \ge 1\}$ is a stable sequence. Let

 $a_i = \lim_{n \to \infty} a_{n,i}, \quad i = 1, 2, \dots,$

and put

 $X(\omega) = a_i$ for $\omega \in B_i$.

Then

$$X_n \xrightarrow{a.s.} X$$
, $n \to \infty$.

a) \Rightarrow c). Assume that $\Omega = B \cup \bigcup_{i=1}^{\infty} B_i$ and P(B) > 0. Then there exists a mixing sequence $\{D_n, n \ge 1\}$ of events such that $B \supset D_n \in \mathcal{A}$, $P(D_n) = \frac{1}{2} P(B)$, and

$$\lim_{n\to\infty}P(D_n\cap B')=\frac{1}{2}P(B'), \quad B'\subset B, \quad B'\in\mathscr{A}.$$

Indeed, let $B_0 \in \mathcal{A}$, $B_0 \subset B$ with $P(B_0) = \frac{1}{2}P(B)$, and put $B_1 = B \setminus B_0$. Now let $B_{i_1,0} \in \mathcal{A}$, $B_{i_1,0} \subset B_{i_1}$ with $P(B_{i_1,0}) = \frac{1}{2}P(B_{i_1})$, $i_1 = 0, 1$, and put $B_{i_1,1} = B_{i_1} \setminus B_{i_1,0}$. By the induction argument we see that there exist sets

 $B_{i_1,i_2,\ldots,i_k,0} \in \mathcal{A}, \quad B_{i_1,i_2,\ldots,i_k,0} \subset B_{i_1,i_2,\ldots,i_k}$

with

$$P(B_{i_1,i_2,...,i_k,0}) = \frac{1}{2} P(B_{i_1,i_2,...,i_k}),$$

and

$$B_{i_1,i_2,\ldots,i_k,1} = B_{i_1,i_2,\ldots,i_k} \setminus B_{i_1,i_2,\ldots,i_k,0}.$$

Setting

$$\begin{split} D_1 &= B_1, \quad D_2 = B_{0,1} \cup B_{1,1}, \, \ldots, \\ D_n &= \bigcup_{\{(i_1, i_2, \ldots, i_{n-1}): \, i_k = 0 \text{ or } 1, \, k = 1, 2, \ldots, n-1\}} B_{i_1, i_2, \ldots, i_{n-1}, 1} \end{split}$$

we see that

$$P(D_n \cap D_k) = \frac{1}{2} P(D_k), \quad k < n,$$

which proves, by the Rényi theorem 3 of [8], the existence of the mixing sequence $\{D_n, n \ge 1\}$ given above. Let

$$X_n(\omega) = \begin{cases} a & \text{if } \omega \in D_n \\ b & \text{if } \omega \notin D_n, a, b \in S, \varrho(a, b) > 0. \end{cases}$$

It is easy to see that the sequence $\{X_n, n \ge 1\}$ of r.e. is stable but it does not converge in probability. Indeed, if

$$X(\omega) = \begin{cases} a, & \omega \in H \\ b, & \omega \notin H, \ H \in \mathcal{A}, \ H \subseteq B, \end{cases}$$

then

$$\lim_{n \to \infty} P\left[\varrho(X_n, X) \ge \frac{1}{2} \varrho(a, b)\right] = \lim_{n \to \infty} \left(P([X_n = b], [X = a]) + P([X_n = a], [X = b])\right) = \frac{1}{2} P(B) > 0,$$

which proves that $X_n \stackrel{P}{\longleftarrow} X$, $n \to \infty$. Thus Ω is at most a countable union of disjoint atoms.

3. In what follows we shall use the following

Lemma 1. Suppose that $\{X_n, n \ge 1\}$ and $\{Y_n, n \ge 1\}$ are sequences of r.e. such that

(3)
$$\varrho(X_n, Y_n) \xrightarrow{P} 0, \quad n \to \infty.$$

If $\{X_n, n \ge 1\}$ is stable, then $\{Y_n, n \ge 1\}$ is also stable with the same density function.

