On the spectrum of a liminal C^* -algebra

By G. A. STAVRAKAS (Athens)

1. Introduction

In this paper we prove that:

(i) If E is a unital separable η -homogeneous C^* -algebra, its spectrum is metrisable.

(ii) If E is a separable (unital) C^* -algebra the pure states set is a polish set. Also, if E has a Souslin pure states set (i.e. the underlying topological space is Souslin) the state space is metrisable.

I take this opportunity to thank Dr. J. P. Sproston, for his help.

2. Preliminaries

For general results on C^* -algebras notation and terminology about derivations, \mathcal{K} -Souslin sets and on compact convex sets we refer to ([3], [8], [9], [7], [6]) respectively. In particular we have the following definitions.

A derivation on an algebra E is a linear map $\delta : E \rightarrow E$ such that

$$\delta(xy) = (\delta x)y + x(\delta y) \quad (x, y \in E).$$

An element a of some possible larger algebra is said to implement δ if

$$\delta x = ax - xa \quad (x \in E)$$

and δ is said to be *inner* if such an a can be found in E. Otherwise δ is said to be *outer* ([8]).

A C^* -algebra is said to be *n*-homogeneous if all its irreducible *-representations are of the same finite dimension n.

A C^* -algebra is said to be *liminal* if, for every irreducible *-representation Π of E and each $x \in E$, $\pi(x)$ is compact. The C^* -algebra E is said to be *postliminal* if every non-zero quotient C^* -algebra of E possesses a non-zero liminal closed two-sided ideal.

All the algebras that we are concerned here are of type I.

A topological space E is said to be *polish*, if it is separable and if there exists a metric on E for which the topology is τ and $E[\tau]$ is complete.

A Hausdorff space $E[\tau]$ is said to be Lusin (resp. Souslin) if it is the injective continuous (resp. continuous) image of a polish space.

A point x of a convex set K is an extreme point of K iff x is not an interior point of any line segment whose endpoints belong to K.

3. On the Spectrum

We state and prove the following

Theorem 3.1. If E is a unital separable η -homogeneous C^* -algebra then, \hat{E} is metrisable.

PROOF. Since E is a unital η -homogeneous C^* -algebra the set of pure states P(E) is w^* -compact ([10]). Since E is separable, E'_s is a Lusin space ([7, II, p. 115]). Now the state space $S(E) \subseteq E'_s$ is a compact Lusin space and thus metrisable ([ibid, p. 106]). Also, it is well known, that the canonical map $P(E) \to \hat{E}$ is continuous (open) and onto, and thus \hat{E} is w^* -compact and metrisable since the continuous image of a compact metrisable space in a Hausdorff space ([4, Th. 4.2]), is compact and metrisable.

Corollary 3.2. If E is a unital separable (post) liminal C^* -algebra, with all derivations inner, then the spectrum of E is metrisable.

PROOF. If every derivation on E is inner, E is the direct sum of finitely many unital homogeneous C^* -algebras ([1.5.5]), but the spectrum of an η -homogeneous C^* -algebra with identity is a compact Hausdorff space ([4, Th. 4.2]), and thus \hat{E} is a compact Hausdorff space. Now, we continue as at the previous theorem.

Now, we state some examples in relation with Theorem 3.1.

(α) Let E be a compact Hausdorff space and we suppose that is not second countable. The C(E) is a unital postliminal non-separable C^* -algebra, with all derivations inner. Then, its spectrum E is not metrisable.

(b) Let E be the C*-algebra of all $m = \{m_{\eta}\}$, of 2×2 complex matrices for which $\sup_{\eta=1,2,...} \|m_{\eta}\|$ is finite, with coordinatewise operations and $\|m\| = \sup_{\eta=1,2,...} \|m_{\eta}\|$ such that m_{η} converges to a matrix of the form

$$\begin{pmatrix} \lambda(m) & 0 \\ 0 & \mu(m) \end{pmatrix}$$

as $\eta \to \infty$.

E is a unital, separable, liminal C^* -algebra with outer derivations and the spectrum is not Hausdorff (see: [8, p. 534]).

4. Note on the extreme points

Let K be a compact convex set and $\partial_e K$ the set of the extreme points. We state and prove the following:

Proposition 4.1. Let E be a unital C^* -algebra.

(a) If E is separable, the set of pure states is a polish set.

(b) If the set of pure states of E is Souslin, the state space of E is metrisable.

For the proof of this proposition we need the following.

Lemma 4.2. Let K be a compact convex metrisable space. Then, $\partial_{\nu}K$ is a polish set.

PROOF. Obvious by ([6, 1.3], [7, II]).

PROOF OF PROPOSITION 4.1. (a) Let $S(E) \subseteq E'_s$ the state space of E, S(E) is w*-compact Souslin set and thus metrisable. Now, by the above Lemma, the set of pure states is a polish subset of S(E). (See also: [5, p. 101].)

(b) It is proved by ([2]), that a compact convex set is metrisable, if the set of the extreme points is the continuous image of a complete separable metric space. By the above and according well known definitions ([7, II]), the state space is metrisable.

References

- [1] C. AKEMANN, G. A. ELLIOT, G. PEDERSEN, J. TOMIYAMA, Derivations and Multipliers of C*algebras. Amer. J. of Maths. 98 (1976), 679-708.
- [2] H. H. Corson, Metrisability of compact convex sets. Trans. Amer. Math. Soc. 151 (1970).
- [3] J. DIXMIER, C*-algebras. North-Holland publishing company.
 [4] I. KAPLANSKY, The structure of certain operator algebras. Trans. Amer. Math. Soc. 70 (1951), 219-255.
- [5] G. K. Pedersen, C*-algebras and their automorphison groups. Academic Press.
- [6] R. R. PHELPS, Lectures on Choquet's theorem. D. Van Nostrand company Inc.
- [7] L. SCHWARTZ, Radon measures. Oxford University press.
- [8] J. P. Sproston, Derivation and automorphisms of homogeneous C*-algebras. Proc. London, Math. Soc. (3) 32 (1976), 521-536.
- [9] J. P. Sproston, Derivations and pure states. Glasgow Math. J. 18 (1977), 73—77.
 [10] M. TAKESAKI, J. TOMIYAMA, Applications of fibre bundles to the certain class of C*-algebras. Tôhoku Math. J. 13 (1961), 498-522.

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF HULL, HU67RX HULL, ENGLAND

(Received December 3, 1984)