On classification of finite groups with four generators
three of which having prime orders p, g, g(p<q) I

By K. R. YACOUB (Cairo)

In a previous paper [1] the author discussed the existence and the structure
of finite groups with four generators a, b, ¢ and d when the orders of b, ¢, d are
respectively p. p, ¢ with p<q.

The case p=>gq, or equivalently the case when the orders of b, ¢, d are respec-
tively p, g, ¢ with p—=g is discussed in the present paper. As in the previous paper,
the order m of a is arbitrary but m¢ {p, ¢}. The symbol e is used also throughout
this paper to denote the ideniity of the group unless otherwise stated.

Notation and preliminaries

We use frequently the three parameters 4, u and v where
A€{2,...,p—1} ie. A#1 (modp),
u,ve{2, ....q—1} ie. puv#1 (modg).

The symbols k&, k" and k* are used to denote the respective orders of 2 mod p,
u modg and v modg. Thus
=1 (modp), p¥ =1 (modg), V' =1 (mod g).

It may be noted that k, k', k*=1.

Two other parameters namely w, @’ taken mod ¢ are also used but possibly
o, w'=1 (mod g); while u,v#1 (mod g).

Finally, for positive integers x, y, z, the symbol [x, y] is used for the L.C.M
of x and y while the symbol [x, y, z] is used for the L.C.M of x, y and z.

Two theorems, due to the author [2], are stated here without proof.

Theorem 1. Let p and g be two distinct odd primes such that
(1) p <= q. (i) p does not divide q—1.

Then there exist four types of groups with three generators a, b, ¢ whose orders are
respectively m (arbitrary), p and q. These groups, denoted by M;: i=1,2,3,4 are

M; = {a,b,¢; ™ =b"= "= e, ab = bd', ac = cd’, be = cb},

with P?=1=45" (modm),



22 K. R. Yacoub

M= {a,b,c;a"=b"=c"=¢e,ab=bd,ac=c"a, bc =cb}, u#1 (modg),
with =1 (modm), K'|[mr—1],
My={abc;,a*=b"=c"=e,ab=bla,ac=ca', bc=cb}, A#1 (modp)

with s°=1 (modm), Kk|m,s—1],
M,={a,bc;d" =0 = c*=e, ab= ba, ac = c*a, bc = cb},
with AZ1 (modp),u#z1 (modg) and [k,Kk'l|m.

Cor. 1. Groups of the types My, My and M, do not exist for m=gq. For, in M,,
u#1 (mod q) and its order mod q, namely k' is greater than 1. Thus if we take
m=gq, we have k’lq and thus k'=q. Hence pi=1 (modgq) which combines with
Fermat’s Theorem to show that p=1 (mod q). This contradiction shows that no
group of the type M, exists for m=q. Similar arguments apply for M and M.

Cor. 2. A group of the type M, exists for m=q and is Abelian. For, if we take
m=q in M,, we have r’=1 (modgq) which implies r=1 (mod q) since p does
not divide q—1. Also, we have s=1 (mod q) which combines with Fermat’s Theo-
rem to show that s=1 (mod q).

The above two corollaries combine to show

Cor. 3. The only group that exists with three generators b, ¢, d having the respec-
tive orders p, q, q is an Abelian group.

Note. It may be noted that we changed a by d for later quotation.
Theorem 1*. Let p and q be two distinct odd primes such that
(i) p<gq, (i) p divides q—1.

Then there exist four types of groups M[: i=1,2,3,4 with three generators a, b, ¢
two of which having orders p and q. These groups are

M? ={a,bc; a"=b"=ct=e, ab = bd, ac = cd’, bc = *b}

with *=1=s® (modm), w’=1 (modq), f(w)= {‘{ it{ Z: :

M: = {a,b,c; a" = b®* = " = e, ab = bd’, ac = c*a, bc =c®b)
with =1 (modm), w?=1 (modg), K'|[mr—1]

M; ={abec;d=0=ct=e¢e, ab= Va, ac = ca', bec = cb)}
with s°=1 (modm), k|m,s—1],

M; ={abc;ad" =0 =c2=e¢, ab=D'a ac= c*a, bc =cb}
with (k, KYlm.
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Remark 1. From Theorem 1* (when p divides ¢g—1) and Theorem 1 (when p
does not divide g—1), we observe that

() M,=M:, (i) M,= M,
(i) My=M; with w=1, (iv) My=M; with o=1.

