On additive arithmetical functions with values in topological groups II

By Z. DARÓCZY (Debrecen) and I. KÁTAI (Budapest)

1. Let G be an additively written Abelian topological group with the translation invariant metric ϱ . A mapping $\varphi \colon \mathbb{N} \to G$ is called to be a completely additive function, if

(1.1)
$$\varphi(mn) = \varphi(m) + \varphi(n) \quad \forall m, n \in \mathbb{N}$$

holds.

Continuing our work [1] we shall consider completely additive functions under the condition

(1.2)
$$\sum_{n=1}^{\infty} \frac{\varrho(\varphi(n), \varphi(n+1))}{n} < \infty.$$

A complete characterization of completely additive functions subject to (1.2) for $G = \mathbb{R}/\mathbb{Z}$ was given by the second named author in a series of papers [2].

Let Q_x , resp. R_x be the multiplicative groups of positive rationals and the positive reals. We can extend the domain of φ to Q_x by the relation

$$\varphi\left(\frac{m}{n}\right) := \varphi(m) - \varphi(n),$$

uniquely. Then φ satisfies the relation

$$\varphi(rs) = \varphi(r) + \varphi(s) \quad \forall r, s \in Q_x$$

so $\varphi: Q_x \to G$ is a homomorphism. We shall say that φ is continuous at the point 1, if $r_y \in Q_x$, $r_y \to 1$ implies that $\varphi(r_y) \to 0$. In [1] we proved the next

Lemma 1. Let G be an additively written closed Abelian topological group, $\varphi: Q_x \rightarrow G$ be a homomorphism that is continuous at the point 1. Then its domain can be extended onto \mathbf{R}_x by the relation

$$\varphi(\alpha) := \lim_{\substack{r_v \to \alpha \\ r_v \in Q_x}} \varphi(r_v) \quad (\alpha \in \mathbf{R}_x)$$

uniquely. The so obtained mapping $\varphi: \mathbf{R}_x \rightarrow G$ is a continuous homomorphism, consequently

(1.3)
$$\varphi(\alpha\beta) = \varphi(\alpha) + \varphi(\beta) \quad (\forall \alpha, \beta \in \mathbf{R}_x).$$

Theorem. If φ satisfies (1.1), (1.2) then it is a continuous $\mathbf{R}_x \to G$ homomorphism.

2. PROOF OF THEOREM. The proof is based on the following

Lemma 2. Let $p, q \in \mathbb{N}$ be coprime integers, $q < p^2$; $M, N \in \mathbb{N}$. Let (k_t, l_t) be such a sequence in \mathbb{N}^2 for which

$$r_t := \frac{p^{k_t}}{q^{l_t}} \to \frac{M}{N}$$

holds. Then

$$\varphi(r_t) \to \varphi(M/N)$$
.

First we deduce our theorem from this lemma. Let $r_j = N_j \cdot M_j^{-1} \in Q_x$, $r_j \to 1$. Let p, q be fixed integers satisfying the conditions stated in Lemma 2. Then for every r_j there exists a suitable sequence $(a_v, b_v) \in \mathbb{N}^2$ such that

$$p^{a_{\nu}} \cdot p^{-b_{\nu}} \rightarrow r_{j} \quad (\nu \rightarrow \infty),$$

and so by Lemma 2

$$\varphi(p^{a_v}q^{-b_v}) \to \varphi(r_j) \quad (v \to \infty).$$

Consequently there exists such a sequence $(k_i, l_i) \in \mathbb{N}^2$ for which

$$p^{k_j}q^{-l_j}-r_j \rightarrow 0$$
, $\varphi(p^{k_j}\cdot q^{-l_j})-\varphi(r_j) \rightarrow 0$.

Observing now that $p^{k_j}q^{-l_j} \rightarrow 1$, from Lemma 2 (M=N=1) we get that

$$\varphi(p^{k_j}q^{-l_j}) \to \varphi(1) = 0.$$

Consequently $\varphi(r_j) \to 0$, the conditions in Lemma 1 are satisfied, and so the Theorem in true.

Let us prove finally Lemma 2.