PROOF. Note that for every B, P(B)>0, and any given $A\in\mathscr{C}_{\mu_B}$, we have for any given $\varepsilon>0$,

$$P([Y_n \in A]|B) = P([Y_n \in A] \cap [\varrho(X_n, Y_n) < \varepsilon]|B) + P([Y_n \in A] \cap [\varrho(X_n Y_n) \ge \varepsilon]|B).$$

We see that

$$P([X_n \in (\overline{A})^{\varepsilon}] \cap [\varrho(X_n, Y_n) < \varepsilon]|B) + P([Y_n \in A] \cap [\varrho(X_n, Y_n) \ge \varepsilon]|B) \le P([Y_n \in A]|B)$$

$$\le P([X_n \in A^{\varepsilon}] \cap [\varrho(X_n, Y_n) < \varepsilon]|B) + P([Y_n \in A] \cap [\varrho(X_n, Y_n) \ge \varepsilon]|B),$$

where $\overline{A} = \Omega \setminus A$, and $A^{\varepsilon} = \{x : \inf_{y \in A} \varrho(x, y) \leq \varepsilon\}$. Hence, if A^{ε} , $(\overline{A})^{\varepsilon} \in \mathscr{C}_{\mu_B}$, then by the assumption that $\{X_n, n \geq 1\}$ is stable and (3), we get

$$\mu_{B}(\overline{(\overline{A})^{\varepsilon}}) = \lim_{n \to \infty} P([X_{n} \in (\overline{A})^{\varepsilon}]|B) \leq \liminf_{n \to \infty} P([Y_{n} \in A]|B)$$

$$\leq \limsup_{n \to \infty} P([Y_{n} \in A]|B) \leq \lim_{n \to \infty} P([X_{n} \in A^{\varepsilon}]|B) = \mu_{B}(A^{\varepsilon}).$$

Letting now $\varepsilon \rightarrow 0$, we obtain

$$\mu_B(A) = \lim_{n \to \infty} P([Y_n \in A]|B),$$

what completes the proof of Lemma 1.

For the local density $\alpha_A(\omega) = \alpha(A, \omega)$, we have the following

Lemma 2. Let $\alpha(A, \omega)$ be the local density of the stable sequence $\{X_n, n \ge 1\}$ of r.e. Then there is a variant $\lambda(A, \omega)$ of $\alpha(A, \omega)$ such that with probability $1 \lambda(\cdot, \omega)$ is a probability measure on (S, \mathcal{B}) i.e. $P\{\omega: \lambda(A, \omega) \ne \alpha(A, \omega)\} = 0$ for every $A \in \mathcal{B}$.

PROOF. If $A_1 \subset A_2$, A_1 , $A_2 \in \mathcal{B}$, then by the stability of $\{X_n, n \ge 1\}$, we have

(4)
$$P\{\omega: \alpha(A_1, \omega) \leq \alpha(A_2, \omega)\} = 1.$$

Moreover, we see that for every $n \ge 1$

(5)
$$P\{\omega: \alpha(\bigcup_{i=1}^n A_i, \omega) \neq \sum_{i=1}^n \alpha(A_i, \omega)\} = 0, A_i \cap A_j = \emptyset, i \neq j, A_i \in \mathcal{B},$$
 and also that

(6)
$$P\{\omega: \alpha(A, \omega) = \sum_{i=1}^{\infty} \alpha(A_i, \omega)\} = 1$$
, where $A_i \cap A_j = \emptyset$, $i \neq j$, $A = \bigcup_{i=1}^{\infty} A_i$.

Let $\{s_i, i \ge 1\}$ be a dense subset of S and $K(s_i, r_i)$, $i \ge 1$, $l \ge 1$ be a family of all balls such that $r_l \in W$ — the set of rational numbers. One can see, by (4), that there exists a set $T \in \mathscr{A}$ with P(T) = 0 such that for every $\omega \notin T$ $K(s_i, r_l) \subset CK(s_{i'}, r_{l'})$ implies $\alpha(K(s_i, r_l), \omega) \ge \alpha(K(s_{i'}, r_{l'}), \omega)$ where i, i', l, l' are positive integers. Let \mathscr{K} be the field generated by the finite sums of finite intersections of balls and their complements [4], p. 23. Using (4) and (5) one can conclude that there exists a set $T^0 \in \mathscr{A}$, $T \subset T^0$ with $P(T^0) = 0$ such that for $\omega \notin T^0$, $\alpha(\cdot, \omega)$ is a finitely additive set function on \mathscr{K} .

