A completeness theorem for intuitionistic predicate logic.
An intuitionistic proof*)

By A. G. DRAGALIN (Debrecen)

It is well known that the completeness theorem for predicate logic play the
important part for modern model theory in classic logic as well as in intuitionistic
one. So it is understandable the aspiration for constructive treating of this theorem.
Unfortunately, usual proofs of this theorem are not constructive (see, for example,
expositions in [1], [2], [3]).

In 1973 W. VELDMAN [4] proposed an intuitionistic proof of the completeness
theorem for the intuitionistic predicate calculus with respect to modified Kripke
models. The modification was in admitting the so-called strange worlds (or exploding
worlds), i.e. such moments in which every sentence is true.

Veldman’s theorem has the following form: a modified Kripke (or Beth) model
M can be constructed, such that if a sentence A is true in M, then A necessary is
deducible in the intuitionistic predicate calculus (IPC). However, the distinguished
Veldman’s model M has continual power, the worlds in this model are intuitionistic
free choice sequences, M has a nondiscrete ordering, so it looks rather strange from
point of view of usual constructive reasoning.

A countable distinguished model with analogous properties is constructed in
[3] chapter 5 for higher order intuitionistic logic. But its semantic is abstract alge-
braic one rather than intuitionistically plausible semantic of Kripke or Beth models.

H. DE SWART [5], [6] gave somewhat other form of the completeness theorem
for IPC. He constructs the whole fan § of modified models, such that if a sentence
A is true in every model from S, then A is deducible in IPC. Every model of S has
already a discrete ordering, but certainly the whole family of models is continual.
Moreover, the truth-definition of formulas in de Swart meaning has an important
disadvantage: if a model from S has at least one strange world, then all worlds of
this model turn out to be strange. This fact destroys the monotonocity property in
intuitionistic model theory. In this point de Swart’s truth-definition distinguishes
from the Veldman-like truth-definition.

Essential point in Veldman and de Swart intuitionistic proofs is the using of
the intuitionistic fan theorem. This theorem is genuine for classical nonconstructive
understanding of sequences as well as for specific intuitionistic understanding of
free choice sequences, but it is not appropriate for mu~h other directions in con-
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structive mathematics (see, for example, discussion in [7]). So we are interested in
avoiding the using of this theorem.

The main result of this paper can be formulated in the following form: can be
constructed the modified Beth model M such that: (i) the set of worlds of M is the
set of all finite 0—1-sequences with natural discrete ordering; (ii) M possible con-
tains strange worlds, but truth-definition in M is monotone in style of Veldman;
(ii1) if a sentence A is true in M, then A4 is deducible in TPC.

The proof of this theorem is essentially neutral, it is valid from classical and
from intuitionistic point of view. We do not use the fan theorem. Practically we
don’t use the properties of choice sequences using instead some sorts of inductive
definitions.

The sign + below means “is by definition”. By = we mark the beginning
of a proof and by ] mark its end. We use logical symbols simultaneously in formal
and metamathematical contexts with the exception of an implication, where we use
= for metamathematical contexts rather than o.

1. Modified Beth-models

1.1. We consider formulas in an usual first-order language, so they are built
from atomic formulas with help of logical connectivies A, V, >, 7, logical con-
stant | (“‘false”) and quantifiers ¥, 3. For simplicity we suppose, that our language
is one-sorted, without equality, without constants and functional symbols. The gen-
eralization of the main results for these more complicate situations is rather straight-
forward and we shall not deal with them.

If d is a nonempty set, then d-valued formula is an expression 4", obtained
from the formula A4 of our language by substitution of free variables of 4 by ele-
ments of d; therefore d-valued formula has no free variables, but possible has ele-

“ments of d as constants.

1.2. Let X be a set @ of all natural numbers or the finite subset of this set.
Let us denote by Z* the set of all finite sequences of elements X, including the empty
sequence A. By p*q we denote the concatenation p and g, so if p={, ..., ip-1)
and g=(Jo, .+s Ju-1)> then pxg=C(o, ..., iy-1,Jos +--s Ju—1)- The number of members
of p we denote by dp; for example, 9, ..., i,—,)=m, dA=0. The one element
sequence is denoted by (i). Instead of p# (i) we shall write sometimes p i simply.

For p,g€ZX*, g is said to be an extension of p (in symbols p=gq) iff p is an
initial segment of ¢, i.e. iff Jr(p*r=¢q). The strict order relation is introduced by
definition: p<=g-+(p=q)A (g=p). One-step order relation is defined by

p<gq+QieX)(px(i) = ¢).
1.3. A tree is a subset TCZX*, such that
(i) there is an element p,cT (a root of the tree), (Vg€ T)(po=9);
(i) po=q=r, reT=4qcT,;
(iii) (VpeT)(3¢ET) (p=14);
(iv) T is decidable subset of Z*, i.e.
(VpeZ*)(peTVpeT).
The last condition is important only from intuitionistic point of view, certainly.
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For example, X* itself is a tree.
A function a: w—T is said to be a path, if a(0)=p, and ¥ n(a(n)=<-a(n+1)).
A path « is said 7o pass through peT iff Hn(a(n) =p).