Cor. 1* Groups of the types M3, M; and M{ do not exist for m=q. For
if we take m=gq in Mj, we have k’|[g,r—1] and thus k’|g, but k’>1 and there-
fore k’=qg. Hence pu?=1 (mod g) which by using Fermat’s Theorem gives directly
u=1 (mod g). This contradiction shows that no group of the type Mj; exists.

For the types M3 and M} this follows directly if we remark that M,=M3,
M,=M7 and use the argument of Cor. 1.

Cor. 2*. A group of the type MY exists when m=gq. For, if we take m=gq in
M7, we have
=1 (modg), s/ =1 (modg).

The last congruence relation implies always s=1 (mod g) whether w=1 or
w#1 (mod g). This is obvious from the definition of f when w#1 (mod ¢). Again
from the definition, for @=1 (mod ¢), we have f(1)=¢ and therefore s?=1 (mod g)
which gives directly s=1 (mod g) by using Fermat’s Theorem. Then M7 will be

M!={abec;,a=b"=c"=e¢, ab=ba, ac = ca, bc = c* b},
where
r=1=w" (modg).

Changing* a by d and replacing r by ®*, we have thus shown

Cor. 3%, Let p and q be two distinct odd primes such that p divides g—1. Then
there exist just one type of groups with three generators two of which being of order
q and the third of order p. This group which we denote by N(w, ®") is

N(w,0") = {b,c,d; b® = ¢?* = d* = e, bc = ¢”b, bd = d”'b, cd = dc}
where o’ =1=w? (modg).

In fact, the original relation ab=ba" changes to db=bd“" which is easily
shown to be equivalent to bd=d“ b where @ ®*=1 (mod g). It may be noted
that if w=1 (mod ¢g), then @' =1 (mod g) simultaneously. This is obvious for
the symmetrical role played by ¢ and din the structure of the group. Thus the group
N(w, ®") is either Abelian (when w=w’=1 (modg)) or non-Abelian (when
w, ®#Z1 (mod q)).

Part 1. The case p does not divide g—1.

Let G be a finite group with four generators a, b, ¢ and d whose orders are m
(arbitrary), p, ¢ and ¢ respectively, where p and ¢ are distinct odd primes such that
p=q and p is not a divisor of g—1. Then

F=bP=A=d=e

* For later quotation, a is replaced by d.
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By Cor. 3, the subgroup {b,c,d} is Abelian. Evidently; the subgroups {a,b, c}
and {a, b, d} may be one of the four types M,, M,, M; and M,. Thus ten cases may
arise and the corresponding types of groups, in ease they exist, may be listed in
the following table.

Table 1. The case p does not divide g— 1

Type of Type of Type of

{a’ b! c} {a! bl d} G ={a’ b’ c! d}
M, M, 7(1,1)
M, M, (1, 2)
M, M; T, 3)
M, M, T(1,4)
M, M, T(2,2)
M, M, T2, 3)
M, M, T(2,4)
M, M, T3, 3)
M, M, T(3,4)
M, M, T4, 4

Remark 1. It should be remarked that other types may arise, for example the
type T(2,1) but such a type is exactly the same type 7T(1, 2) if we just interchange
the two generators ¢ and d which have the same order q.

Remark 2. Groups of the types 7(1,3) and 7(1,4) do not exist. In fact,
for such two types of groups, the subgroup {a, b, ¢} is of the type M, for which
ab=ba" while the subgroup {a, b, d}, being of the type M, or M, for both of
which, we have ab=b*a with AZ1 (mod p). This obvious contradiction shows
that groups of the types 7T(1,3) and T7(1,4) do not exist.