Let now for $\omega \notin T^0$

$$\alpha_{\varepsilon}(A, \omega) = \inf \left\{ \sum_{i=1}^{\infty} \alpha(K_i, \omega), K_i \in \mathcal{K}, d(K_i) < \varepsilon, A \subset \bigcup_{i=1}^{\infty} K_i \right\},$$

where $d(K_i)$ denotes the diameter of K_i . Then

(7)
$$\lambda_e(A, \omega) = \lim_{\epsilon \to 0} \alpha_{\epsilon}(A, \omega)$$

defines an outer metrical measure on the class of all subsets of S and its restriction λ to \mathcal{B} is a probability measure on (S, \mathcal{B}) [6].

Put
$$\mathscr{B}^* = \{A : \alpha(A, \omega) = \lambda(A, \omega) \text{ a.s., } A \in \mathscr{B} \}.$$

If $A \in \mathcal{K}$, then we see that

$$\alpha_{1/n}(A,\omega) = \inf \left\{ \sum_{i=1}^{\infty} \alpha(K_i,\omega) \colon K_i \in \mathcal{K}, d(K_i) < \frac{1}{n}, A \subset \bigcup_{i=1}^{\infty} K_i \right\} =$$

$$= \inf \left\{ \sum_{i=1}^{\infty} \alpha(K_i',\omega) \colon K_i' \in \mathcal{K}, d(K_i') < \frac{1}{n}, A = \bigcup_{i=1}^{\infty} K_i', K_i' \cap K_j' = \emptyset, i \neq j \right\}.$$

Let $\{K_i^m, i \ge 1, m \ge 1\}$ be a family of sets of \mathcal{K} such that

$$d(K_i^m) < \frac{1}{n}, i \ge 1, n \ge 1, \quad \bigcup_{i=1}^{\infty} K_i^m = A, K_i^m \cap K_j^m = \emptyset, \quad i \ne j, \quad n \ge 1, \quad m \ge 1$$
 and

$$\alpha_{1/n}(A, \omega) + \frac{1}{m} > \sum_{i=1}^{\infty} \alpha(K_i^m, \omega), \quad \omega \notin T^0, \quad n \geq 1, \quad m \geq 1.$$

By (6), we have for $m \ge 1$

$$\alpha(A, \omega) = \sum_{i=1}^{\infty} \alpha(K_i^m, \omega), \quad \omega \in T_m, P(T_m) = 0.$$

Hence, for $n \ge 1$

$$\alpha_{1/n}(A, \omega) = \alpha(A, \omega)$$
 a.s. (i.e. $\omega \notin T^0 \cup \bigcup_{m=1}^{\infty} T_m$),

and by (7),

$$\lambda(A, \cdot) = \alpha(A, \cdot)$$
 a.s.

as $A \in \mathcal{K}$. Thus $\mathcal{K} \subset \mathcal{B}^*$.

We shall now show that \mathcal{B}^* is a σ -field. Indeed, if $A \in \mathcal{B}^*$, then by (4)

$$\lambda(S \setminus A, \cdot) = \lambda(S, \cdot) - \lambda(A, \cdot) = \alpha(S, \cdot) - \alpha(A, \cdot) = \alpha(S \setminus A, \cdot) \quad \text{a.s.}$$

If now $A_n \in \mathcal{B}^*$, $n \ge 1$, $A_n \subset A_{n+1}$, then

$$\lambda\left(\bigcup_{n=1}^{\infty}A_{n},\,\cdot\right)=\lim_{n\to\infty}\lambda(A_{n},\,\cdot)=\lim_{n\to\infty}\alpha(A_{n},\,\cdot)=\alpha\left(\bigcup_{n=1}^{\infty}A_{n},\,\cdot\right)\quad\text{a.s.}$$

as α satisfies (6). Therefore, $\bigcup_{n=1}^{\infty} A_n \in \mathcal{B}^*$, which completes the proof that \mathcal{B}^* is the σ -field generated by \mathcal{K} , i.e. $\mathcal{B}^* = \mathcal{B}$ [4], p. 27. Thus we have proved that there exists a variant $\lambda(A, \omega)$ of $\alpha(A, \omega)$ such that $\lambda(\gamma, \omega)$ is a probability measure on (S, \mathcal{B}) with probability 1.