14. Aset xCT is (order) open iff for all p,qcT

PEXx, p=q=gEx.

Let @ be the family of all open subsets of 7.
A set xS T is said to be complete iff

(vpeT)(Yq(p = g = q€x) = péx),

€ denotes the family of all complete subsets of 7.

Let now xS 7 is an arbitrary subset of 7, let us define a completion of
x: Dx=N{ye€xZSy}, ie. Dx is an intersection of all complete subsets of T,
containing x. Evidently:

(1 Dxc€;
(ii) x € Dx;
(iii) (WeC) (xS y=Dx S ).

From intuitionistic point of view it is possible to perceive (i)—(iii) as an independent
“‘generalized inductive” definition of an operator Dx and do not use the original
set theoretic definition.

1.5. Definition. A modified Beth-model for 1PC is a structure

M= (T, o0,dV),
where:
(i) Tis a tree;

(11) 0c€NO (a zero of M);

(ii1) d is a nonempty set (an individ domain of M);

(iv) V is a valuation function of M, namely, V is defined for every d-valued
atomic formula P and V(P)EENO, oS V(P).

Now for every d-valued formula 4 we can naturally define a truthvalue || A| of
A in M by induction, [|4|€€N0O, o< | A]:

L |4| = V(A4) for atomic A,
2. IAAB| = [ 4] "|BY;
I4V B = D(| 4] U [|BI));
|4 B| = {peT|(Vq = p)(g€ 4]l = g€ |BI)};
174l = {peT|(Vg = p)(4€ |4l = g€0)};
Ll = o;
IVxAX)l = afgd I4(a)l:

8. I3xA)] = D(KEJ‘ I4(@)).

e T R

1*
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Elements of T we call worlds or moments of T. The world peT is said to be
strange or exploded iff p¢€o.

We say that a d-valued formula A is true in the moment pcT (in symbols p|-A4)
iff p€||All. We say that a formula A4 is true in a model M (in symbols M |- A) iff
for every d-valued formula 4’, obtained from A by substitution and for every moment
p we have pI-4".

It is a straightforward exercise to prove that M| A for every deducible in IPC
formula A.

Remark. We modify a traditional Beth-model notion in two aspects:
1. in traditional notion o=, i.e. there are no strange worlds;
2. one uses the following completion operator

D’'x +{peT|Va(3n(x(n) = p)>(@m = n)(a(m)Ex))}

(“‘every path, passing through p, pass also through some element of x”°) rather
than our operator Dx. Classically it is not difficult to prove that D’x=Dx for
every xS 7. From intuitionistic point of view using Dx has some important advan-
tages and, in particular, allows to avoid employment of the fan theorem.

2. General semantic constructions

Here we include our previous considerations in some more general context.
2.1. Let T'is an arbitrary set. Let us denote by 2 the family of all subsets of 7.

Fact. The structure (#, C) is a complete Heyting algebra (about main pro-
perties of Heyting algebras consult, for example, [8], where these algebras are called
pseudo-Boolean algebras).

In this algebra

1=T7, o=@,

aAb=aNb, aVb=aUb,
a=b= (ad,b) = {peT|pca = peb},
la = (1,a) = {peT|pda}.

Further, if QS 2, then AQ=NQ0, VO=UQ.
Here and below in analogous cases
NQ = {peT|(vacQ)(pca)},
so NQO=T, if 0=@.

Remark. Classically (2, S) is even a Boolean algebra and (a >,b)=(T\a)Ub,
but intuitionistically we can prove only

(T\@)Ub C (a>,b).
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2.2. Letnow (T, =) is an arbitrary (partially) ordered set. Put p<g¢g +(p=¢)A

Ag=p),
x€0+(x S T)NVpgeT)(pexA\p = g = g€x).

Fact. The structure (0, ) is a complete Heyting algebra.
In this algebra
1 = Tg 0= G’

bAb = aNb, aVb= aUb,
a b= (a>eb) = {peT|(vq = p)(g€a = g€b)},
Ta = (Tea) = {pET|(Vq = p)(¢¢a)}.
Further, if QS 0, then AQ=N0Q, VO=UQ.
2.3. Let (T, =) again an ordered set.

2.3.1. Definition. A completion structure on T is a function J defined on T
and such that for every p€T, J(p) is a family subsets of T. Additionally we demand,
that a condition

g€a, acJ(p)=>p=4q

is fulfilled for all p, g€T, aCT.
A set xC T is said to be complete (relatively J) iff

(VacJ(p))(a € x = pex).
Let € denotes the family of all complete (relatively J) subsets of 7.

