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On the context-freeness of a class of primitive words

By L. KASZONYT (Szombathely) and M. KATSURA (Kyoto)

Abstract. Let @ be the set of primitive words over a finite alphabet X having
at least two letters. It was conjectured in [2] that intersecting @ with the bounded
language Ly, = (ab™)™, we get a context-free language (a,b € X,n € N). We proved in
[2] that the conjecture is true if n is a product of two prime-powers. Here we generalize
this result for the case when n is a product of three prime-powers.

0. Introduction

The properties of primitive words were investigated by several authors.
In the papers [1] [2] [3] the still unsolved problem was studied: whether
the set @ of all primitive words is non-context-free (we conjecture this). A
well-known method to decide on context-freeness is that we investigate not
Q itself, but the intersection of Q) with a regular language: If () is context-
free, then this intersection must be context-free as well. We considered in
[2] the context-freeness of languages @, = @ N (ab*)™ and proved that if
n is a product of two prime-powers then @), is context-free. Our results
suggest that @), is context-free for an arbitrary positive natural number
n, therefore this intersection seems not to be suitable for the proof of the
original conjecture on non-context-freeness of (). However the problem of
context-freeness of (), may be a touchstone for methods used to prove
context-freeness of bounded languages.

1. Preliminaries
Let X be a fixed nonempty alphabet having at least two letters. A
primitive word (over X) is a nonempty word not of the form w™ for any

(nonempty) word w and integer m > 2. The set of all primitive words over
X will be denoted by Q. Let a,b € X, a#b,n € {1,2,...}, and W be an
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arbitrary subset of the language (ab*)". For w € W let w = ab® - - - ab®»—1

and denote the set of all vectors of the form e(w) = (eg,...,e,—1) by
The index set n = {0,... ,n — 1} will be considered as a “cyclically

ordered” set, i.e. the “open intervalls” (i, j) of n are defined by (7,j) = {k |
i<k<j}fori<gyjandby (i,j7) ={k |k <jork>i} fori>j We will
use the notations [i,j), (¢, ] and [i, j] for the “half closed” and “closed”
intervals defined in the usual manner: [i,j) = {i}U(4,7), (4,7] = (4,7)U{j}
and [i, j] = {i} U (i, j) U {j}.

We say that the pairs of indices {i,j} and {k,l} are crossing if k €
(4,7) and I € (j,4) or if I € (4,5) and k € (j,7). The subsets R and T
of n are said to be non-nested sets, if there exist two elements ¢ and j
of n for which S C [i,j) and T' C [j,4) holds. For the expression “non-
nested” we will use the abbreviation n.n.. If there are given more than
two subsets of n, then for the expression pairwise non-nested we will use
the abbreviation p.n.n.. Addition, summation and multiplication in n are
meant as (mod n)-operations.

Using minor modifications of known methods in GINSBURG [5], W can
be proved context-free by proving that E(TV) is a finite union of stratified
linear sets. A set F' C N*® where N = {0,1,...}, s > 1is called a stratified
linear set iff either F' = () or there are r > 1 and vy, ... ,v,, € N* such that

F = {Uo+ikﬁwi | ki 20}
i=1

and for the vector set V. ={v; |1 <i<r}

(1) every v € V has at most two nonzero components,

(2) if w = (ug,...,us—1) and w = (wop,...,wWs_1) are two vectors
from V and {4, j}, {k,l} are crossing index-pairs then u;wiujw; = 0.

Sets which are finite unions of stratified linear sets are called stratified
semilinear sets.