We now shall prove the following

Theorem 2. Let (S, ϱ) , (S, ϱ') be metric spaces, and $g: S \to S'$ be a continuous map. If $\{X_n, n \ge 1\}$ is a stable sequence of r.e. with density α_A , then the sequence $\{g(X_n), n \ge 1\}$ is also stable with density given by

(8)
$$\beta(A', \omega) = \alpha[g(s) \in A', \omega], \quad A' \in \mathscr{B}'.$$

PROOF. By the assumption for every $B \in \mathcal{A}$, P(B) > 0,

$$(P_B)_{X_n} \Rightarrow \mu_B$$
, $n \to \infty$, (\Rightarrow -weakly converges)

takes place, where values of $(P_B)_{X_n}$ are defined by $P([X_n \in A]|B)$, $A \in \mathcal{B}$. Using Theorem 5.1 of [2], p. 30, we have

$$(P_B)_{X_B}g^{-1} \Rightarrow \mu_B g^{-1} \quad (\mu_B g^{-1}(A') = \mu_B(A'), A' \in \mathcal{B}'),$$

what proves that $\{g(X_n), n \ge 1\}$ is stable, and moreover,

$$\int_{B} \beta_{A'} dP = Q'_{A'}(B) = \mu'_{B}(A') P(B) = \mu_{B}(g^{-1}(A')) P(B) =$$

$$= Q_{(g^{-1}(A'))}(B) = \int_{B} \alpha_{g^{-1}(A')} dP,$$

where $\beta_{A'}$ is the density of the stable sequence $\{g(X_n), n \ge 1\}$. Hence

$$\beta_{A'}=\alpha_{g^{-1}(A')}$$
 a.e. $A'\in \mathscr{B}'$.

Remark 1. It is easy to see that Theorem 2 is true when $g: S \to S'$ and $\mu_{\Omega}(D_g) = 0$, where D_g denotes the set of all discontinuity points of g.

From Theorem 2 we get the following well-known facts:

Corollary 1. If $\{X_n, n \ge 1\}$ is a mixing sequence of r.e., then $\{g(X_n), n \ge 1\}$ is a mixing sequence.

Theorem 3. Let $\{X_n, n \ge 1\}$ be a stable sequence of r.v. with the density $\alpha_x = 0$ or 1 a.e. for every $x \in R$. Then the density $\alpha_A = 0$ or 1 a.e. for every $A \in \mathcal{B}$.

PROOF. Let \mathcal{H} stand for the class off all sets $H \subset R$ such that

$$\lim_{n\to\infty} P([X_n\in H]|B) = \frac{1}{P(B)} \int_B \alpha_H dP,$$

and the density $\alpha_H = 0$ or 1 a.e. (of course, $(-\infty, x) \in \mathcal{H}$). We shall prove that \mathcal{H} is a σ -field. By Lemma 2 we can assume and do that the density α_A of $\{X_n, n \ge 1\}$ is a probability measure with respect to A for almost all $\omega \in \Omega$. Therefore,

$$\alpha(\overline{H}, \cdot) = 1 - \alpha(H, \cdot)$$
 a.e., $H \in \mathcal{H}$,

whence $\overline{H} \in \mathcal{H}$.

Since

$$\alpha((a,b),\cdot)=\alpha((-\infty,b),\cdot)-\alpha((-\infty,a),\cdot),$$

it follows that $(a, b) \in \mathcal{H}$.