2.3.2. Fact. QSE€=NQ¢E.
Every completion structure J generates a completion operator. Namely, if

xS T, then
Dx = N{be€|x S b}.

2.3.3. Fact. For all a,bC T, we have:

(1) a € Da;
(i1) DacC;
(iii) aS be€=Da C b;
(iv) aC b= Da C Db;
) DDa = Da;
(vi) ac€ o Da = a;
(vii) D(aUb) = D(aUDBb).

2.3.4. Lemma. ac0, xS T=aDx< D(aNx).
> Let ac@® and xS T, we consider the set

¢ = {peT|pca= peD(aNx)}.
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Now it should be checked that xS¢ and c€€ (hint: use the condition in 2.3.1.
and assumption a€(@). Therefore DxSe¢, hence aNDxED(@Nx). O

2.4. For an ordered set (7, =) we define
a = b+ (vpeb)(3gca)(g = p)
for a, b S T. If a=b we say that a shades b.
2.4.1. Definition. A completion structure J is said to be ordered iff for all

p. €T
p = q = (vacJ(p))(3b€J(g))(a = b).

Sometimes we use a sufficient condition for the structure to be ordered. Namely,
J is discrete below iff:

a) (VpgeT)(p = gV p = q);
b) (VpeT)(3acJ(p));
c) p<gq, acJ(p)= (3rca)(r = q).

If J is discrete below, then J is ordered. Certainly, the condition a) is essential
only from intuitionistic point of view.

2.4.2. Lemma. Let J is an ordered completion structure. Then
x€0 = Dxe€ENO.
> Let x€0, we show Dxc@ (Dx€€ follows from 2.3.3.). Let us consider

the set
¢ = {peT|(vq = p)(¢g€Dx)}.

Now it should be checked, that xSc¢ and c¢€€. In checking ccE we use the
condition, that J is ordered. Hence Dx< ¢ and therefore Dxc@. [

2.4.3. Lemma. Let J is an ordered completion structure. Then
x€0, ye€ = (xDp)EENC.

& (x2p))={pEeTI|(Vqg=p)(gc x=q€Yy)}, so from definition (x>5,y)€@ for all
x,yST. Suppose, that xc@, yc€. We show, that (x>,y)€E. Let acJ(p),
aS(x>py), it is necessary to prove pe€(x>,y). Let us consider ¢g=p, g€x and
conclude, that g€y. As J is an ordered structure for a given a€J(p) there exists
beJ(q), a=b. We claim b<y. Indeed, let réb. As a=b, there exists s=r, sca.
From aS(x>D,p)€@ follows s€(x>,y) and re(x>D,y). Further, rebeJ(q), so
g=r. But g€x€0, hence réx. Thus réx, ré(x>,y), hence réy. From bCycE
and beJ(g) we conclude g€y. 0O

2.4.4. Lemma. Let J is an ordered completion structure. Then
x, yEO@=DxMNDy = D(xNy).
o> Nontrivial is only the inclusion
DxNDy S D(xNy).
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We prove it with help 2.4.2., 2.4.3. using some inclusions in the algebra @ 2.2. as
follows:
xNy S D(xNy);

x S (y2oD(xNy));
Dx S D(y2,D(xNy)) = (y2,D(xNy));
yMNDx € D(xNy);
yE(Dx2,D(xNy));
Dy € D(Dx>,D(xMNy)) = (Dx>D,D(xMNy));
DxNDy € D(xNy). 0O

2.5. Theorem. Let J is an ordered completion structure. Then the structure
(€N0O, ) is a complete Heyting algebra. In this algebra

1=T, o=D(Q),
aAb =aNb, aVb= D(aUb),
a—+ b= (adyb),
a = (a>,0).

Further, if QS€NO, then AQ=NQ, VO=D(UQ).
o> It is a corollary of 2.4.2., 2.4.3., 2.4.4. The completion operators for cre-
ating Heyting algebras in more general situation can be found in [3]. O

2.6. Let us call a set xS T weak-open if
acJ(p), pEx=ac< x.
The family of all weak-open subsets of T let us denote by 0.

2.6.1. Fact. (i) 0S0;

(i) x,ye0=xNy, xUyco;

(iii) QS0 = U Qc0.
2.6.2. Lemma. x€0, ycG=(x>,y)cE.
o> Issimilar to 24.3. O

2.6.3. A completion structure is said to be monadic iff for every peT, J(p)
is at the most one-element set, more precisely: (VabeJ(p)) (a=b).

2.6.4. Lemma. Let J is a monadic completion structure. Then

x€0 = DxcCNO.
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e Let x€0, we show Dxc@® (Dx€€ follows from 2.3.3.). Let us consider
the set
¢ = {peDx|(vacJ(p))(a S Dx)}.

