pE Loops

By LEONG FOOK (Minden)

Abstract. Some properties of finite pE loops, a class of Moufang loops, are investigated. It is proved that : (i) Moufang loops of order p^4 are pE loops. (ii) Moufang loops of order p^5 are pE loops for p>3. If G is a pE loop, then: (iii) G_a , the association subloop of G, is of exponent p; G_a is an elementary abelian p-group if $p \neq 3$. (iv) G satisfies Lagranges Theorem and G has Sylow p-subloops for each p dividing the order of G. (v) $\mathbf{R} = \langle R(x, y), L(x, y) | x, y \in G \rangle$, the subgroup of multiplicative group of G is an elementary abelian p-group if $p \neq 3$. (vi) $G_a \subset Z$ for p > 3.

Definitions & Notations: A loop G is a Moufang loop if $xy \cdot zx = (x \cdot yz)x$ for all $x, y, z \in G$.

 G_a , the associator subloop of G, is generated by all the associators (x, y, z) where $xy \cdot z = (x \cdot yz)(x, y, z)$. G_c , the commutator subloop of G, is generated by all the commutators [x, y] where $xy = yx \cdot [x, y]$. Let the center and nucleus of G be denoted by Z and N. It is known that both are normal in G; N and Z are groups; Z is abelian and $Z \subset N$. A Moufang loop is a pE loop if $\frac{G}{N}$ is commutative of exponent p, p a prime.

Fundamental Lemma. Let G be a Moufang loop. Then G satisfies all or none of the following identities:

(i) [(x, y, z), x]=1; (ii) (x, y, [y, z])=1; (iii) $(x, y, z)^{-1}=(x^{-1}, y, z)$; (iv) $(x, y, z)^{-1}=(x^{-1}, y^{-1}, z^{-1})$; (v) (x, y, z)=(x, zy, z); (vi) $(x, y, z)=(x, z, y^{-1})$; (vii) (x, y, z)=(x, xy, z). When these identities hold, then the associator (x, y, z) lies in the centre of the subloop generated by x, y, z; and the following identities hold for all integers n:

$$(x, y, z) = (y, z, x) = (y, x, z)^{-1}$$

 $(x^n, y, z) = (x, y, z)^n$
 $[xy, z] = [x, z] [[x, z], y] [y, z] (x, y, z)^3.$

PROOF. [1, p. 125, Lemma 5.5.]

Remark. A Moufang loop satisfying all the identities of the Fundamental Lemma is called an F loop.

Properties of G_a : If G is a Moufang loop, then $G_a \triangleleft G$, i.e. G_a is normal in G. Also $G_a \triangleleft G(N) = \{g | gn = ng \ \forall n \in N\}$.

294 L. Fook

PROOF. [9, p. 33-34.]

Remark. A loop G is a 2E loop if and only if G is an extra loop, [5, p. 190, Theorem 1]. Commutative Moufang loops are 3E loops. There exists nonassociative 5E loops, [11, p. 408]. Many other pE loops can be constructed by holomorphy theory of loops [10, p. 141]. G/N is commutative implies $G_c \subset N$. Thus (x, y, [y, z]) = 1 for all $x, y, z \in G$. So pE loops are F loops. The Fundamental lemma will be applied on pE loops repeatedly without mention. All definitions and notations follow those in [1], unless otherwise stated. All loops are assumed finite.

Theorem 1. A Moufang loop G of order p^4 is a pE loop; G is a group if p>3.

PROOF. By [6, p. 397, Theorem 4] and [6, p. 415, Theorem], G is nilpotent. Thus Z is nontrivial. If |Z| > p, then $G = \langle Z, x, y \rangle$ for some $x, y \in G$. As a Moufang loop is diassociative, G is a group. But a group is a pE loop. If |Z| = p, then $|G/Z| = p^3$. By [8, p. 33, Lemma 1], G/Z is a group. If G/Z is generated by two elements, then G is a group by diassociativity. If G/Z is generated by three elements, then G/Z is an elementary abelian g-group by [4, p. 145]. As $Z \subset N$, G/N is an elementary abelian g-group.

For the second statement of Theorem 1, see [8, p. 33].

Lemma 1. Let x, y, z be elements of an F loop G. Then

(i) zR(x, y) = z(z, x, y) where $R(x, y) = R(x)R(y)R(xy)^{-1}$ is an inner mapping of the multiplicative group of G.

