Arcwise-convex functions on surfaces
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Abstract. The paper considers the characteristics of the arcwise-convex functions, then gives
on this basis second-order necessary and sufficient conditions to enable a function to be arcwise-
convex on a surface.
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1. Introduction

The convex programming problems are an important class of nonlinear pro-
gramming problems. The importance of the class is due to the circumstance that
here any local optimum is at the same time global, therefore the algorithms are
substantially more efficient than in other cases. In the field of mathematical pro-
gramming many authors have dealt with the generalization of the convexity con-
cept. A survey of some classes of generalized convex functions can be found in
Avriel (Ref. 1). These classes include quasi-convex, strictly quasi-convex, strongly
quasi-convex, pseudo-convex and strictly pseudo-convex functions. A unifying pro-
perty of these functions is that their level sets are convex.

ORTEGA and RHEINBOLDT (Ref. 2) extended the families of quasi-convex and
strongly quasi-convex functions by considering continuous arcs instead of line
segments in the definitions. Arcwise-convex and arcwise-connected functions are
defined and some of their properties are shown in AVRIEL (Ref. 1). In the paper of
AVRIEL and ZANG (Ref. 3) the generalized arcwise-connected functions are defined
and characterized with respect to the local-global minimum properties. The main
results are that under some mild regularity assumptions a local-global property
of a function implies its class inclusion in one of the generalized arcwise-connected
functions. A more general version of the local-global properties is derived in MARTIN’s
works (Ref. 4, 5, 6) where the concept of connectedness is utilized, instead of arcwise-
connectedness. The relationship between the local-global properties and the lower-
semicontinuous point-to-set mappings has been discussed by ZANG and AVRIEL
(Ref. 7.).

Pointwise convex functions in the nondifferentiable case are introduced by
Brosowski (Ref. 8, 9).
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The purpose of this paper is to set second-order necessary and sufficient con-
ditions which characterize the arcwise-convex functions on surfaces. This situation
comes about in the non-convex programming problems of a certain type (e.g. a
non-linear programming problem constrained by equality conditions where the con-
ditions define a surface).

2. The arcwise-convex functions

Following ORTEGA and RHEINBOLDT (Ref.2), AVrieL (Ref. 1), AVRIEL and
ZANG (Ref. 3), we first extend the concept of convexity.

Definition 2.1. A set CcR" is said to be arcwise-connected if for every pair
of points x,€C, x,6C there is at least one continuous vector-valued function x(7),
called an arc, defined on the unit interval [0, I]Jc R for which

(1 x(0eC, vee[0,1] and x(0) = x,, x(1)= x,.

Note that x(¢) generally depends on the points x,, X, and the set C, and for
a pair of points x,, x, in an arcwise-connected set there may exist more than one
single arc.

It is obvious that a convex set is also arcwise-connected and

(2) x(t)=(1—=t)x,+tx,, 0=t=1

Definition 2.2. Let CCR" be an arcwise-connected set. A subset of the con-
necting arcs is called a family of the feasible arcs or shortly, feasible arcs if for
every pair of points in C there exists a connecting arc belonging to the selected
subset.

Definition 2.3. Let CCR" be an arcwise-connected set and F a family of the
feasible arcs. The real-valued function f(x), defined on the set C, is then said to be
arcwise-convex (arcwise-connected) for the set F if for every pair of points x,€C.
x,€C and a feasible arc x(r) we have

3) fE@) = 1-DfG)+1f(), 0=1=1.

This idea can be further extended (Ref. 1.3).
The first statement, which results e.g. from the more general theorems of AVRIEL
and ZANG (Ref. 3, 7), shows the importance of the arcwise-convexity.

Lemma 2.1. If f(x) is arcwise-convex (for a set of functions F) on C and x, is
a local minimum, then x, is also a global minimum point.

Assume further that Cc R" is an open, connected set. Hence we get that C
is also arcwise-connected (Ref. 1).

Lemma 2.2. Let f(x) be a differentiable, scalar function on C and the feasible
arcs be differentiable. Then f(x) is arcwise-convex if and only if for every pair of points
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x,€C, x,€C and x(1) (x(0)=x,, x(1)=x,) feasible arcs

@ fx) —f(x) = Vf(3)x(0).