Now it should be checked, that xC c€E.
Suppose, for example, acJ(p), aSc and let us show p€c (proving c€E).
If beJ(p), then, asJ is monadic, b=a< ¢ S Dx. So (YbeJ (p)) (b S Dx). Further,
from bS Dxc€ it follows p€Dx. Hence pec.

From xCSccE it follows DxCe, so Dxe0. 0O

2.6.5. Lemma. Let J is a monadic completion structure. Then
x, y€0= DxNDy = D(xNy).

o> Is similar to 2.4.4. We use 2.6.2., 2.6.4. and some inclusions in algebra 2
2l) O

2.7. Let J is a completion structure and zS T. Let us define a new comple-
tion structure:
Jo(p) = {a S T|acJ(p)V(pezha = Q)}.

Let €,, D, are respective notions related to J,.
Fact. (1) J,is a completion structure on T';
(i) x€€eoxcCA(zEX);
(iii) Dyx=D(xUz)=D(xUDz);

(iv) if Jis an ordered structure and z€@, then J; is also an ordered
structure.

3. Branching of sequents, sequent trees

In this point we develop an apparatus essentially equivalent to deducibility in
IPC, but more appropriate in our considerations.

3.1. A collection of formulas is by definition a finite (maybe empty) set of for-
mulas, in which a repetitions of some formulas are admitted. The order of formulas
in a collection is not essential, but for every member of a collection it is indicated,
how many copies of this member there are in a collection considered. Traditionally
we write I'4 instead of I'UA4, so I'd and AT is the same collection. The collec-
tion Al is obtained from I' by adjoining one copy of 4.

A sequent is a formal expression of the form (I'-4), where I' and 4 are
collections. If S'is I'~4, then let us denote (S)°=I and (S)'=4.

A sequent I' -4 is said to be intuitionistic iff A4 is empty or one element col-
lection. Further, I'=4 is said to be strong deducible (in symbols *I'—+A4) iff
there exists 4” A°C 4, such that I'-A4’ is an intuitionistic sequent and I'—»A4’
is deducible in the intuitionistic sequent calculus without cuts. Certainly, for intui-
tionistic I'—~4 the notion of strong deducibility coincides with the usual notion of
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cut-free deducibility (about the intuitionistic sequent calculus and the cut rule con-
sult, for example, [3], addition B, or [9] § 77).

A sequent is said to be primitive iff it has one of the following form: AI'~A4A4
or | I'+A4, where A is an arbitrary formula. Of course, if S is primitive, then
*S.

3.2. If S,, S,, S, are sequents, then let us define two three place relations:
Sy <083, S and S; < Sy, S

(in words: S, branches into S, and S; in reversible manner and, respectively, S,
branches into S, and Sy in nonreversible manner).
To begin with, for an arbitrary sequent S we define:

S <S8, S.

Further we list all the rest cases of both relations S; <;Ss, Sy. Every case will have a
special symbolic name depending on the construction of S;. The notation S;-<;S,
is an abbreviation for S, <;S;, S,.

1. (A=) (AANB)I - A<,AB(ANB)T — 4;
2. (= A) I~ A(AAB)<,I" - A(AAB)A,
I' - A(ANB)B;
(V =) (AVB)T » A<,A(AVB)T - 4,
B(AVB)I' — 4;
4. (-V) I' - A(AVB)< -~ A(AVB)AB;
5. =) (ADB)I - A<4(ADB)I' - AA,
B(ASB)T —~ 4;
6. (+=) I = A(ADB)<, I — A(ADB),
Al - B;
7. (=) Al = A< VAl - AA4;
(=) I' > A41A4A<, I’ - 4114, Al -;
9. (V=) VxA(X)I - A<, AQ@)¥xAx)T -~ 4;
10. (=V) I = AYxA(x)<.I - AYxA(x), I - A(»),
where y is not free in I';
11. (3-) 3xAX)T ~ A<, A(y)3xA(x)T —~ 4,
where y is not free in IxA(x)I'~4;
12. (»3) I - 43xA(x)< oI = 43xA(x) A(2).
Therefore =, relation is true only in cases (— 2),(=7),(=V).

(%]
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3.2.1. Fact. (1) If 8,<;S,, S5, then (SP°S(Sy)°, (S)'S(Sy)", (S)'S(S)"
(i) If §;<0S;, S35, then (S)'S(Sy)"
3.2.2. Fact. (i) If S,<,S:, S5 and simultaneously +—*S, and - *S;, then
—*+S;.
(i) If S;<;8,,S; and at least —*S, or —*8S;, then 18S,.
3.3. A binary tree T'is a tree (see 1.3.) such that for every peT, a set {glp< g}
consists precisely of two elements. For example, {0,1}* is a binary tree.

A sequent tree on a binary tree T is a couple of functions (z, h) defined on
T, such that for every p€T, t(p) equals 0 or 1, h(p) is a sequent and, moreover

h(p) <uph(p*ip)), h(p*(ir)),

ip <1iy, p*(ly), p*(i)€T.

where

For simplicity below we shall write p*0, px1 instead of p#* (), p* (i),
so we shall deal mainly with 7={0, 1}*. The case of a general binary tree is quite
similar.