2. Stars, boxes and differences

Let m be a divisor of n and consider the (ordered) subset S,, =
(804 -+ Sm—1) of n. Sy, is an m-star if s — sp—1 = n/m holds for every
1 <k <m—1. The index-set n may be partitioned into n/m pairwise
disjoint m-stars. An m-star will be represented by one of its elements: If
k € S,, then we say that S,, is an S, (k)-star. This notation is ambiguous,
e.g. Sy(k) = S (k+1) if L is of the form [ =in/m,i=0,... ,m—1. If d
is a divisor of m and S,,, N Sy # 0 then Sy C S,,.
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Let p1,...,p, be pairwise distinct prime divisors of n and let £ € n.
We define the v-box B(§;p1,...,p,) as follows:

B(f;pla"' apu) = {g_zgin/pi ‘ €1 € {071}7 yEv € {071}}
i=1

For m = {p1,... ,p,} we will use the abbreviation B(&; ) for
B(&p1,- . .py). I =0 then let B(&:0) = {£}.

To every vector e = (eq,...,e,—1) and v-box B = B(&;p1,... ,pv)
there corresponds a difference A(B,e) defined by the rule

A(B,e) = Z(—l)”(p)ep, where o(p) = Z‘Ei’ itp=¢— Zsm/pi
i=1 i=1

pEB

In other words, a difference defined for a vector e and a box B is a
signed sum of such components of e the indices of which belong to B, and
if the index-pair {i,k} is an “edge” of the box B then the corresponding
members e; and e of the sum have opposite signs.

Example. Let n =105=3-5-7, and select p=3,¢g=5and r = 7.
Then the set S15 = S15(3) = (3,10,17,24, 31, 38,45, 52,59, 66, 73, 80, 87,
94,101) is a 15-star and the 5-star S; = S5(3) = (3,24,45,66,87) is a
substar of Sis.

Let £ =77, v = 3, then the 3-box B(77;3,5,7) is the folowing set:

e1e2es p=& —(e1-n/3+e2-n/5+e3-n/7) a(p)
000 p=7T—(0-35+0-21 +0-15)=77 0
001 p=7T—(0-35+0-21 +1-15)=062 1
010 p=7T—(0-35+1-21+0-15)=56 1
011 p=77T—(0-35+1-21 +1-15)=41 2
100 p=77-(1-35+0-21 +0-15)=42 1
101 p=77—(1-3540-21 +1-15)=27 2
110 p=77—(1-34+1-2140-15)=21 2
111 p=7T—(1-3+1-21+1-15)=6 3

B(77:3,5,7)=1{6,21,27,41,42,56,62,77}
The difference A(B,e) corresponding to the box B is the following;:

A(B,e) = er7 — €2 — €56 + €41 — €2 + ea7 + €21 — €
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In order to prove that a given subset of N" is stratified linear the
following result is useful:

Lemma 1. For i = 0,... ,n — 1 let the §; be arbitrarily prescribed
“signs”, i.e. let §; € {0,1, —1} and consider the set E={e = (eg,... ,en_1) |
doeo + ...+ dp_16n—1 # 0}. Then FE is a stratified semilinear set.

For the proof of Lemma 1 see [4].

Corollary 2. Let B be an arbitrary box.
If E(B) = {e = (eo,... ,en—1) | A(B,e) # 0}, then E(B) is a stratified

semilinear set.

Corollary 3. Let By,...,B, be a collection of pairwise non-nested
boxes. Then the set

E(By,...,B,)={e| A(B1,e) #0,... ,A(B,,e) # 0}
is a stratified semilinear set.

Let n = p1™...ps" and II = {m,...,m,} be a partition of the
set {p1,...,ps}, and let & be an arbitrary element of n. To every pair
(&; ;) there corresponds a box B(;; ;). For every partition IT we consider
such collections of B(§;,m;)-s which are pairwise non-nested sets. The
union — over the pairs (§;, 7;) for fixed {7, ... ,my} — of the corresponding
E(B(&,m1),... ,B(&,my))-s is denoted by E(II):

B = RE(B(E,m), .- B(&y, 7)) | B(§1, 1), -+, B(&y,7y)
are p.n.n. sets}.

By Corollary 3. the vector set E(II) is stratified semilinear for every par-
tition II.

Ezample. Let n = 30, i.e. p =2, ¢ = 3 and r = 5. The partitions of
the set {2,3,5} are as follows: II; = {{2}, {3}, {5}}, IIo = {{2},{3,5}},
I3 = {{3},{2,5}}, s = {{2,3}, {5} } and II5 = {{2,3,5}}.