Let now $H_1, H_2 \in \mathcal{H}, H_1 \cap H_2 = \emptyset$. Then

$$0 \le \alpha(H_1 \cup H_2, \cdot) = \alpha(H_1, \cdot) + \alpha(H_2, \cdot) \le 1$$
 a.e.,

what proves that $\alpha(H_1 \cup H_2, \cdot) = 0$ or 1 a.e., so $H_1 \cup H_2 \in \mathcal{H}$. Thus we have proved that \mathcal{H} contains a field of the sets of the following form:

(9)
$$H = \bigcup_{i=1}^{n} (a_i, b_i), \quad (a_i, b_i) \cap (a_j, b_j) = \emptyset, \quad i \neq j.$$

Let
$$H_n \in \mathcal{H}$$
, $n \ge 1$, $H_1 \subset H_2 \subset \ldots \subset H_n \subset \ldots$, and $H_0 = \bigcup_{n=1}^{\infty} H_n$. Then $\alpha(H_0, \cdot) = \lim_{n \to \infty} \alpha(H_n, \cdot)$

which implies that $\alpha(H_0, \cdot) = 0$ or 1 a.e., so $H_0 \in \mathcal{H}$. Therefore, by Theorem A of [4], p. 27, we see that \mathcal{H} is a σ -field, which completes the proof of Theorem 3.

It is known that if a stable sequence $\{X_n, n \ge 1\}$ of r.e. contains a mixing subsequence, then the sequence $\{X_n, n \ge 1\}$ is mixing.

We see that the following facts hold true [12].

Lemma 3. If a stable sequence $\{X_n, n \ge 1\}$ of r.e. contains a subsequence which converges in probability to a r.e. X $(X_{n_k} \xrightarrow{P} X, k \to \infty)$, then the sequence $\{X_n, n \ge 1\}$ converges in probability to X.

Remark 2. Let $\{X_n, n \ge 1\}$ be a sequence of r.e. convergent in probability to X. The sequence $\{X_n, n \ge 1\}$ is mixing iff X is a degenerate r.e.

4. Let (S, ϱ) , (S', ϱ') and (S^*, ϱ^*) be nondegenerate polish metric spaces with Borel σ -fields \mathscr{B} , \mathscr{B}' and \mathscr{B}^* , respectively. By \mathscr{X} , \mathscr{X}' and \mathscr{X}^* we denote the sets all r.e. defined on (Ω, \mathscr{A}, P) taking values in S, S' and S^* , respectively.

To prove the next theorem we need the following lemma.

Lemma 4. Let $\{X_n \in \mathcal{X}, n \ge 1\}$ be a sequence of r.e. such that $X_n \xrightarrow{D} X$, $n \to \infty$. If a sequence $\{Y_n \in \mathcal{X}', n \ge 1\}$ of r.e. converges in probability to a r.e. Y, then for every continuous function $g: S \times S' \to S^*$, we have

$$\varrho^*(g(X_n, Y_n), g(X_n, Y)) \xrightarrow{P} 0, \quad n \to \infty.$$

PROOF. Since $\{X_n, n \ge 1\}$ and $\{Y_n, n \ge 1\}$ are tight, then for any given $\varepsilon > 0$ there exist compact sets $K \subset S$ and $K' \subset S'$ such that

$$P([X_n \in K] \cap [Y_n \in K']) > 1 - \varepsilon, \quad n \ge 1.$$

The function g is uniformly continuous on the set $K \times K'$. Thus there exists a $\delta > 0$ such that

$$\varrho^*(g(x, y), g(x', y')) < \varepsilon$$
 if $\sqrt{\varrho^2(x, x') + \varrho'^2(y, y')} < \delta$.

Let $\{D_i, i=1, 2, ..., m\}$ be a sequence of sets such that

$$\bigcup_{i=1}^{m} D_{i} \supset K', d'(D_{i}) < \delta, \text{ and } D_{i} \in \mathscr{C}_{P_{Y}}$$

(d'(D)) denotes the diameter of D). It is obvious that

$$P(\varrho^*(g(X_n, Y_n), g(X_n, Y)) > \varepsilon') \leq$$

$$\leq \sum_{i=1}^m P([\varrho^*(g(X_n, Y_n), g(X_n, Y)) > \varepsilon'], Y \in D_i, Y_n \in D_i, X_n \in K) +$$

$$+ \sum_{i=1}^m P([\varrho^*(g(X_n, Y_n), g(X_n, Y)) > \varepsilon', Y \notin D_i, Y_n \in D_i, X_n \in K) + \varepsilon.$$

The first sum equals 0 and

$$\lim_{n\to\infty} P(\varrho^*(g(X_n, Y_n), g(X_n, Y)) > \varepsilon') \le$$

$$\le \lim_{n\to\infty} \sum_{n\to\infty}^m P(Y \in D_i, Y_n \in D_i) + \varepsilon = \varepsilon,$$

which completes the proof.