(ii) $(xy)\Theta = x\Theta y\Theta(x\Theta, y\Theta, c^{-1})$ where Θ is a pseudoautomorphism of G with companion c.

PROOF. By [3, p. 49, Lemma 1].

Theorem 2. A nonassociative Moufang loop G of order p^5 is a pE loop for $p \ge 5$.

PROOF. If $p^2|N|$, then $|G/N| \le p^3$. As G is diassociative, G/N must be generated by three elements. By [4, p. 145], $G/N = C_p \times C_p \times C_p$ where C_p is a cyclic group of order p. As G is nilpotent, $Z \ne 1$. As $Z \subset N$, we can assume $Z = N = C_p$. So, $|G/Z| = p^4$. By Theorem 1, G/Z is a group or $G_a \subset Z$. As G is nonassociative, $G_a \ne 1$. Thus $G_a = Z = N = C_p$. So $(x, y, z)^p = 1$ for all $x, y, z \in G$. Therefore $(x^p, y, z) = 1$ or $x^p \in N$ for all $x \in G$. If $G' = C_p$, then $G_a = G' = N$. So G/N is commutative of exponent p. Suppose $G' \ne C_p$. By [1, p. 98, Theorem 2.2], $G' \subset \varphi(G)$, the Frattini subloop of G. As G is diassociative but nonassociative, $|\varphi(G)| \le p^2$. So $|G'| \le p^2$. Assume $|G'| = p^2$. Then G_2 from the decending central series of G is equal to Z. $(G_2 = 1 \Leftrightarrow G' \subset Z)$ $|G'| = p^2$ implies that $G = \langle x, y, z \rangle$ for some $x, y, z \in G$. Let $u, v, w \in G$. As $[w, [x, y]] \in Z$, (u, v, [w, [x, y]]) = 1. By Lemma 1,

$$uvR(w,[x,y]) = uv(uv,w,[x,y])$$

$$= u(u, w, [x, y]) \cdot v(v, w, [x, y]) = uv \cdot (u, w, [x, y])(v, w, [x, y])$$

since $G_a \subset Z$.

Thus (uv, w, [x, y]) = (u, w, [x, y])(v, w, [x, y]). By repeating the expansion for associators on the R.H.S. we see that (uv, w, [x, y]) is a product of associators of the form (e, d, [x, y]) where e, d are elements of the set $\{x, y, z\}$. By Funda-

pE Loops 295

mental Lemma (e, d, [x, y]) = 1. Thus $[x, y] \in N$. Similarly [y, z] and [z, x] are in N. This implies $G_c \subset N$. So $G' \subset N$. This is a contradiction.

Theorem 3. Let G be a pE loop. Then:

(i) G_a is an elementary abelian p-group if $p \neq 3$.

(ii) G_a is a loop of exponent 3 if p=3.

(iii) G satisfies Lagranges Theorem (i.e. the order of a subloop divides |G|).

(iv) G contains p-Sylow subloops.

PROOF. (i) G/N is commutative of exponent p implies $G_c \subset N$ and $x^p \in N$ for all $x \in G$. Let $b \in G_a$. Then $a^p \in N$. By the Fundamental lemma, $b^3 \in N$. As $(p,3)=1, b\in \mathbb{N}$. Thus $G_a\subset \mathbb{N}$. By the properties of G_a , $G_a\subset \mathbb{Z}(\mathbb{N})$, the centre of N. Thus G_a is an abelian group. Now $x^p \in N$ implies that $(x^p, y, z) = (x, y, z)^p = 1$ for all $y, z \in G$. So G_a is an elementary abelian p-group.

(ii) G/N is commutative of exponent 3 implies $G_c \subset N$ and $x^3 \in N$ for all $x \in G$. Thus $(x, y, z)^3 = (x^3, y, z) = 1$, $y, z \in G$. Let a = (x, y, z) and b = (u, v, w). Since $[a, b] \in G_c \subset N$, [[a, b], a] = 1 by the Properties of G_a . By [1, p. 122, Lemma 5.1], $(ab)^3 = a^3b^3(a, b)^{-3} = (a^3, b)^{-1} = 1$. Thus G_a is of exponent 3.

(iii) Consider $1 \triangleleft G_a \triangleleft G$. G/G_a is a group and G_a is a nilpotent p-loop. Hence both G/G_a and G_a satisfy Lagranges Theorem. By [2, p. 269, Theorem 6A], G satisfies Lagranges Theorem.

(iv) By (i) and (ii), G_a is nilpotent. By [Theorem 2, p. 34, 7] G contains p-Sylow

subloops.