E(L) =U{{e=(eo,--- ;en—1) | €, —eg,—15 # 0, ¢, — eg,—10 # 0,
€3 — €636 # O} |
{&1,6 — 15},{&2,& — 10} and {&3,& — 6} are p.n.n. sets}.

E(IIy) = 0 since the boxes B(&1;2) = {&1,& — 15} and B(€2;3,5) =
{€2,&2 — 6,& — 10,& — 16} are for every choice of & and &3 nested sets.
Similarly, E(II3) = 0.

E(Ily) = U{{e = (eo,- . sen—1) [ €c, —€c,—10 — €¢,—15 + €, 25 # 0,
ee,—€g—6 7 0] {&1,81—10,8—15,£,—25} and {&2,&—6} are n.n. sets}.
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E(H5) = U{{e = (60, o ,en_l) ‘ € — €6 — €10 — €15+ €16+
eg—21 +ec25 — €1 # 0} | £ €nf.

Chains of boxes. Let By = B(§;p1,...,ps) and g a fixed element
of the set @ = {p1,...,ps}. Consider the sequence A = A(B1,q) =
(Bi,...,B;) where B; = B({ + (i — 1)n/q;m) if i = 1,...,7. We will
refer to A as a chain of boxes. If 7 = ¢ then we will say that A is a full
chain.

In our proofs we will frequently use the following

Lemma 4. Let A = A(B1,q) = (B1,... ,By) be a full chain of boxes.
Fori=1,...,q we consider the differences A(B;,e) corresponding to B;.

Then
q

ZA(Bi,e) =0 holds for every | e € N".

PROOF. Let B;=B(&;7) and q € w. Then
A(Bi,e) = A(B(&;m\{q}),€) — A(B(& —n/g;m\{g}), €)

holds by the definition of A(B;,e). This means, that in the sum

q

Y ABie) =Y (ABE;m\{a}),€) = A(B(&i—13m\{a}), )
i=1

i=1
every term A(B(&;m\{q}),e) appears twice but with opposite signs.
Ezample. Let n =105 =3-5-7, and consider the 2-box B(58;3,5) =
{58,37,23,2}. The chain A(B(58;3,5),3) is the following:
A(B(58;3,5),3) = {{58,37,23,2},{93,72,58,37},{23,2,93, 72} }.
The sum of the corresponding differences is

(ess — €37 — €23 + €2) + (€93 — €72 — €58 + €37) + (€23 — €2 — €93 + e72) = 0.

We need to define some special subsets of a given chain A of boxes,
consisting of such members of A which are non-nested relative to a given
pair {i,7} of elements in n: Ali,j| ={B | B € A, B and {i,j} are non-
nested sets}.

3. The main theorem

This section is devoted to the proof of the following:
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Theorem 1. Let a,b € X a # b and n = p/rq/2r/s, where p,q and
r are pairwise different prime numbers, fi, fa, f3 > 1. Let further L =
(ab*)™. Then Q N L is a context-free language.

PrROOF. Without loss of generality we may assume that p < q < r.
As we have seen in the special case p = 2, ¢ = 3 and r = 5, the set {p,q,r}
has five different partitions: II; = {{p}, {q},{r}}, 2 = {{p}, {q,7}},
I3 = {{q}.{p,r}}, Wa = {{r},{p,¢}} and II5 = {{p, ¢, 7}}. Let

(2.1) En)={EIL)|i=1,...,5}.
We will prove that

(2.2) E(@QNL)=E(n)if pg # 6 and
(2.3) E(QNL)=E(Mn)uC if pg =6,

where C = |J{{e = (eo,... ,en—1) | €j,—€i, #0,€j,—€;, # 0,¢e;,—e;,#0} |
’ig - il = ’il —j2 == j2 _jl = n/6,j3 —’L'3 = n/r, the sets {il,’iz,jl,jg} and
{j3,13} are n.n. sets}.