Definition 2. A sequence $\{X_n, n \ge 1\}$ of r.v. is said to be w-star convergent to a r.v. $X(X_n \xrightarrow{w^*} X$ as $n \to \infty$) if for every $D \in \mathscr{A}$

$$\lim_{n\to\infty}\int\limits_{P}X_n\,dP=\int\limits_{P}X\,dP.$$

Theorem 4. Let $\{X_n \in \mathcal{X}, n \ge 1\}$ be a stable sequence of r.e. with the density function $\alpha(A, \cdot)$. Suppose that a sequence $\{Y_n \in \mathcal{X}', n \ge 1\}$ of r.e. converges in probability to a r.e. $Y \in \mathcal{X}'$.

If a function $g: S \times S' \to S^*$ is continuous, then the sequence $\{Z_n \in \mathcal{X}^*, n \ge 1\}$ of r.e. defined by $Z_n = g(X_n, Y_n), n \ge 1$, is stable with the density $\beta(A^*, \cdot)$, given by

(10)
$$\beta(A^*, \omega) = \alpha([x: g(x, Y(\omega)) \in A^*], \omega), \quad A^* \in \mathcal{B}^*.$$

PROOF. Let $Z'_n = g(X_n Y)$, $n \ge 1$. From Lemmas 4 and 1, we conclude that it is enough to show that the sequence $\{Z'_n, n \ge 1\}$ is stable with the density (10).

Now by results of [1] it is known that a sequence $\{X_n \in \mathcal{X}, n \ge 1\}$ of r.e. is stable iff for every r.e. $V \in \mathcal{X}'$ the sequence $\{(X_n, V), n \ge 1\}$ converges weakly in $(S \times S', \mathcal{B} \times \mathcal{B}')$. Hence, we see that the sequence $\{(X_n, Y), n \ge 1\}$ is stable with the density $\alpha'(A', \cdot), A' \in \mathcal{B} \times \mathcal{B}'$, and Theorem 2 establishes the stability of the sequence $\{Z'_n, n \ge 1\}$.

We see that the measures

$$Q_A^n(D) = P([X_n \in A], D)$$

are absolutely continuous with respect to the measure P, so by the Radon—Nikodym theorem there exist measurable functions $\alpha_n(A, \cdot)$ such that

(12)
$$Q_A^n(D) = \int_D \alpha_n(A, \cdot) dP.$$

We can assume and do that $\alpha_n(A, \omega)$ for almost all ω are measures on (S, \mathcal{B}) . Moreover, by the stability of $\{X_n, n \ge 1\}$, we have for every $D \in \mathcal{A}$

(13)
$$\lim_{n\to\infty}\int\limits_{D}\alpha_{n}(A,\cdot)\,dP=\int\limits_{D}\alpha(A,\cdot)\,dP=Q_{A}(D)=\mu_{D}(A)\,P(D),\quad A\in\mathscr{C}_{\mu_{D}}.$$

Hence

$$\alpha_n(A, \cdot) \xrightarrow{w^*} (A, \cdot), n \to \infty, \text{ for } A \in \mathcal{C}_{\mu_{\Omega}}.$$

Note now that for $Y \in \mathcal{X}'$, $B \in \mathcal{B}'$ and $D \in \mathcal{A}$, P(D) > 0, we have by (11) and (12)

(14)
$$P([X_n \in A], [Y \in B], D) = \int_{[Y \in B] \cap D} \alpha_n(A, \cdot) dP =$$
$$= \int_D I_{[Y \in B]} \alpha_n(A, \cdot) dP = \int_D \mu_{Y(\cdot)}(B) \alpha_n(A, \cdot) dP,$$

where $\mu_{Y(\cdot)}(B) = I_{[Y \in B]}(\cdot)$.

