PE Loops

By LEONG FOOK (Minden)

Abstract. Some properties of finite pE loops, a class of Moufang loops, are
investigated. It is proved that : (i) Moufang loops of order p* are pE loops. (ii) Mou-
fang loops of order p® are pE loops for p=3. If G is a pE loop, then: (iii) G,, the
association subloop of G, is of exponent p; G, is an elementary abelian p-group
if p#3. (iv) G satisfies Lagranges Theorem and G has Sylow p-subloops for each
p dividing the order of G. (v) R=(R(x, y), L(x, y)|x, y€G), the subgroup of multi-
plicative group of G is an elementary abelian p-group if p#3. (vi) G,cZ for p>3.

Definitions & Notations: A loop G is a Moufang loop if xy-zx=(x-yz)x for
all x, y, z€G.

G,, the associator subloop of G, is generated by all the associators (x, y, z)
where xy-z=(x-yz)(x,y,z). G., the commutator subloop of G, is generated by
all the commutators [x, y] where xy=yx-[x,y]. Let the center and nucleus of
G be denoted by Z and N. It is known that both are normal in G; N and Z are groups;

Z is abelian and Zc N. A Moufang loop is a pE loop if % is commutative of
exponent p, p a prime.

Fundamental Lemma. Let G be a Moufang loop. Then G satisfies all or none
of the following identities:

@) [xp2),x1=1; (@) (xp2)=1; (i) (,p2)=(x"%y,2); ()
x»,2) ' =(x"Yy™L, z7Y); (V) (x, v, 2)=(x, 2y, 2); (Vi) (x,p,2)=(x, 2, y); (vii)
(x,y, 2)=(x, xy, z). When these identities hold, then the associator (x,y,z) lies
in the centre of the subloop generated by x, y, z; and the following identities hold for

all integers n:
02 =0,2x)=0,x2""
"y, 2) = (%, , 2
[xy, 2] = [x, 2] [[x, 2], y] [0, 2] (%, », 2)°.
Proor. [1, p. 125, Lemma 5.5.]

Remark. A Moufang loop satisfying all the identities of the Fundamental
Lemma is called an F loop.

Properties of G,: If G is a Moufang loop, then G,<G, ie. G, is normal in G.
Also G,cCg(N)={glgn=ng YneN}.
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PRrOOF. [9, p. 33—34.]

Remark. A loop G is a 2E loop if and only if G is an extra loop, [5, p. 190,
Theorem 1]. Commutative Moufang loops are 3E loops. There exists nonassocia-
tive SE loops, [11, p. 408]. Many other pE loops can be constructed by holomorphy
theory of loops [10, p.141]. G/N is commutative implies G.cN. Thus
(x,», [y, z])=1 for all x,y,z€G. So pE loops are F lopps. The Fundamental
lemma will be applied on pE loops repeatedly without mention. All definitions
and notations follow those in [1], unless otherwise stated. All loops are assumed
finite.

Theorem 1. A Moufang loop G of order p* is a pE loop; G is a group if p=3.

ProoOF. By [6, p. 397, Theorem 4] and [6, p. 415, Theorem], G is nilpotent.
Thus Z is nontrivial. If |Z|=p, then G=(Z, x,y) for some x,y€G. As a Mou-
fang loop is diassociative, G is a group. But a group is a pE loop. If |Z|=p, then
|G/Z|=p®. By [8, p. 33, Lemma 1], G/Z is a group. If G/Z is generated by two
elements, then G is a group by diassociativity. If G/Z is generated by three elements,
then G/Z is an elementary abelian p-group by [4, p. 145]. As ZcN, G/N is an
elementary abelian p-group.

For the second statement of Theorem 1, see [8, p. 33].

Lemma 1. Let x, y, z be elements of an F loop G. Then

(1) zR(x,y)=2z(z, x,y) where R(x,y)=R(x)R(y)R(xy)™! is an inner mapping
of the nultiplicative group of G.

(ii) (xy)@=x0 yO@(x0O, yO, c™*) where O is a pseudoautomorphism of G with
companion c.

Proor. By [3, p. 49, Lemma 1].
Theorem 2. A nonassociative Moufang loop G of order p® is a pE loop for p=5.

Proor. If p?||N|, then |G/N|=p®. As G is diassociative, G/N must be gen-
erated by three elements. By [4, p. 145], G/N=C,XC,XC, where C, is a cyclic
group of order p. As G is nilpotent, Z==1. As ZCN, we can assume Z=N=C,.
So, |G/Z|=p*. By Theorem 1, G/Z is a group or G,CZ. As G is nonassociative,
G,#1. Thus G,=Z=N=C,. So (x,y,z)’=1 for all x,y,z€G. Therefore
(x*,y,z)=1 or x’€N for all x€G. If G'=C,, then G,=G'=N. So G/N is
commutative of exponent p. Suppose G'#C,. By [1, p. 98, Theorem 2.2], G’'C¢(G),
the Frattini subloop of G. As G is diassociative but nonassociative, |¢(G)|=p*
So |G'|=p* Assume |G’|=p® Then G, from the decending central series of G
is equal to Z. (G;=1eG'cZ.) |G'|=p* implies that G={(x,y,z) for some
x,y,2€G. Let u,v,weG. As [w,[x,y]]€Z, (4, v, [w,[x,y]])=1. By Lemma l,

uwR(w, [x, y]) = uv(uv, w, [x, y])

= u(ua w, [x, J’]) 5 v(vv w, [x! y]) — uo- (N, w, [xs }’])(1‘, W, [xa y])
since G,CZ.
Thus (uz, w, [x, ¥])=(u, w, [x, ¥])(v, w, [x, ]). By repeating the expansion for
associators on the R.H.S. we see that (uv, w, [x, y]) is a product of associators
of the form (e, d, [x, y]) where e, d are elements of the set {x,y,z}. By Funda-
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mental Lemma (e, d, [x,y])=1. Thus [x, y]¢N. Similarly [y,z] and [z, x] are
in N. This implies G,.cN. So G’cN. This is a contradiction.