3.4. A zero of a sequent tree (t, h) is a set

i o = {peT|(3¢ = p)(- *h(9)}
Evidently oc0.

3.5. Let (1, h) is a sequent tree on 7. Let us define some completion structures

on T. First of all, put
J(p) = {{p*0, px1}}.

This structure is discrete below and, hence, ordered (2.4._1.). Moreover, it is
monadic (2.6.3.). The notions, corresponding J we denote as €, @, D etc.

Further:
Jo(p) = {a S T|acJ(p)V(pcoha = @)}.

This structure is ordered either (2.7.). Corresponding notions are &, Gy, D,

etc. According 2.7.:
Dy(x) = D(xUo), €, = {xc€|o S x}.

Moreover, in view 2.5. (€,N@, ) is a complete Heyting algebra.

At last, let us define two further completion structures:
{p#0,px1}}, if (p)=0;
{{p =03}, if ©(p)=1.
{{p0, px1}}, if (p)=0;
{p*0}, {px1}}, if (p) = 1.

Jy, Jy are not ordered. Structures J, J, are monadic, but J,, J, are not. Respectively
arise notions €,, €,, D,, @, etc.

Ji(p) = {

J(p) = {
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3.5.1. Lemma. (i) 0¢c0, 0c0,:
(i) o€C, o0cC,, for i=0,1, 2.

e 201, 322. O

3.5.2. Fact. If xST, then
(ii) DxEDxE Dox.

3.6. Let again (1, h) is a sequent tree on binary tree 7. For every formula 4
we define two sets L(A4) and R(A):

L(4) = {peT|4¢(h(p)’},
R(A) = {peT|4€(h(p))'}.

3.6.1. Lemma. L(A)c0, R(A)c0,.
= See 3.21. O

3.6.2. Lemma. (i) Let n€w is a natural number, pcL(A) and

x={q|q = p, q¢L(A), 0q = dp+n}.
Then p<Dx.
(i) Let n€w, peR(A) and

x = {q|q = p, gcR(A), 0q = dp+n}.

Then peDyx and peD,x.

e Induction on n. Let us consider (ii) and operator D,. If n=0, then x={p},
pEx and, hence, p<D, x.

Let now n=0. For i=0,1 we define

xi={q = p*ilgcR(A), dg = d(p*i)+(n—1}.
Let us consider two cases:

1. ©7(p) = 0. Then p*0cR(A) and px1€R(A) (3.2.1.), so on inductive
supposition p#i€Dyx; for i=0,1. But x;Sx, therefore p=#icD;x. If
a={p»0,px1}, then a€J,(p), aSD,x (note t(p)=0). Hence, pED,x.

2. t(p)=1. In this case p=*0cR(A) (3.2.1.). On inductive supposition
p*0€D; x,. But x,CSx, so p*0cDyx. If a={px0}, then acJ,(p), aSD;x
(note t(p)=1), hence peDyx. O
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4. Systematic sequent trees. A Beth-model, associated with a sequent tree
4.1. A sequent tree (7, h) on binary tree T is said to be systematic if the fol-
lowing conditions are fulfilled:
1. L(L)ESo;
L(A)NR(A) S o;
L(AAB) € D(L(4)NL(B));
R(AAB) S D,(R(4)UR(B));
L(AVB) S D(L(4)UL(B));
R(AVB) S Dy(R(A)NR(B));
L(A5B) € D(R(4)UL(B));
R(ADB) & D,(L(A)ﬂ R(B));
L(14) S D(R(4));
R(714) S Dy(L(A));
L(vxA(x)) S D(L(A(2))), z€Var;

R(vxA(x)) S Da(ﬁg R(A(>»);

© % N A ;A W

e
P = 9

13. L(3xA(x) S D(, }-J,,L(A(y)));

14. R(3xA(x)) S Dy(R(A(2))), z€Var;
Var is a set of all variables of our language.

4.2. Theorem. Let S is a sequent and T is a binary tree. Then a systematic sequent
tree (t,h) on T can be constructed, such that h(p,)=S. Here p, is a root of T.

= We define t(p) and h(p) by induction on dp.

If dp=0, i.e. p=p,, then we define h(p,)=S.

Let now dp=>0, h(p) already is defined, and t(p”), h(p’) are defined for every
p'eT, dp’<dp. Note, that 7(p) is not defined yet.

In this situation we define t(p) and h(p=0), h(p=1).