(In the lemma Vf(x,) and x(0) mean respectively the gradient of f(x) at the point
x, and the derivative of x(7) by ¢ at the point 0.

Lemma 2.3. Let f(x) be a scalar, twice continuously differentiable function on C
and the feasible arcs be twice continuously differentiable. Then f(x) is arcwise-convex
if and only if for every feasible arc x(t)

(5) —&d—:i-f(gc(r))rgo, O0=r=1.

The proofs of Lemma 2.2 and Lemma 2.3 being similar to the convex case will
be omitted.

If the feasible arcs are given in arc length parameter, then between two arbi-
trarily chosen points x;, x,€ C there are in form x(s), x(0)=x,, x(5,)=x;. Intro-
ducing the notation x(s)=x(4s,)=X(4),0=/.=1 we obtain the case discussed above.

Further the differentiation by the arc length will be noted by a prime, i.e.

3. Generalization of convexity properties of functions to surface

In this section it will be examined when a x(u), u€ U, surface of dimension k
can be called convex in any sense. In differential geometry the generalization of
convexity led to geodesically convex surfaces and sets. A surface (set) is called
geodesically convex when the geodesic of minimal length connecting any of its two
points also belongs to the surface (set) (Ref. 10, 11). Ref. 12 deals with the problem
when a surface of dimension (n—1) is convex. The approach of this paper is dif-
ferent because in addition to the surface it is given also a vector field which is deter-
mined in a nonlinear programming problem by the objective function.

First the differential geometric interpretation of the convexity concept of the
functions is needed. Let ZC R" be an open, convex set and f(x) a twice continuously
differentiable convex function defined on Z. It is well-known that f(x) is convex on
Z if and only if its Hessian matrix is positive semidefinite in every point. Consider
now in the R**! space the y—f(x)=0 level surface.

This surface can be written in the following form:

Xy = U
Xg = Uy

(7) x() =4 : , uel,=
Xy = U,

Ao 06D
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The parameter-line tangents of the surface (7) are

1 0 0

0 1 0

8 Ll T - -
@) o PEl T R
L7 A of

[du, [ Du, | du,

These vectors are linearly independent, therefore (7) determines a surface in
differential geometrical sense. The normal vector of the hypersurface (7) in an
arbitrary point is given by

® n = (=V/(x),1).

Determine the matrix B of the second fundamental form of the surface (7).
According to the definition the elements of B are

0*x 1 e
(10) bu—m'mﬂ, il L il
where |n|| means the norm of n.
Hence it follows that

(11) B=——H

where H is the Hessian matrix of f(x).

As a result, the convexity is composed of the global characteristics of the basic
set (Z is a convex, open set) and of the local properties of the function f(x) (the
Hessian matrix or the matrix of the second fundamental form of the hypersurface
(7) is positive semidefinite in every point).

Consider now a surface of dimension k. The normal vector space of this surface
is of dimension (n—k) and as the second fundamental form can be interpreted not
only in one direction, a direction field should be given too.

Definition 3.1. Let x(u), u€ U, be a surface of dimension k and V be a vector
field on the surface. (The vectors of the vector field should not necessarily be con-
tained in the normal space.) The surface x(u) is said to be convex (concave) in the
direction of the vector field V, if the matrix of the second fundamental form using
the vector of the vector field V instead of n is positive (negative) semidefinite in
every point.

By the surface (7) the vector field ¥ consisted of the vectors (—V/f(x), 1).

The above definition is more general than the classic convexity notion as the
basic set is not convex, the surface is no special level surface and also the vector
field V can be arbitrary.
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4. Arcwise-convex functions on surfaces

The best feature of convex programming problems in nonlinear programming
is that any local minimum is at the same time global such that the algorithms are
substantially more efficient than in other cases. But the property of this kind is not
known if there are also equality conditions in the nonlinear programming problem.
In this section we intend, if the constraints of the nonlinear programming problem
determine a surface, to set necessary and sufficient conditions to ensure for a func-
tion to be arcwise-convex on surfaces. For this purpose we utilize the results of the
preceding sections.