Using similar argument, we have

Remark 3. Groups of the types 7(2,3) and T(2,4) do not exist. Thus it
remains to discuss the existence of the six types

T@#,1i):i=1,2,3,4 and T(1,2), T(3,4.

Theorem 2. If there is a group G of the type T(1,1), then it has the defining
relations

() G={abdocd a"=P=c=d"=c ab=bd, ac=cd, ad= dd,
bc = ¢cb, bd = db, cd = dc}
where
(2 rPr=s=1"=1 (modm).
Conversely, if r, s and t satisfy (2), then the group G generated by a, b, ¢ and d
with the defining relations (1) is of the desired type.

Proor. Assume the existence of a group G of the type T'(1, 1). Then for such
a group, the two subgroups {a,b, ¢} and {a, b, d} are both of the same type M,
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described in Theorem 1. Thus we have

{a.b,c; @® = b? = c? = e, ab = ba’, ac = ca’, bec = cb)

with rP=1=s' (modm);
{a,b,d; a™ = b® = d" = e, ab = bad’, ad = dd', bd = db}
with rP=1=1¢ (modm).

Moreover cd=dc since the subgroup {b, ¢, d} is Abelian. Thus we have shown
that (1) and (2) are necessary.

For the converse, let K be the system of all formal quadruples [x, y, z. w]
where x is taken mod m, y modp and z, w mod ¢. In this system define multi-
plication by means of the formulae

[x, %2, wlix', ¥, 2', W] = [x7, 9", 2", w']
where X"=rs ™ x+x" (modm),
y'=y+y" (modp),
2’ =z+z, w =w+w (modgq).

It is easily shown that, under this muitiplication, the system K is a group of order
pq*m. Moreover, if

@ =[1,0,0,0], b’'=1[0,1,0,0], ¢ =[0,0,1,0], d’ =[0,0.0,]1]
then, corresponding to the defining relations of G, it is easily shown
BT ==t dV= ool = Va' ot = a®ud = d4"
Ve =V, b'd = 3V, ¢d = d'?.
This shows that the group K is a homomorphic image of G. But as the order of K

is pg*m and the order of G is at most pg*m, they have the same order and are
1somorphic. This proves that a group of the required type exists.

Theorem 3. If there is a group G of the type T(2,2), then it has the defining
relations

B G={abcd,a"=b=c"=d"=e, ab= bd, ac = c*a, ad = d"a,
be = ¢b, bd = db, cd = dc},

where p,vZ1 (mod g) and

4) =1 (modm), K'|[m,r—1],k%|[m,r—1].

Conversely, if r and k', k™ (the respective orders of p,v mod q) satisfy (4),
then the group G generated by a, b, c,d with the defining relations (3) is of the
desired type.
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ProOOF. Assume the existence of a group G of the type 7'(2,2). Then for such
a group, the two subgroups {a, b, c} and {a,b,d} are both of the same type M,
described in Theorem 1. Thus we have

{a,b,c; A" =b?=c"=e, ab = bd’, ac = c*a, bc = cb}, p#1 (modg)

with =1 (modm), K'|[m,r—1],
{a,b,d; a" =b®? = d*" = e, ab = bd’, ad = d’a, bd = db}, v #Z1 (modgq)
with r»=1 (modm), Kk*|[m,r—1].

Again cd=dc since the subgroup {b, ¢, d} is Abelian. Thus we have shown that
(3) and (4) are necessary.
For the converse, we use the same system K of the previous theorem with the
multiplication formulae
[x, ¥, z, wl[x', y', 2, W] = [x7, 7, 2%, w"]

where x"=rx+x" (modm),

y'=y+y’ (modp),

' =z4 052w = w+v'w  (modg).

Following the same procedure, it is easily shown that, under this multiplication,
the system K is a group of order pg*m which is isomorphic to a group of the
required type.

