On additive arithmetical functions with values
in topological groups I.

By Z. DAROCZY (Debrecen) and 1. KATAI (Budapest)

1. Throughout this paper we shall use the following standard notations : N=nat-
ural numbers; Z=rational integers; Q,=multiplicative group of positive rationals;
R.=multiplicative group of positive reals; Q=additive group of rationals; R=addi-
tive group of reals; 7T=one-dimensional circle group (torus); each of them in the
usual topology.

Let G be an Abelian group. We shall say that a mapping ¢: N—G is a com-
pletely additive function, if

(L.1) ¢(mn) = o(m)+e@(n) ¥m,nEN

holds.
If we consider G as a multiplicative group, then the mapping ¥V: N-G sat-
isfying the relation

(1.2) V(mn) =V(m)V(n) VYm,neEN

is called a completely multiplicative function.
We can extend the domain of ¢ and V to Q, by the relations

(1.3) [ (%] = @(m)—o(n), V[%] =V(m)V=(n),
uniquely. Furthermore the relations
(1.4 @(rs) = @(r)+o(s), V(rs) =V()V(s)

hold. So the extensions of the functions ¢, ¥ define a Q,~G homomorphism
Let now G be an Abelian topological group, ¢: Q,—~G be a homomorphism.
We shall say that ¢ is continuous at the point 1, if r,€Q,, r,~1 implies that

(1.5) o(r,) - 0.

Lemma 1. Let G be an additively written closed Abelian topological group,
@: OQ,~G be a homomorphism that is continuous at the point 1. Then its domain
can be extended by the relation

(16) ¢@:= lim ¢(r) («€R,)

r,€Q,
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uniquely. The so obtained ¢: R,~G is a continuous homomorphism, consequently

(1.7) e@p) = p(@)+e@(B) (Va, PER,)
holds.

ProOOF, Let a€R,, r,~a be an arbitrary sequence of rationals. Since r,/r,~1
as v, u—~ oo, therefore

¢[%)=¢(r,)—¢(r,)-0 as v, pu oo,
* _

consequently ¢(r,) is a Cauchy-sequence, and so it is convergent. Hence it follows
immediately that the limit is well defined. The further assertions in the lemma are
obvious consequences of this. |j

We are interested in such completely additive functions for which

(1.8) Ap(n) = p(n+1)—@(n) -0 (n <)

holds.
An old theorem of P. ErDGs asserts that for G=R (1.8) implies that ¢ is a
constant multiple of log, in other words that ¢ is a continuous homomorphism

0.—~R [1].

A very recent, until now unpublished result due to E. WIRSING [2] asserts that:
if G=T written additively, then (1.8) implies that ¢ is a constant multiple of
log (mod 2x), i.e. that ¢ is a continuous homomorphism Q.—T.

Now we state this theorem in multiplicative form as

Lemma 2. Let T={z€Cl|z|=1} be the unit circle, and V: N—~T be a com-
pletely nultiplicative function, such that

(1.9) V() :=Vn+ )V -1 ~1 (€T) (n— ).
Then V(n)=n", t is a real number.

This is the crucial point of the proof of our

Theorem 1. Let G be an additively written, metrically compact Abelian topological
group. Let ¢: N—~G be a completely additive function satisfying the condition (1.8).
Then its extension ¢: Q,~G defined by (1.3) is continuous at 1, consequently its
extension @: R.—~G defined by (1.6) is a continuous homomorphism.

2. ProoF OF THEOREM 1. Let us assume that (1.1), (1.8) hold. Let x: G—~T be
any continuous character,
V(n):= x(o(n).

8V (n) = V(n+ DV ()™ = x(do(m) ~ x@©) = 1 (n—~).

Furthermore ¥ is completely multiplicative, and so by Lemma 2, V(n)=e"'s"
(€R).

Then
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Now we prove that ¢: Q,~G is continuous in 1. Let N;/M;~1, N;, M€N
(j—+=). We consider A;=¢(N;)—¢@(M;). Since G is metrically therefore it is
sequentially compact. Then there exists a convergent subsequence, A;-B(€G).
Then x(A;)—+x(B). By Lemma 2 we get

NJ:

x(4;) = exp [it log E-l-] - 1.

So x(B)=1 for each continuous character y, consequently B=0(€G), and so
@: Q.—~G is continuous in 1. Lemma 1 completes the proof of the theorem. |}

3. Some remarks

1. It is known that every locally compact, compactly generated Abelian group
G is topologically isomorphic with R*XZ’XF for some nonnegative integers a
and b and some compact Abelian group F. For the proof see [4] Theorem 9.8 p. 90.
Theorem 1 and theorem of ErRpOs imply immediately

Theorem 2. Let G be an additively written, metrizable, locally compact, com-
pactly generated Abelian topological group. Let us assume that the conditions (1.1),
(1.8) for @: N—G hold. Then the assertions stated in Theorem 1 remain true.