Let us represent dp in the form

Op = 2™+ 3™ . 5™ oy,

where 2, 3, 5 do not divide m,.
The moment p is said to be expressive iff
(1) m, equals O or 1;
(11) m, is a (Goedel) number of some formula A, such that 4 is nonatomic
and A differs from | ; moreover, if my=0, then A occurs in (h(p))", and if my=1,
then A occurs in (h(p))';
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(iii) if my=0 and A begins from quantifier ¥, then m, is a (Goedel) number
of some variable z, if m=1 and A begins from quantifier 3, then m, also is a (Goedel)
number of some variable z.

Now, if p is not expressive, we put 7(p)=0 and

h(p#0) = h(p*1) = h(p).
If p is expressive we define

©(p) =i, h(px0)=3S,, h(px1)=S;,

in such a way, that h(p)~<;S., Ss with a given formula 4 with number m,, cor-
responding cases 1.—12. in 3.2. Moreover, in the cases 9. (¥ —) and 12. (—=3)
we use a given variable z with number m,.

The definition of functions 1, h is finished. It is clear, that (z, h) is a sequent
tree on 7.

Let us check the systematic conditions 4.1.

The conditions 1., 2. are true for arbitrary sequent tree. Indeed, if peL( 1)
or peL(A)NR(A), then h(p) is primitive and so +—*h(p), hence, p€o.

Let us check several of conditions 3.—14.

7. L(4>B) € D(R(4)U L(B)).

Let peL(A>B). Let us consider a natural m=2°-3m.5m .my, m=>dp, such
that m, is a (Goedel) number of (4>B). Let

x = {q = p|dg = m, gc L(A> B)}.
Then peDx (3.6.2.).

In this situation every g€x is expressive and in accordance with the con-
struction (z, h) (cf. 3.2, 5. (o ~)), ©(¢9)=0, we have xSD(R(4)UL(B)). Hence
it follows

peDx S D(R(4)U L(B)).

8. R(4>B) S Dy(L(4)N R(B)).

Let p€c R(AD>B). Let us consider a natural m=2"-3™.5".m,, m=>dp, such
that m, is a number of (4> B). Let

x = {q = p|og = m, g¢ R(ADB)}.
Then p€D,x (3.6.2.).

In this situation every g€x is expressive and in accordance with the
construction (t,h), t(g)=1 and the branching 3.2., 6. (—~>) is used. Hence
xS Dy(L(4)NR(B)), so

PEDyx S Dy(L(A)N R(B)).

12. R(7xA4() S Do( | R(A)).

Let peR(VxA(x)). Let us consider a natural m=2'-3m.5m.m,, m=>dp,
where m, is a number of ¥xA(x). Let
x ={q = p|dq = m, g€ R(VxA(x))}.
Then peD,x (3.6.2).
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In this situation every g€x is expressible 7(¢)=1, and the branching 3.2.,
10. (—=V) is used. Hence,
xS Dy( U R(A0))
yeEVar

(because for every g€x there exists a variable y, such that q* 1€R(A(y))). There-
fore pED,xSD,( U R(A(1))

vEVar
14. R(3xA(x)) € Dy(R(A(2))), z€Var.

Let us fix some variable z, let p€ R(3xA(x)). Let us consider a natural
m=2"-3m.5m.m, m=dp, where m, is a number of formula 3xA4(x) and m, is
a number of z. Let, further,

x = {g = p|0g = m, q¢ R(3xA(x))}.

Then peD,x (3.6.2)).

In this situation all ¢€x are expressible, 7(¢)=0, and the branching 3.2.,
12. (—=3) is used with the fixed variable z. Therefore for all gcx we have
g*0,g*1€R(A(2)), so xSD;(R(A(2))), hence, peD; xS D,(R(A4(2)). O

4.3. With every sequent tree (t,h) on T we associate some modified Beth-

model
= (T, 0, Var, V)
(1.5.) in the following way:

1. a zero of M is a zero of the sequent tree (3.4.);

2. an individ domain of M coincides with the set Var of all variables of our
language, so every formula is automatically Var-valued;

3. for every atomic formula P we put V(P)= D(L(P)Uo)

According 1.5. for every formula 4 can be defined a truthvalue |4 in M.
Note (3.5.) that |A]|€€,@ is an element of complete Heyting algebra €,(10
and logical connectivies are calculated in M in accordance with operations in this
algebra.

4.4. Theorem. If (1, h) is a systematic sequent Iree, then for associated Beth-
model and for every formula A we have:

(@ L(A) < |4l
(ii) R(AN 4] € o.

> The both points of the theorem we prove by induction on the construc-
tion of A.

1. A-atomic, L(A)< | A|.

Indeed; L(A4)SDy(L(A))= 4| (4.3., 3.5.).
2. A-atomic, R(A)N|A|Soe.

Indeed, R(A)NL(A)So (4.1,2.), so

R(A)N(@UL(A) S o.
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Hence, D,(R(4)N (0UL(4)))SD;o. But o€, (3.5.1.), R(4)ED, (3.6.1.),
oUL(A)cl; (35.1., 3.6.1, 26.1), so using 2.6.5. we get Dy(R(4)N
Dy(oUL(4))<o.
But R(A)SD;(R(A4)), and || A]=D(oUL(4))SD,(oUL(4)) (3.5.2.). Hence,
R(A)N[A]|So.