Theorem 4. If there is a group G of the type T(3,3), then it has the defining
relations
5) G={abecd;a"=b=c"=d"=e, ab= ba, ac = ca’, ad = dd,
be = ¢b, bd = db, cd = dc},
where A#Z1 (mod p) and
(6) si=1=1 (modm), kim,s—1,1—1].

Conversely, if s, t and k (the order of A mod p) satisfy (6), then the group G
generated by a, b, ¢, d with the defining relations (5) is of the desired type.

PrOOF. Assume the existence of a group G of the type 7°(3,3). Then, for
such a group, the two subgroups {a,b,c¢} and {a,b,d} are both of the same
type M, described in Theorem 1. This with the fact that the subgroup {b, ¢, d} is
for such type is Abelian show that (5) and (6) are necessary.

For the converse, we use the multiplication formulae

x. 3,2, wllx, ', 2, w'} = [x*, y", 2%, W]
where x" = 51" x+x" (modm),
Yy =y+21*y (modp),

2" =z4+zZ,w=w+w (modg),
in the system K of all formal quadruples [x, y, z, w], used before.
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Theorem 5. If there is a group G of the type T(4,4), then it has the defining
relations

(N G=fhsd;d"=F=ct=d"=s ab=Va 0c=clayad=ds,
bc = ¢b, bd = db, cd = dc}

where A#1 (modp) and p,vZ1 (modgq) and

8) [k, k', k*]|m.

Conversely, if k, k" and k* (the respective orders of i modp, u modg and
v mod q), statisfy (8) then the group G generated by a, b, ¢, d with the defining rel-
ations (7) is of the desired type.

PROOF. Assume the existence of a group G of the type 7(4,4). Then, for
such a group, the two subgroups {a,b,c} and {a,b,d} are both of the same
type M, described in Theorem 1. This together with the fact that the subgroup
{b, c. d} is Abelian show that conditions (7) and (8) are necessary.

For the converse, we use again the same system K but with the multiplication
formulae

[x.y, z, w][x',y', 2, w'] = [x*, 5", 2%, w']

where x" = x+x" (modm),
y'=y+4*y" (modp),
2" = z4+p*2", w = wH+vw  (modg).

It is easily shown that the system K is a group of order pg®*m which is isomorphic
to a group G of the required type.

Theorem 6. If there is a group G of the type T(l1,2), then it has the defining
relations

9 G={abed;a"=b=c"=d"'=e,ab=0bd, ac=ca’, ad=da,
bc = cb, bd = db, cd = dc},

where v#1 (modg) and

(10) rr=1=4s" (modm), Kk*|[m,r—1].

Conversely, if r, s, k* (the order of v mod q) statisfy (10) then the group G
generated by a, b, ¢, d with the defining relations (9) is of the desired type.

PrOOF. Assume the existence of a group G of the type 7(1,2). Then, for
such a group, the subgroups {a, b, c} and {a,b.d} are of the types M, and M,
respectively. Thus by Theorem 1, we have

{a.bc;a*=b"=c"=e,ab=ba",ac=c"a, bc=cb), p#1 (modg),
r’P=1=s* (modm),
{a.bd; a" =b*=d'=e, ab= bd', ad = d'a, bd = db}, v 1 (modg),
=1 (modm), Kk*|[m,r—1].
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Again cd=dc as the subgroup {b, ¢, d} is Abelian. Thus we have shown that (9)
and (10) are necessary.

For the converse, we use again the system K of formal quadruples [x, y, z, w]
with the multiplication formulae

[x, ¥, z, w][x’, Y, 2, W] = [x", )", 2", w"]

where x"=r"s"x+x" (modm),

"

y'=y+y" (modp),
Z"=z+4zZ, w=w+v'w (modg).

It is easily shown that, under this multiplication, the system K is a group of
order pg*m which is isomorphic to a group of the type required.