If e € N"\E(Q N L) then the function ¢ defined on n by the rule
(i) = e; is an n/p, n/q, or n/r-periodic function of i. Using this fact it is
easy to show that e ¢ E(n) and — in case of pg = 6 — that e ¢ (E(n)UC).
Therefore E(n) C E(QNL)if pg# 6 and E(n)UC C E(QNL) if pg = 6.

In contradiction to (2.2) and (2.3) let us now assume that

*

e =(ey”,...,er 1) € E(QNL)\E(n)
holds if pq # 6, or
e =(eg,..-,€en_1) € E(QNL)\(E(n)UC) holds if pg = 6.

Step 1. Since e* € E(Q N L), there exists an index-pair {i,j} such
that j —i = n/r and e —ef # 0 holds. Let S.(i) = (so,...,8r-1)-
From the definition of S,.(7) it follows that j € S, (7). We will show that
there exists another index-pair {k,[} with the same properties, i.e. such
that | — k = n/r and e — ef # 0 holds. Let us consider the equality
(€5, —e€s,)+ ...+ (e5, —ei ) =0. If on the left side of the equality one
term differs from zero, then another such term must exist as well.

Step 2. We say that the pg-star S,q = (so,...,Spg—1) is a rigid star
relative to the vector e = (eq,...,e,—1) if for the elements sq, Sa+q, 53,
and sg1q of Spq

(24) es,,, —€s, =€s;,, —€s; holds whenever a =3 (mod p).

In Steps 1-7 we will show that every Sp,-star of n is a rigid star
relative to the vector e*.
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Case 1. In the following Steps 3-5 let p = 2.

Step 3. Let {i,j} and {k,l} as in Step 1, and consider the 2g-star
Saq = (S0, - ., S2g—1). Denote the set of all one-boxes of the form B(¢,2) =
{&, £ —n/2} contained in Sy, by ® and consider the subsets of ® consisting
of such boxes B = {sq, Sa+q}, for which B and {7, j} are non-nested sets
by ®(i,7) (in case of {k,l} and {sq, Sa+q} by ®(k, 1) respectively). We will
say that the star Sy, is well-positioned relative to the intervals [4, j] and
[k, 1] if

(2.5) &= (i, ) UdKk,I)

(2.6) D(i, ) Nk, 1) # 0.
We will show that
(2.7) If the 2q-star Saq is well-positioned relative to [i, j| and [k,] then Sz,
s a rigid star relative to the vector e*.

Let us consider the chain A = A(By,q) = (B1,...,B;). Here By and
B, satisfy the following conditions:
(2.8) B1 = B(o +n/2+n/q;2,q) = {o +n/2+n/q,0 +n/2,0 +n/q,0}
and o is the element of the set S, \ [, j] which lies — according to its cyclic
order — nearest to j.
(2.9) B, = B(&;2,q), where £ is that element of the set Sa,\[¢,j] which
lies — according to its cyclical order — nearest to .

Let us consider the vector set
E(lly) = {{e = (eo,.-. ,en—1) | A(B(£132,9),¢) # 0, A(B(&2;7),€) #
0} | B(&152,¢) and B(&2;7) are n.n. sets}.
Here B(&152,q) = {1, & —n/q, & —n/2,6& —n/q—n/2}, B(&asr) =
{&2, & — n/r} holds by the definition of boxes, while A(B(&1;2,9),¢e) =
€6, — €6—n/q — Cei—nj2 T €ei—njq—ns2 and A(B(&;7),€) = e¢, — €gy_n/r
holds by the definition of differences.

It is easy to show that — for every m € {1,...,7} — the sets B,, and
B(j;r) = {i,j} are non-nested sets, therefore

{e = (e, en—1) | A(Bm,e) #0,A(B(j;r),e) # 0} C E(ILy).