3. L(L)S LI
See (4.1.,1.)).
4. R(L)NJLI S 0.

It is trivial, because || L [ So.

- 3 L(AAB) S |AAB.

We have L(A)S | A| and L(B)< ||B|, hence,
L(ANL(B) S |4INIB] = |AAB].

Further, D(L(A4)NL(B))SD(|ANB|)=|AAB|. But L(AAB)SD(L(A)NL(B))
(4.1.,3.), so we get the desired result.

6. R(AAB)M|AAB| S o.

We have R(A)(||4|Se and R(B)(|B|Se, so much the more R(A)I
|AAB|So and R(B)N|AAB|So. Hence, (R(A)U R(B))(|AAB||So. Further
(el 35.1)

D, ((R(4)U R(B)) N [AAB]) € Dy0 < o.

But |AAB| €0, so using 2.3.4.
D,(R(A)U R(B))N |AAB]| S o.
But R(AAB)SDy(R(A)U R(B)) (4.1.,4.), so we get the result.
2 L(AVB) C | AVB].

We have L(A)S|A4| and L(B)S|B|, hence, (L(A)UL(B))%“A[]UI]BH.
Further,
D(L(4)UL(B)) S D(| 4|V B]) = |4V B|.

But L(AVB)SD(L(A)UL(B)) (4.1.,5.).
8. R(AVB)N|AVB| S o.

We have R(A)||A]Se and R(B)(|B|Se, so much the more R(A)(
R(B)N|A|Se and R(A)NR(B)N|B|<e. Hence, (R(A)NR(B))N(|AIV[BHE
€ o. Further,

Dy(R(A)NR(B))N (|| 4] U [B]) & Dyeo.

But o€, (3.5.1.), R(A)N R(B)eO, (3.6.1., 2.6.1.). (|4]|U[B|)EP; (2.6.1.). Using
2.6.5.
D, (R(A) N R(B))NDy (| 4| U |B]) € o.
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But [ AVB|=D(|4|U[B|)SD,(|4|U[B]) (3.5.2.) and, moreover, R(AVB)C
D, (R(4)N R(B)) (4.1.,6), so we get R(AVB)N|A4VB|So.

3. L(ADB) S |ADB).

We have R(A)(1||A|Se and L(B)S|B|. Hence, R(A)(|A|<|B| and
L(B)N[A|S|B], so (R(AU L(B))N | 4| < || B|. Further,

D((R(A)U L(B))N | 4]) < D(iB]) = ||B].

As |A||€0, using 2.3.4.
D(R(A)ULMB)N 4] < |B].

But L(A>B)SD(R(A)UL(B)) (4.1., 7.). Therefore L(A>B)N|A|<|B|. Now
acting in Heyting algebra O (2.2.) we get

L(ADB) & ([4]>2,lBl) = |42 B|
(note L(ADB)e0O, 3.6.1.).
10. R(ADB)N|ADB| < o.

We have R(B)(||B||So and L(A)<|Al. In Heyting algebra €,N@ more-
over |A|N|A>B| S| B]|. In view R(B)(|B| So hence |4| NR(B)N||AD>B||Soe.
From L(A)S|A| we get L(A)NR(B)N|A>B| So. Further,

Dy(L(A)NR(B)N|ACB|) < Dyo.
But 0€€, (3.5.1.) and |4 B| €0, so using 2.3.4.
D,(L(4)N R(B))N | 4> B| S Dso.
But R(A5B)SD,(L(A)NR(B)) (4.1., 8.), so we get the result.
Ll L(T14) € |14].

We have R(A)N|A| S0, so D(R(4)N|A|)SDo=o. But ||A|€0 and using
2.3.4. D(R(A))N| Al Seo. Moreover, L(']A)CD(R(A)) (41 9., so L(14)N
[|A]| S 0. Further, L(T14)€0 (3.6.1.). Now acting in Heytmg algebra 0 (2.2.)
we get

L(14) & (4] =40) = | 4]

19, R(1AN|14] S o.