Now we see also that the measures $Q_A^n(D)$ defined on the space (Ω, \mathcal{A}) by the formula

(15)
$$Q_A^n(D) = P([(X_n, Y) \in A'], D), \quad A' \in \mathcal{B} \times \mathcal{B}'$$

are absolutely continuous with respect to the measure P and that there exists a measurable function $\alpha'_n(A', \cdot)$ such that

$$Q_{A'}^n(D) = \int\limits_D \alpha'_n(A', \, \cdot \,) \, dP.$$

In the particular case with $A' = A \times B$, we have

$$Q_{A\times B}^{n}(D)=\int\limits_{D}\alpha_{n}'(A\times B,\,\cdot\,)\,dP.$$

Similarly, as above, we can assume that $\alpha'_n(A', \cdot)$ are measures on $(S \times S', \mathcal{B} \times \mathcal{B}')$, and state that

$$\alpha'_n(A \times B, \cdot) = I_{[Y \in B]}(\cdot)\alpha_n(A, \cdot) = \mu_{Y(\cdot)}(B)\alpha_n(A, \cdot)$$
 a.e.

Moreover, we have

$$\alpha'_n(A \times B, \cdot) = \mu_{Y(\cdot)}(B) \alpha_n(A, \cdot) \xrightarrow{w^*} \mu_{Y(\cdot)}(B) \alpha(A, \cdot),$$

and

$$\alpha'_n(A \times B, \cdot) \xrightarrow{w^*} \alpha'(A \times B, \cdot)$$
, for $A \in \mathscr{C}_{\mu_{\Omega}}$ and $B \in \mathscr{C}_{P_{\Upsilon}}$,

whence

$$\alpha'(A \times B, \cdot) = \mu_{Y(\cdot)}(B)\alpha(A, \cdot)$$
 a.e. $A \in \mathscr{C}_{\mu_{\Omega}}, B \in \mathscr{C}_{P_{Y}}$.

Let now $A'_x = \{y : (x, y) \in A'\}$, and $A'_y = \{x : (x, y) \in A'\}$. Then

$$\alpha'(A', \cdot) = \int_{S} \alpha'(A'_{y} \times S, \cdot) \alpha'(S \times dy, \cdot) = \int_{S} I_{[Y \in S]} \alpha(A'_{y}, \cdot) \mu_{Y(\cdot)}(dy) \alpha(S, \cdot) =$$

$$= \int_{S} \alpha(A'_{y}, \cdot) \mu_{Y(\cdot)}(dy) = \alpha(A'_{Y(\cdot)}, \cdot),$$

what proves that the density function of the sequence $\{(X_n, Y), n \ge 1\}$ is given by

(16)
$$\alpha'(A', \omega) = \alpha(A_{Y(\omega)}, \omega) = \alpha([s: (s, Y(\omega)) \in A'], \omega).$$

Therefore, if a function $g: S \times S' \to S^*$ is continuous, then, by Theorem 2, the sequence $\{Z_n, n \ge 1\}$, $Z_n = g(X_n, Y)$, $n \ge 1$, is stable with the density function

$$\beta(A^*,\omega)=\alpha([s:g(s,Y(\omega))\in A^*],\omega),$$

which gives the proof that the density function of $\{Z_n \in \mathcal{X}^*, n \ge 1\}$ is given by (10).

The following example shows that the assumption of the stability of the sequence $\{X_n, n \ge 1\}$ cannot be omitted.

Example. Let X be a r.v. having the normal distribution with mean 0 and variance σ^2 . Put

$$X_n = \begin{cases} X, & \text{when } n \text{ is even,} \\ -X, & \text{when } n \text{ is odd.} \end{cases}$$

Setting $Y_n = X$, and g(x, y) = |x - y|, we get

$$g(X_n, Y_n) = \begin{cases} 0, & \text{when } n \text{ is even,} \\ 2|X|, & \text{when } n \text{ is odd.} \end{cases}$$

Hence, we conclude that the sequence $\{Z_n, n \ge 1\}$, $Z_n = g(X_n, Y_n)$, $n \ge 1$, does not converge in law.

Theorem 4 allows us to prove the following property of the stable sequence $\{X_n, n \ge 1\}$ of r.e.