Theorem 3. Let G be a pE loop. Then:
(i) G, is an elementary abelian p-group if p#3.
(ii) G, is a loop of exponent 3 if p=3.
(iii) G satisfies Lagranges Theorem (i.e. the order of a subloop divides |G|).
(iv) G contains p-Sylow subloops.

Proor. (i) G/N is commutative of exponent p implies G.cN and xPeN
for all x €G. Let beG,. Then a? €N. By the Fundamental lemma, b3€N. As
(p,3)=1, béN. Thus G,cN. By the properties of G,, G,=Z(N), the centre
of N. Thus G, is an abelian group. Now x?€ N implies that (x?, y, z)=(x, y, z)’=1
for all y,z€G. So G, is an elementary abelian p-group.

(i) G/N is commutative of exponent 3 implies G,.cN and x*¢N for all
x€G. Thus (x,y,zP=(x3%y,2)=1, y,z€G. Let a=(x,y,z) and b=(u,v,w).
Since [a, b]J€G.C N, [[a, b], a]=1 by the Properties of G,. By [1, p. 122, Lemma 5.1],
(ab)*=a*b*(a, b)*=(a® b)~*=1. Thus G, is of exponent 3.

(iii) Consider 1<G,<G. G/G, is a group and G, is a nilpotent p-loop. Hence
both G/G, and G, satisfy Lagranges Theorem. By [2, p. 269, Theorem 6A], G sat-
isfies Lagranges Theorem.

(iv) By (i) and (ii), G, is nilpotent. By [Theorem 2, p. 34, 7] G contains p-Sylow
subloops.

Theorem 4. R=(R(x, y), L(x,y)|x,y€G) is an elementary abelian p-group
for p#3.

PrOOF. As G.CN, R(x,y) is an automorphism (its companion [x, y]éN).
Let z€G.

.. ZRP(x, y) = z(z, %, y) R*~1(x, y) =
= z(z, x, y)*R?~%(x, y) by Fundamental lemma

= z(z, x, y)°
=z by Theorem 3.
SR(x,y)=1L
Now bR(x, y)R(u, v)=[b(b, x, y)]R(u, v)=b(b, u,v)- (b, x, y) since G,CN.
bR(u,v) R(x,y) = [b(b, u, v)] R(x, y) = b(b, x, ) - (b, u, v)
= b(b,u,v)-(b,x,y) since G,c Z(N)
by Propreties of G,.

S R(x, y)R(u, v) = R(u, v) R(x, ).

By [1, p. 124, Lemma 5.4], R(x,y)=L(x~%,y~?). Thus R is an elementary abelian
p-group.
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Remark. For p=3, it can be shown that R(x,y) is of order 3. However,
it is not known if R is of exponent 3.

Theorem 5. Let G be a pE loop. Then G,CZ for p#2,3.
Proor. Let u,v, x, y€G.
(uv) R(x, y) = (uv)(uv, x,y) by Lemma 1
= u(u,x,y)-v(v,x,y) by Lemmal and G_.c N.
= uv(u, x, y)[(u, x, ), v](v, x, y) e
(uv, %, y) = (u, x, p)[(4, x, ), v] (v, X, y)
(uv, x, y) = (vulu, vl, x, y)
= (vu, x,y) as G.CN.

=(v, x, ) [(v, x, ), u](u, x, )

[(u, x, ), v]=[(v, x, »), u] by Properties of G, and G.cN. Thus [(u, x,y),?] is
symmetric in u, v. By Fundamental lemma, [(u, x, y), v] is skew-symmetric in u, x,
yand in x, y, z. Hence [(u, x, y), v] is skew-symmetric in w, x. Therefore [(u, x, y), v]=
=[(u, x, ), 217%. So [(u, x,y), vPP=1. [[(&, x, »), v], (u, x,y)]=1 by Properties of
G,. By [lL,p. 122, Lemma 5.1, [@u, x,y),v)’=[(u, x,y)?,v]=1. Therefore
[, x,p),v]=1 for all u, v, x, y€G.

References

[1] R. H. Bruck, A Survey of Binary System, Springer-Verlag, Berlin (1971).

2] R. H. Bruck, Contribution to the Theory of Loops, Trans. Amer. Math. Soc. 60 (1946),
245—253.

[3] R. H. Bruck & LeonG Fook, Schur's Splitting Theorems for Moufang Loops, Nanta Mathe-
matica, Vol. I1, (1978), p. 44—54.

4) Burnsipe, Theory of Groups of Finite Order.

5] F. FEnyves, Extra Loops with Identities of Bol—Moufang Type, Publ. Math. ( Debrecen) 16
(1969), 187—192.

6] G. GLAUBERMAN, On Loops of order I, Journal of Algebra 8 (1968), 393—414.

7] LeonG Fook, E Loops, Bulletin of S.E.A. Math. Soc. 4 (1980).

8] LeonG Fook, Moufang Loops of Order p*, Nanta Mathematica, Vol. VII, (1974), p. 33—34.

[9] LeonG Fook, The Devil and the Angel of Loops, Proceeding Amer. Math. Soc. 54 (1976),
32—-34.
[10] LeonG Fook, Holomorphy Theory of Loops, Publ. Math. ( Debrecen) 27 (1980), 139—141.
[11] C. R. B. WriGHT, Nilpotency Conditions for Finite Loops, Illinois J. Math. 9 (1965), 399—409.

( Received January 25, 1985)