Theorem 4. $\mathbf{R} = \langle R(x, y), L(x, y) | x, y \in G \rangle$ is an elementary abelian p-group for $p \neq 3$.

PROOF. As $G_c \subset N$, R(x, y) is an automorphism (its companion $[x, y] \in N$). Let $z \in G$.

$$\therefore zR^{p}(x, y) = z(z, x, y)R^{p-1}(x, y) =$$

$$= z(z, x, y)^{2}R^{p-2}(x, y) \text{ by Fundamental lemma}$$

$$\vdots$$

$$= z(z, x, y)^{p}$$

$$= z \text{ by Theorem 3.}$$

$$\therefore R^{p}(x, y) = I.$$

Now $bR(x, y)R(u, v) = [b(b, x, y)]R(u, v) = b(b, u, v) \cdot (b, x, y)$ since $G_a \subset N$.

$$bR(u, v)R(x, y) = [b(b, u, v)]R(x, y) = b(b, x, y) \cdot (b, u, v)$$

= $b(b, u, v) \cdot (b, x, y)$ since $G_a \subset Z(N)$
by Propreties of G_a .

$$\therefore R(x, y)R(u, v) = R(u, v)R(x, y).$$

By [1, p. 124, Lemma 5.4], $R(x, y) = L(x^{-1}, y^{-1})$. Thus **R** is an elementary abelian p-group.

Remark. For p=3, it can be shown that R(x, y) is of order 3. However, it is not known if R is of exponent 3.

Theorem 5. Let G be a pE loop. Then $G_a \subset Z$ for $p \neq 2, 3$.

PROOF. Let $u, v, x, y \in G$.

$$(uv) R(x, y) = (uv)(uv, x, y)$$
 by Lemma 1
 $= u(u, x, y) \cdot v(v, x, y)$ by Lemma 1 and $G_c \subset N$.
 $= uv(u, x, y)[(u, x, y), v](v, x, y)$ $G_a \subset N$.
 $(uv, x, y) = (u, x, y)[(u, x, y), v](v, x, y)$
 $(uv, x, y) = (vu[u, v], x, y)$
 $= (vu, x, y) \text{ as } G_c \subset N$.
 $= (v, x, y)[(v, x, y), u](u, x, y)$

[(u, x, y), v] = [(v, x, y), u] by Properties of G_a and $G_c \subset N$. Thus [(u, x, y), v] is symmetric in u, v. By Fundamental lemma, [(u, x, y), v] is skew-symmetric in u, x, y and in x, y, z. Hence [(u, x, y), v] is skew-symmetric in w, x. Therefore [(u, x, y), v] = =[(u, x, y), v]⁻¹. So [(u, x, y), v]²=1. [[(u, x, y), v], (u, x, y)]=1 by Properties of G_a . By [1, p. 122, Lemma 5.1], [(u, x, y), v]^p=[$(u, x, y)^p, v$]=1. Therefore [(u, x, y), v] = 1 for all $u, v, x, y \in G$.

References

- [1] R. H. BRUCK, A Survey of Binary System, Springer-Verlag, Berlin (1971).
- [2] R. H. BRUCK, Contribution to the Theory of Loops, Trans. Amer. Math. Soc. 60 (1946), 245—253.
- [3] R. H. BRUCK & LEONG FOOK, Schur's Splitting Theorems for Moufang Loops, Nanta Mathematica, Vol. II, (1978), p. 44-54.
- [4] BURNSIDE, Theory of Groups of Finite Order.
- [5] F. FENYVES, Extra Loops with Identities of Bol-Moufang Type, Publ. Math. (Debrecen) 16 (1969), 187-192.

- [6] G. GLAUBERMAN, On Loops of order II, Journal of Algebra 8 (1968), 393—414.
 [7] LEONG FOOK, E Loops, Bulletin of S.E.A. Math. Soc. 4 (1980).
 [8] LEONG FOOK, Moufang Loops of Order p⁴, Nanta Mathematica, Vol. VII, (1974), p. 33—34.
 [9] LEONG FOOK, The Devil and the Angel of Loops, Proceeding Amer. Math. Soc. 54 (1976), 32-34.
- [10] Leong Fook, Holomorphy Theory of Loops, Publ. Math. (Debrecen) 27 (1980), 139-141.
- [11] C. R. B. Wright, Nilpotency Conditions for Finite Loops, Illinois J. Math. 9 (1965), 399-409.

(Received January 25, 1985)