Theorem 7. If there is a group G of the type T(3,4), then it has the defining
relations

(11) G={a,bcd;a"=b0"=c"=d"=¢, ab= b*a, ac = ca', ad = d"a,
bc = ¢b, bd = db, cd = dc}

where AZ1 (modp), v#1 (modq) and

(12) s°=1 (modm), kl[m,s—1],[k, k*]lm.

Conversely, if s and k, k* (the respective orders of /. mod p, v mod q) statisfy
(2). then the group G generated by a, b, ¢, d with the defining relations (11) is of the desi-
red type.

PROOF. Assume the existence of a group G of the type 7(3,4). Then, for
such a group, the two subgroups {a, b, ¢} and {a, b, d} are of the types M, and
M, respectively and conditions (11), (12) follow immediately.

For the converse, we use again the same system K as before, but with the multi-
plication formulae

[x,5, 2z, w][x’, ¥ . 2, W] = [x", )", 2. "]
where x"=s5sx+x" (modm),
Y’ =y+4%y (modp),
Z’=z42, w=w+vw (modg),
and the proof follows directly the same procedure as before and may be omitted.
Part I1. The case p divides ¢—1.

Let G be a finite group with four generators a, b, ¢, d whose orders are respec-
tively m (arbitrary, p, ¢, ¢ where p and ¢ are distinct odd primes such that p divides
g—1. Then

a=P=ct=di=e.

Now, since p divides ¢—1, then by Cor. 3* the subgroup {b, ¢,d} is of the type
N(w, ®) which is Abelian for w=w'=1 (mod¢) and non-Abelian when
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o, ' #1 (mod g). Moreover, the subgroup {a, b, ¢} or the subgroup {a,b,d}
may be one of the four types M}: i=1, 2, 3,4 described in Theorem 1*. Thus,
corresponding to the Abelian (or non-Abelian) type of the subgroup {b,c,d},
there are ten cases and the corresponding groups may be listed in the following table.

Table 1*. The case p divides g—1

Type of Type of Type of Type of
{a, b, c} {a, b, d} {b, c, d} G={a, b, c, d}
My M3 Abelian [non-Abelian T*(1, )[P*(1,1)
M M Abelian [non-Abelian T*(1,2)[P*(1, 2)
M M3 Abelian [non-Abelian T*(1,3)[P*(1,3)
M Mg Abelian [non-Abelian] T*(1,4)[P*(1,4)
M My Abelian [non-Abelian] T*2, DIP*(2,2)
M; M3 Abelian [non-Abelian ™2, )P (2 3)
H by Abelian [non-Abelian] T*(2, 4) [P*(2, 9)]
M3 M3 Abelian [non-Abelian T*(3, 3)[P*(3, 3)]
M3 M7 Abelian [non-Abelian] T*(3, 4)[P*(3, 4)]
Mg MS Abelian [non-Abelian T4, 4)[P*(4,4)

Remark 1*. As in Table 1 (when p does not divide g—1) other types may
arise, but, in fact, they are not distinct from the above types.

Remark 2*. Groups of the types T*(1,3) and T*(1,4) do not exist. Groups
of the type P*(1,4) do not exist.

Remark 3*. Groups of the types 7*(2, 3) and P*(2, 3) do not exist.

Remark 4*. Groups of the types 7*(3,4) and P*(3,4) do not exist. For
groups of the types T*(...,...) mentioned in the above remarks, arguments similar
to those when p is not a divisor of g—1 apply.

But for the types P*(...,...), in case they exist, a direct contradiction follows
if we remark that bd=db=d“'b with @' #Z1 (mod g).

Theorem 8. Let p and q be two distinct odd primes such that p divides q—1.
Then groups of the types

T*A,D):i=1,2,3,4 and T*(1,2,7T°(3.49)

exist and have the same structure as the corresponding groups when p does not
divide q—1.

In other words
D =T7T0,i) for i=1.2 34,
T*(1,2) = T(1,2), T*(3,49) = T(3,4).