Consider the x(u)€R", u€ U, surface of dimension k and the twice continuously
differentiable function f(x) defined on the open CCR" (x(u)€C, ucU,) set. By
the differential geometric investigations the local coordinate system in the points
of the surface consists of vectors spanning the tangent vector space and the so-called
normal space orthogonal to the tangent space. Assume without loss of generality
the choice of a local, orthonormal coordinate system in which the component in
normal directions of the vector Vf(x) (denoted by V/(x)y) shows in the direction of
the first normally-directed coordinate axis. Thus

(12) VA(x) = Vf(X)r + Vf(x)n
where Vf(x); means the component in tangential directions.

Theorem 4.1. Let the feasible arcs on the surface x(u) be the geodesics given
in arc length parameter. Then the necessary and sufficient condition of the arcwise-
convexity (geodesically convexity) of the function f(x) on the surface x(u) is the
positive semidefiniteness of the following matrix in every point:

(13) H|pp+ IV (X)5|Byy,

where H|ry is the Hessian matrix of the function f(x) restricted to the tangent space
of x(u),
By, is the second fundamental form of x(u) in the normal direction of the
vector Vf(x).

ProoOF. Using Lemma 2.3 and the subsequent remark it is sufficient to prove
that considering any feasible arc (geodesic) between two arbitrarily chosen points
X1, X2€C

d2
(14) T fEas)) =0, 0=1=1 (30)=x, 3() = ).
As the feasible arcs are given in arc length parameter, it follows that
d ’
(15) —7 L (x50) = Vf(x()) ¥ (5)50s

e T(t59) = ¥ () V(5@)¥ )55+ U (5(6)5" (5) 3.
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As x(u) is a surface we obtain for the derivatives of the curve x(u(s)) the fol-
lowing expressions:

16 dx (i(s)) = g: &

Pxu@) oz ., 0,
ds - au,t'}u_, u‘uj+-a?l-ul’

where according to the Einstein convention the identical index occurring twice
in one term is understood a summation also without writing out the summation
sig n.

According to the Gauss equations

*x Y o
e St = TG+t 7= Lok

where the I'f; quantities are the Christoffel symbols of the second kinds and the b;
quantities are the elements of the matrix of the second fundamental form in the
corresponding normal directions.

Using the Gauss equations in the second equality of (16) we obtain that

d* s U i
(18) _LY-S‘%@= (rfjuiuj-[»uc)m-;-f' }’ju;ujg,.

The equation of the geodesics in arc length parameter is
(19) uy = —I'fju; uj

and since x(u(s)) is geodesics, the expression in parenthesis disappears in equa-
tion (18).
Hence we have the following:

(20) V/ (x(9) x"(8) = (Y @)r+V/(X)n) 3" (8) = |V (X)n| blyui uj.

(In equality (20) it was used that Vf(x) is orthogonal to every normal vector
and V/(x)y is in the direction of the first normal coordinate axis.

It follows from the equality (20) that the expression Vf[;(s));”(s) i non-
negative if and only if the surface x(u) is convex in the direction of the vector field
Vf(x)n-

The function f(x) is convex such that the Hessian matrix is in every point posi-
tive semidefinite, therefore on the basis of (15) the inequalities (14) are in fact ful-
filled i.e. the function f(x) is arcwise-convex on the surface x(u).

Corollary 4.1. Under the conditions of Theorem 4.1 every local minimum of
the function f(x) on the surface x(u) is global minimum, too.

Corollary 4.2. Let the feasible arcs on the surface x(u) be the geodesics given
in arc length parameter. Then a sufficient conditions for the function f(x) to be arcwise-
comvex (geodesically convex) on the surface x(u) is that the function should be con-
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vex on the set C and the surface x(u) should be convex in the direction of the vector

JSield Vf(x)y-

The PROOF is similar to the proof of Theorem 4.1.
If instead of the surface x(u), we consider a Riemannian manifold immersed
in a Euclidean n-space. the statements remain valid.
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