The vector e* is choosen such that e* ¢ E(n), therefore
e* ¢ {e=(eg,... en-1) | A(Bp,e) #0,A(B(j;r),e) # 0} holds as well.
But i and j are such that A(B(j;7),e*) = ej—e; # 0, hence A(B,,e*) =0
for every m € {1,...7}. Using this fact it is easy to show that (2.4) holds
for the elements of ®(i, 7). By similar arguments as in the case of ®(i, j),
(2.4) can be proved for the elements of ®(k,l) as well. Finally using (2.5)
and (2.6) we can check the validity of (2.4) for the elements of ®.
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Step 4. Let Sy, be an arbitrary 2¢gr-star of n and let us represent
Saqr by its greatest element (n — s): Saqr = Soqr(n — s). Without loss of
generality we may assume that (in Step 1) 4, 7, k and [ are chosen such that
1 =0, and k—j < ¢—1 holds. We will show that if ¢ < z < r, then the 2¢-
star Soq(—s + z(n/(2¢r)) is well-positioned relative to [i, j] and [k,[] (See
for the definition Step 3). Let {¢1,¢2} € ®. We prove that if ¢1 € [i, j]
then ¢ & [k, [].

Assume indirectly that ¢; € [4,j] and ¢2 € [k,l]. Using (2.10) it is
easy to see that n/2 < ¢9 < n/2+n/2r. But then 0 < ¢; < n/2r holds
for ¢1 = ¢ — n/2, contradicting the fact that Sy, N [0,n/2r] = 0 by the
choice of z. We conclude that if {¢1,p2} & ®(7,7) then {¢1,¢2} € ®(k,1)
and therefore (2.5) is valid. It is easy to prove that Sy, N [4, ]| < 1 and
|Saq N[k, ]| < 1 therefore |® (i, j)\P(k,1)|+|P(k, 1)\ P(i,j)| < 2. According
0 (2.5) & = (B(i, )\&(k, 1)) U (B(i, )\B(E, 1)) U (23, /) N B(k, 1)) holds
and therefore |®(i,7) N ®(k,1)| > |®| —2=¢— 2> 0. Thus (2.6) is valid.

Case 2. In Steps 5-6 let p > 2.

Step 5. Without loss of generality we may assume that (in Step 1)
the indices ¢, 7, k and [ are chosen such that | =n—-1and k —j <i—j
hold. Let Spq- be an arbitrary pgr-star and Sp, = Spq(6) be a pg-substar
of Spqr such that the element 6 satisfies the inequalities k—n/pgr < 6 < k.
Consider the full chain A, = A(B(&;p,4q),p) = {B1,...,B,} where £ € Sy,
and p € {p,q}. The subsets A,(i,7) and A,(k,l) of boxes in A(B1,p) are
defined by A,(i,j) = A, )4, j[ and A,(k,1) = A, |k, 1] respectively.

Let £ € Spqy and B = B(£ + n/p;p) be an arbitrary one-box in S,.
We say that B is g-reducible if there exists a one-box B(n + n/p;p) such
that £ =n (mod n/q), 0 <n <n/qand A(B,e*) = A(B(n+n/p;p),e*).

It is easy to see that for p € {p,q} and (n,v) € {(4,7), (k, 1)} Ap(p,v)
is a chain of boxes. We show that for every B € A,(u,v), A(B,e*) =0
holds. Note that e* ¢ {{(eo,...,en—1) | A(B,e) # 0,e, —e, # 0} | B
and {u, v} are n.n. sets} by the definition of e*. But B and {u, v} are n.n.
sets and e, x —e,* # 0 therefore A(B,e*) = 0. Let Ay(p,v) = A(B(o +
n/p+n/q¢;p,q),q) = {C1,...,C:}, then for 1 < 9 < 7 A(Cy,e*) =0
i.e. ez*r+(z9—1)n/q+n/p — €Z+(19—1)n/q = e:;Jrﬁn/qun/p — ej;Jrﬁn/q holds. We
conclude that if for suitable ¥ and one-box B = B({1;p) B C Cy holds,
then B is g-reducible.