This becomes obvious if we observe that for the types 7*(...,...), the subgroup
{b, ¢, d} is Abelian which is just the case with the corresponding groups 7¥(..., ...)
when p divides ¢—1. This implies directly that bd=db and consequently, in the
defining relations of M7 and M3, must have @’=1 (mod ¢). In this case

MI — M;: Ms = M;.
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This combine together with the fact that we have always (Remark 1)
My = M3, My = M
to make the theorem direct and immediate.

Now, it remains to discuss the existence of the groups P*(...,...) which arise
when the subgroup {b, ¢,d} is non-Abelian already described in Cor. 3* namely

{b,,d; P’ =ct=d' = ¢, be = ®b,bd = d'b, cd = dr}
with w,0"#1 (modg) and
wP=1=w? (modyg).
Remarks 2*, 3%, 4* show that groups of the types P*(1,4), P*(2, 3) and P*(3,4)
do not exist. In addition we prove

Theorem 9. Groups of the types P*(1,3) and P*(2,4) do not exist. For both
types, in case they exist, the subgroup {a,c,d} is either of the type M3 or M{ for
both of which we have cd=dc which contradicts the defining relations of the sub-
group {b,c,d} for which cd=d*c¢ with o’#1 (mod g).

Thus it remains to discuss the existence of the four types P*(i, i), P*(1, 2).
Theorem 10. Groups of the types P*(3,3) and P*(4,4) do not exist.

For both types of groups, the subgroup {b,c,d} is non-Abelian for which
be=c®b, with w#1 (mod ¢). But for both types, the subgroup {a, b, ¢}, being
of the type Mj or M; has, among its defining relations, bc=ch. This obvious
contradiction shows that groups of the types P*(3,3) and P*(4,4) do not exist.

Theorem 11. If there is a group G of the type P*(1,1), then it has the defining
relations

(13) G={abdcd;d=0=c"=d"=¢, ab= bd, ac = ca, ad = da,
bc = ¢®b, bd = d“’b, cd = dc}
where o,0"#1 (modg) and
(14) =1 (modm), o’ =1=w? (modg).
Conversely, if r, s, ® and " satisfy (14), then the group G generated by a, b, ¢
and d with the defining relations (13) is of the desired type.

PrOOF. Assume the existence of a group G of the type P*(1,1). Then, for
such a group, the two subgroups {a, b, ¢} and {a, b, d} are both of the same type
M7 described in Theorem 1*. Thus we have

{a,b,c; a® = b? = * = e, ab = b, ac = ca’, be = b}

A P — A SEEs - = q !f m=1

with PP=1=s5 (modm), w?=1 (modgq), f(w) {1 T
{a,b,d; a" = b* = d* = e, ab = ba’, ad = dd’, bd = d” b}

if o' =1

with P =1= ¢/ (modm), w?=1 (modg), f(v)= {‘f e
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Moreover, by Cor. 3%, the subgroup {b, ¢, d}, being non-Abelian, has the defining
relations

{b,c,d; b = " = d* = e, bc = c®b, bd = d™'b, cd = dc}
with w,0"#1 (modg) and
wf=1=ow? (modg).

Now, since @, @’ #1 (mod ¢g), then by the definition of /, we have f(w)=1, f(w")=1
and consequently s=1=¢ (mod m). This shows that conditions (13) and (14) are
necessary.

For the converse, we use again the system K of formal quadruples [x, y, z, w]
with the multiplication formulae

[x. 2z, wllx,y, 2, W] = [x",y", 2", )
where xX"=rx+x’ (modm), y"=y+y (modp),
2’ =z4+wZ, w = w+o?w (modg),
and the proof follows exactly the same procedure used before and may be omitted.

Theorem 12. If there is a group G of the type P*(2, 2), then it has the defining
relations

(15) G={abecd;a"=0V=c"=d"'=e, ab=bd, ac = c*a, ad = d'a,
bec = ¢®b, bd = d”' b, c¢d = dc}

where vl (modg) and o,0 #1 (modg) and

(16) =1 (modm), w’=1=w? (modgq), K|[m,r-—1],k*|[m,r—1].