PrOOF. Since G=R*XZ’X F, it is enough to prove the assertion for
G=R, Z, F. This was proved for G=R, F earlier. Furthermore for G=Z, 4¢—~0
implies that @(n)=0. J}

This completes the proof.

2. Let G be an Abelian topological group. G is said to be solenoidal, if there
exists a continuous homomorphism of R into G, such that the image 7(R) is dense
in G. The mapping v»—e¢° is a topological isomorphism of R onto R,, so we may
change R by R, in the definition of solenoidal groups. It is known that a compact
Abelian group is solenoidal if and only if it is connected and its cardinality is not
greater than the continuum. For the proof see [4] Theorem 25.18.

Let us assume that the conditions of Theorem 1 or 2 are satisfied. Let H:=¢(R,)
be the image of the continuous homomorphism. Then the mapping ¢: R,—~H is
a topological isomorphism, or H~ (H ~ denotes the closure of H) is a compact
subgroup in G. (See [4], Theorem 9.1.)

These theorems allow us to give a quite complete characterization of the sets
that can occur as images for a suitable continuous homomorphism ¢: R,—~G.

For a mapping ¢: N—G under the conditions (1.1), (1.8) let K, =closure
of ¢(R,), where the extension of the domain of ¢ to R, is defined by (l.g).

Theorem 3. 1. Let G be a metrically compact Abelian group, S be a subgroup
in G. Then there exists a completely additive function ¢: N—G satisfying (1.8)
and K,=S if and only if S is compact, connected and the cardinality of it is not
greater than the continuum.
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2. Let G be a metrizable, locally compact, compactly generated Abelian group,
S be a subgroup in G. Then there exists a completely additive function ¢: N—G
satisfying (1.8) and K,=S if and only if

a) S is topologically isomorphic to R, or

b) S is compact, connected and the cardinality of it is not greater than the con-
tinuum.

3. Let G be an arbitrary Abelian topological group, ¢,y: N—-G be completely
additive functions, such that

(3.1 Y(a+1)—@@) ~0 (n—+ ).

Then Y (n)=¢@(n) YnEN.
This assertion is almost obvious. Let H(n):=y (n)— ¢ (n).
Starting from the relation

Y(n+1)—o(n) =-H2)+y(2n+2)—¢(2n) =
=—HQR)+y2n+2)—e2n+1D)—-HQR2n+1)+y(2n+1)—¢(2n),
from (3.1) we deduce that
(3.2) HQRn+1)+HQ@) =0 (n—o).

Let m be an arbitrary odd number. From (3.2) we get that H((22+1)m)—~—H(2)
(n—+<e), H(2n+1)-~—H(2) (n—~<), and so that H(m)=0. So H(2n+1)=0 (Vn),
and so H(2)=0.

4. In a recent joint paper [5] we proved the following assertion.

Let G be a metrically compact Abelian group. Let us assume that the completely
additive function @: N—~G satisfies the following requirement: if m<ny<... is
such an infinite subsequence in N for which liin @(n,) exists, then there exists

lilltn @+ 1) as well. Then (1.8) holds.

4. Additive functions defined over the Gaussian integers

Let F be the nonzero Gaussian integers, K be the multiplicative group of non-
zero Gaussian rationals, C, be the multiplicative group of nonzero complex num-
bers, C be the additive group of complex numbers.

Let G be an Abelian group for the addition. A mapping ¢: F—~G is said to
be an additive function, if

4.1 ¢(ab) = @(a)+¢(b) (Va,beF)

holds.
Let BEF be fixed,

4.2) 4p0(@):= @@a+p)—e(@) (x, a+pcF).
We should like to determine those ¢ for which

(4.3) 4;0(@) =0 (laf +<)
holds.
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Since
450 0p) = 4,0(2),
therefore we may restrict ourselves to the case f=1,
(4.4) 4¢(@):=p@+1)—@(@) ~0 (ja| -=).
It is easy to prove that for G=R (4.4) implies that
@(2) = clog |a].

Let us consider now the case G=T, written multiplicatively. E. WIRSING proved
[3] the next theorem, which we quote now as

Lemma 4. Let V: ¥—~T be a completely multiplicative function, such that
(4.5) Vie+1D)V-1(x)-1 as |af ==, «afF.
Then V(x):=e'"'o812l . gikars= \whore © g real constant, k is a rational integer.

By repeating the argument used in Section 1 and 2 from Lemma 4 we can
deduce easily

Theorem 4. Let G be a metrically compact Abelian group, ¢: F—~G be a com-
pletely additive function, satisfying (4.4). Then the domain of ¢ can be extended on
K by

o
® [F) =0@—-0@ (= pcF),
and on C, by
(4.6) ¢() = lim o(P,), (y€C)
PhekK
uniquely. The mapping ¢: C,—~G is a continuous homomorphism.

Inversely, let ¢: C,—~G be a continuous homomorphism. Then the restric-
tion of Y on F defines a completely additive function, for which (4.4) holds.
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