On the context-freeness of a class of primitive words 9

Step 6. Let Q = A(B(§,p),p) = {Bi1,...,Bp} be a full chain of one-
boxes in Sp4. According to the result of Step 5 and using the fact that
n/p > n/r we can state that all but possibly one element of Q are ¢-
reducible. Without loss of generality we may assume that Bi,..., and
B,_1 are g-reducible. We will show that B, is ¢g-reducible as well. Let us
consider the function ¥ which is defined on the set of all one-boxes of the
form B(§ 4+ n/p;p) in Sy, as follows:

Y(B(€ +n/p;p)) = B(n+ n/p;p) where n =& (mod n/q)
and 0 <n <n/q.

The g¢-reducibility of Byp,... and B,_; means that A(B,,,e*) =
A(Y(By,),e*) holds if m =1,... ,p — 1. By Proposition 6

(2.14) A(B,,e*) = — ,,z_: A(By, €*).

m=1

To prove that A(Bp,e*) = A(¢(B,), e*) it is enough to show that

P p—1
(215) 3 AW(Bn).e") = 3 A(B(E +mn/pg + n/p,p).e*) =0,
m=1 m=0
where & is the smallest element of S,,.
Let us consider the full chain Q' = A(B(0+n/q;p),p) = {B1,... , B, },
where k —n/pgr < 0 < k holds (see the definition of 6 in Step 5). Here the
one-boxes By, ..., B}, are g-reducible by the result of Step 5. Box B(6 +

n/q;p,q) and set {k,l} are n.n. sets, therefore A(B(0 +n/q;p,q),e*) =0,
hence Bj is g-reducible as well. It follows by Proposition 6 that

P p—1
(2.16) > A@(B,),e*) =Y A(B(& +mn/pg+n/p,p),e*) =0
m=1 m=0

and therefore (2.15) is valid.

Step 7. In Steps 1-6 we proved that every pgr-star contains a rigid
pg-star as a substar. Let S, be an arbitrary pgr-star of n, and Sy,(s) a
rigid substar of S,,.. We prove that all pg-substars of S, are rigid stars.
For m =0,...,7 — 1 let us consider the pg-stars Sp,(s + mn/r). Assume
that there exists an mg for which Spq(s+ (mo—1)n/r) is rigid, but Spe(s+

mon/r) is not, i.e.: there exists a jo such that jo € Spq(s + mon/r) and
* o _e*
Jo

€ jo—n/p

#* e;fo_n/q —e;fo_n/q_n/p holds. It is easy to see that jo—n/r €
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Spq(s+ (mo—1)n/r) and therefore e;o_n/r — e;fo_n/r_n/p = e;fo_n/r_n/q —
€ —n/r—n/q—nsp OIS by the rigidity of Spe(s + (mo — 1)n/r). But then
A(B(jo;p,q,7),€*) # 0, therefore e* € II5, which is a contradiction.

Step 8. Using the fact that e* € @ it is easy to prove that there
exist boxes B, = B(§;71), By = B({g;q) and B, = B(,;p), such that
A(By,e*) # 0, A(By,e*) # 0 and A(By,e*) # 0 hold. Let us fix the box
B, and consider for = 1,... ,p the boxes B,(u) = B(§, + (1 — 1)n/p;q)
and for v = 1,... ,q the boxes B, (v) = B(§{, + (v — 1)n/q;p). Using the
fact that every pg-star is a rigid star it is easy to prove that for every u €
{1,...,p}, A(Bg(p),e*) = A(By(1),€e*) # 0 and for every v € {1,... ,q}
A(Bp(v),e*) = A(Bp(1),e*) # 0. An elementary computation shows that
if pg # 6 then there exist indices po and vy such that the boxes B, (uo),
B, (1) and B, are p.n.n. sets. But then e* € E(II;), again a contradiction.
Similarly, the case pg = 6 leads to the contradiction that e* € C. O

4. Conclusions

The proof of Theorem 1 has some ad hoc elements. To get a devel-
opment in the general case the systematic investigation of properties of

boxes and differences seems to be necessary.
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