Conversely, if p,v,0, 0 #1 (modgq) and if r, ©, ', k', k* satisfy (16), then
the group G generated by a, b, ¢, d with the defining relations (15) is of the desired type.

ProoF. Assume the existence of a group G of the type P*(2,2). Then, for
such a group, the two subgroups {a, b, ¢} and {a, b, d} are both of the same type
M3 described in Theorem 1*. Thus we have

{a,b,c; a" = b? = "= e, ab = ba’, ac = c*a, bc = c®b},u Z1 (modg),

with rPr=1 (modm), w?=1 (modg), K'|[m,r—1],
{a.b,d; a" = b° = d" = e, ab = ba’, ad = d"a, bd = d”b},v £1 (modg)
with rP=1 (modm), ”=1 (modg),k*|[m,r—1].

Also, the subgroup {b, c,d} is non-Abelian and by Cor. 3*, we have
{b,c,d; b* = A =di= e, bc = ¢°b, bd = d”b, cd = dc},w,0" # 1 (modgq)
with o’=1=w"? (modg).

Thus we have shown that (15) and (16) are necessary.
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For the converse, we use again the system K of formal quadruples [x,y, z, w]
with the multiplication formulae

X,y z, wl[x', y', 2, w'] = [X7, )", 2", W]
where X"=rx+x" (modm), y" =y+y (modp),
' =z4+pte’Z, w= w4 pf0”?w  (mod gq).

It is easily shown, that under this multiplication, the system K is a group of order
pg*m which is isomorphic to the group of the required type.

Theorem 13. If there is a group G of the type P*(1,2), then it has defining
relations

(17 G={abecd, a"=P=8=d=e¢ ab=bf ac=ro,ad=d,
bc = ¢®b, bd = d“' b, cd = dc},

where vo,0 #1 (modq) and

(18) =1 (modm), w?=1=0w? (modg), k*|[m,r—1].

Conversely, if v, o, o' #1 (mod q) and if r, ®, ®" and k* (the order of v mod q)
satisfy (18), then the group G generated by a, b, ¢, d with the defining relations (17)
is of the required type.

ProOF. Assume the existence of a group G of the type P*(1,2). Then, for
such a group, the subgroups {a,b,c} and {a, b,d} are respectively of the types
M7 and M7 described in Theorem 1*. Thus we have

b "=V ==¢ ab=l, de=ocd be="h)

; ¢ If o=1
P = = (@) P oo —
with rP=1=s@ (modm), w’=1 (modg), f(w) {1 i it
{a,b,d; a™ = b® = d* = e,ab = bd’,ad = d"a, bd = d” b}
with rP=1 (modm), =1 (modgq), Kk*|[m,r—1].

Also for this type the subgroup {b, ¢, d} is of the non-Abelian type described
in Cor. 3* namely

{b,e,d; B = " = d* = e, be = c®b, bd = d¥ b, ¢d = de}
with o0 #1 (modg), w’=1=o0”? (modg).

Now, since @w#1 (mod g), then by the definition of f, we have f(w)=1 and con-
sequently s=1 (mod m). Thus we have shown that (17) and (18) are necessary.

For the converse, we use the system K of formal quadruples [x, y, z, w] with
the multiplication formulae

IX,}’, z, W] [x’, yfs 2’9 w'] T [x”, }’”, 2 W”]
where X"=rx+x, (modm), y'=y+y (modp),

" =z+ @, w = w+vieo”w (modgq).
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orders p, ¢, ¢ (p=g) Il

As before, it is easily shown that under this multiplication, the system K is
a group of order pg*m which is isomorphic to the group G of the required type.

Conclusion. Finite groups exist with four generators three of which having
orders p, g, ¢ where p and g are distinct odd primes such that p<gq. If p does not
divide g—1, there exist six types of these groups which are described in Theo-
rems 2—7. But if p divides g—1, then there exist nine types of such groups and
are described in Theorems 8, 11, 12, 13.
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