Theorem 5. Let $\{X_n, n \ge 1\}$ be a stable sequence of r.e. Then for every r.e. $Y \in \mathcal{X}$ there exists a limit

(17)
$$a(Y) = \lim_{n \to \infty} r(X_n, Y),$$

where $r(X, Y) = \inf \{ \varepsilon > 0 : P[\varrho(X, Y) > \varepsilon] < \varepsilon \}.$

PROOF. Define the function g by $g(x, y) = \varrho(x, y)$. It is obvious that g is continuous. Thus, by Theorem 4, the sequence $\{g(X_n, Y), n \ge 1\}$ converges weakly to a r.v. Z. Hence, for every $\varepsilon \in \mathscr{C}_{F_Z}$ there exists

$$\lim_{n\to\infty} P[\varrho(X_n,Y)>\varepsilon]=b(Y,\varepsilon).$$

Let

$$a(Y) = \inf \{ \varepsilon > 0 : b(Y, \varepsilon) < \varepsilon \}.$$

We now prove that

$$\lim_{n\to\infty} r(X_n, Y) = \liminf_{n\to\infty} \{\varepsilon > 0 \colon P[\varrho(X_n, Y) > \varepsilon] < \varepsilon\} = a(Y).$$

For every $\delta > 0$, $\delta \in \mathscr{C}_{F_{\pi}}$, there exists n_0 such that for $n \ge n_0$

$$a(Y) - \delta \le P[\varrho(X_n, Y) > a(Y) - \delta] \to b(Y, a(Y) - \delta),$$

and

$$a(Y) + \delta \ge P[\varrho(X_n, Y) > a(Y) + \delta] \rightarrow b(Y, a(Y) + \delta).$$

Hence

$$a(Y)-\delta \leq r(X_n,Y) \leq a(Y)+\delta, \quad n \geq n_0.$$

Letting $\delta \rightarrow 0$, we get

$$\lim_{n\to\infty}r(X_n,Y)=a(Y),$$

which completes the proof of Theorem 5.

Theorem 5'. Let $\{X_n, n \ge 1\}$ be a stable sequence of r.e. Then for every r.e. $Y \in \mathcal{X}$, there exists a limit

$$a_1(Y) = \lim_{n \to \infty} r_1(X_n, Y),$$

where $r_1(X, Y) = E \frac{\varrho(X, Y)}{1 + \varrho(X, Y)}$.

PROOF. We see that the sequence $\left\{\frac{\varrho(X_n,Y)}{1+\varrho(X_n,Y)}, n\geq 1\right\}$ is uniformly integrable, and by Theorem 4, it is also stable. Therefore, by Theorem 3 of [5], there exists

$$\lim_{n\to\infty}r_1(X_n,Y)=a_1(Y).$$

References

- [1] D. J. Aldous and G. K. Eagleson, On mixing and stability of limit theorems. Ann. Probability 6 (1978), 325-331.
- [2] P. BILLINGSLEY, Convergence of probability measures, New York, 1968.
- [3] P. FERNANDEZ, A note on convergence in probability, Boletim Soc. Bras. Mat., 3 (1972), 13—16.
- [4] P. R. Halmos, Measure Theory, New York, 1951.
- [5] I. KATAI and J. MOGYORÓDI, Some remarks concerning the stable sequences of random variables. Publ. Math. (Debrecen) 14 (1967), 227—238.

 [6] J. F. C. Kingman and S. J. Taylor, Introduction to Measure and Probability, Cambridge
- University Press, 1966.
- [7] M. Loeve, Probability Theory, New York, 1963.
- [8] A. Rényi, On stable sequences of events. Sankhya, Ser. A 25 (1963), 193-302.
- [9] W. RICHTER, Zu einigen Konvergenzeigenschaften von Folgen zufalliger Elemente, Studia Math. 25 (1965), 231-243.
- [10] R. J. Tomkins, On the equivalence of modes of convergence, Canadian Math. Bull. 16 (1973), 571-575.
- [11] W. Zieba, On Relations between Modes of Convergence of a Sequence of Random Elements, Bull. Acad. Polon. Sci. 22 (1974), 1143-1149.
- [12] W. Zieba, On some criterion of convergence in probability, Probability and Mathematical Statistics 60 (1985), 137-144.

INSTITUTE OF MATHEMATICS M. CURIE-SKŁODOWSKA UNIV. PL. MARII CURIE-SKŁODOWSKIEJ I 20-031 LUBLIN (POLAND)

(Received October 24, 1984)