We have L(A)< | All. Additionally in Heyting algebra €,N0O ||A| N 14| So.
Hence, L(A)N| 14| Seo. Further,

D,(L(4)N|14]) € Dyo.
But 0€€, (3.5.1.) and || 14| €0, so using 2.3.4.
Dy(L(A)N [ 14] € o.
But R(14)SD,(L(A4)) (4.1, 10.) and, hence R(14)N|14] So.
13. L(vxA(x)) & [VxAx)l.
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We have L(A(2))S|A(2)| for all zeVar. Further,

D(L(A(2))) S D([l4@)]) = 14(2)].
But L(VxA(x))SD(L(A()) (4.1, 11.), so L(YxA(x))S[A(G)]. Let us take an
intersection for all z€Var on the right side of the last inclusion. Then L(Vx4(x))S
N 14@I=IVxAX)I.

z€Var

14. R(¥xA(x))N |¥yxA(x)| S o.

We have R(A4(y))N|A(»)| So, so much the more R(A(»)N|V¥xA(x)|<So.
Taking a join on the left for all y€Var and using distributivity we get

( 9] R(A())N¥xAX)] S o.
Further, 8
D,(( ELJ R(A(y))N¥xA(x)]) S Dyo = o.
But |VYxA(x)|€0, so using 2.34. Dy( U R(A(»))N|VxA4(x)| Se. Moreover,
R(YxA(x))SDy( U R(A())) (4.1, 1235 50 we get the result.
yEVar

15. L(3xA(x) S 3xAX)].

We have L(A(y)S|A(y)| for all yeVar, so much the more L(A(y))S
[IxA(x)ll. Hence, U L(A(»)ESI3xA(x)|. Further, D( U L(A4(»))E

D([3xAM) =134, But LExAX)SD( U LAG)) (@14 13), so we
get the result. il
16. R(3xA(x))N[3xA(x)| & o.
We have R(A(2))N|A(z)| Seo. Further,
D, (R(A(2) N A(2)]) € Dyo.
But 0€€; (3.5.1.), |A(2)|€0, so using 2.3.4.
D, (R(4(2))N [ 4(2)] S o.
Moreover, R(IxA(x))SD,(R(4(2)) (4.1., 14.), so
R(3xA(x))N [ A@)] S o.

Let us take a join on the left for all z€Var and use distributivity: R(3xA(x))N
N U 4@ Se. Further, Dy(R(FxA(x))N eLf'[ |4(2)])ED;eo.

zEVar

We have R(EixA(x))E@ (36.1)and |J |4(2)|€0, (2.6.1.), so using 2.6.5.
zEVar

D;(RExA(x))N Dl(‘ Egﬂ 14@)]) € o.

But R(3xA(x))SD,(RExA(x)) (233) and [3xA()|=D( Y 14 S

Dy( U 14@)) @:5.2).
Hence, R(3xA(x)N|3x4AX)|So. O
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5. Main results

5.1. Theorem. Let (t, h) be a systematic sequent tree on T and M an associated
modified Beth-model.
Let a sequent A,...A,~B be true in M. Then

L(4)N...NL(4,)N R(B) € o.

o In this case |4,...4,~B||=T, which is equivalent |4,]|N...N||4,I|<I|B]|.
But according 44. L(4)Z| A4, so

L(A)N ...NL(4,) € |BI.

From the other hand, according 4.4. |B|NR(B)Se. Hence, L(4)N...
...L(4,)NR(B)Co. O

5.2. Theorem. For every binary tree T and every intuitionistic sequent S can be
constructed a modified Beth-model Mg on T, such that if S is true in M, then +—* S.

o For a given S we construct a systematic sequent tree (t,h) on the binary
tree T with the root p, such that h(p,)=S (4.2.). Let Mg be an associated with
(7, h) model. Let S be A4,...4,~B. If S is true in M, then

LA)YN...NLA)NRMB)S o (5.1.).
Because h(py)=(A4,...4,~B) we have
Po€L(A)N ...NL(A,)VR(B), so py€o.
By definition of zero (3.4.), then —*h(p,). [

5.3. Corollary. (Cut-elimination theorem, model-theoretic proof.)
If an intuitionistic sequent S is deducible in intuitionistic sequent calculus, then it
is deducible also without cuts.

= If S is deducible, then it is true in every modified Beth-model and, in par-
ticular, in M. Use 5.2. O

5.4. Corollary. For every formula A and binary tree T a modified Beth-model
M, on T can be constructed, such that if A is truein M ,, then A is deducible in IPC.
Additionally, we can suppose that individ domain of M , is the set Var of all variables

of our language.
> Use 5.2. with Stobe —4. O

5.5. Theorem. (Universal model property.)

A modified Beth-model M on a binary tree T can be constructed, such that for
every formula A, if A is true in M, then A is deducible in IPC. Additionally it can
be supposed, that the individ domain of M is the set Var of all variables of our lan-
guage.
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o Let A4,, A,, A;, ... be an enumeration of all formulas. According 5.4. for
every A; we construct corresponding model M, . Then we construct M the such way:

MA,
MA2
MA;

Po

Now if A4, is true in M then A4; is true in M, also, therefore A4, is deducible. [

5.6. Remark. An algebraic nature of our constructions allows to generalize
our main results for higher order logics, for example, for intuitionistic type theory
with or without extensionality (for example, for theories IT and ITE of TAKAHASHI
[10], cf. also [3], chapter 5) but it is out of scope of this paper and will be done
some where else.
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