Let K be a large constant,

$$f(n) = \max_{a \in [-K, K]} \varrho(\varphi(n), \varphi(n+a)).$$

From (1.2) we have

$$\sum_{n\geq 1}\frac{f(n)}{n}<\infty.$$

Let

$$t(y) = \sum_{n \ge y} \frac{f(n)}{n},$$

furthermore

$$A_m := [Np^m, Np^{m+1}); B_m := [Mq^m, Mq^{m+1}).$$

Let $H_1 \in \mathbb{N}$ be a large constant, $(k, l) \in \mathbb{N}^2$ be such that

$$\left|\frac{Np^k}{Mq^l}-1\right|<\frac{1}{p^{H_1}},$$

and $H_2 \in \mathbb{N}$ be defined so that $B_{l+H_2} \subseteq A_{k+H_1}$. For an $n \in B_{l+H_2}$ let

$$n_j = n_j(n) = \left[\frac{n}{p^j}\right], \quad m_j = m_j(n) = \left[\frac{n}{q^j}\right] \quad (j = 0, 1, 2, ...).$$

It is clear that $n_j \in A_{k+H_1-j}$, $m_j \in A_{l+H_2-j}$, furthermore each n_j occurs for at most p^j of n, and each m_j occurs for at most q^j of n. Furthermore

$$n_j = pn_{j+1} + b_j$$
, $m_j = qm_{j+1} + c_j$, $0 \le b_j < p$, $0 \le c_j < q$.

Hence we get that

$$\varrho(\varphi(n_j), \varphi(pn_{j+1})) \leq f(n_j), \quad \varrho(\varphi(m_j), \varphi(qm_{j+1})) \leq f(m_j),$$

assuming that K>p(>q).

We have

$$\varrho\left(\varphi(n), \varphi(p^k n_k(n)) \leq \sum_{s=0}^{k-1} \varrho\left(\varphi(p^s n_s(n)), \varphi(p^{s+1} n_{s+1}(n))\right) \leq \sum_{s=0}^{k-1} f(n_s(n)),$$
 and similarly that

$$\varrho(\varphi(n), \varphi(q^l m_l(n))) \leq \sum_{s=0}^{l-1} f(m_s(n)).$$

Consequently

$$\varrho(\varphi(p^k n_k(n)), \varphi(q^l m_l(n))) \leq \sum_{s=0}^{k-1} f(n_s(n)) + \sum_{s=0}^{l-1} f(m_s(n)),$$

and so

(2.2)
$$\sum_{n \in B_{l+H_n}} \frac{1}{n} \varrho \left(\varphi(p^k n_k(n)), \varphi(q^l m_l(n)) \right) \leq t(p^{H_1-1}) + t(q^{H_2-1}).$$

We have, by (2.1)

$$|Mn_{k}(n) - Nm_{i}(n)| \leq n \left| \frac{M}{p^{k}} - \frac{N}{q^{l}} \right| + (M+N) \leq \frac{nM}{p^{k}} \left| 1 - \frac{Np^{k}}{Mq^{l}} \right| + M + N \leq \frac{p^{k+H_{1}+k} \cdot M}{p^{k}} \cdot \frac{1}{p^{H_{1}}} + (M+N) \leq 2M + N.$$

By using the translation invariant property of ϱ , we get that

$$\varrho\left(\varphi\left(\frac{p^{k}}{M}\right), \varphi\left(\frac{q^{l}}{N}\right)\right) = \varrho\left(\varphi\left(p^{k}n_{k}(n)\right), \varphi\left(\frac{q^{l}}{N}Mn_{k}(n)\right)\right) \leq \\
\leq \varrho\left(\varphi\left(p^{k}n_{k}(n)\right), \varphi\left(q^{l}m_{l}(n)\right)\right) + \varrho\left(\varphi\left(Mn_{k}(n)\right), \varphi\left(Nm_{l}(n)\right)\right).$$

Hence, by (2.2) we deduce that

(2.4)
$$\varrho\left(\varphi\left(\frac{p^{k}}{M}\right), \ \varphi\left(\frac{q^{l}}{N}\right)\right) \cdot \sum_{n \in B_{l+H_{2}}} \frac{1}{n} \leq t(p^{H_{1}-1}) + t(q^{H_{2}-1}) + \sum_{n \in B_{l+H_{2}}} \varrho\left(\varphi(Mn_{k}(n)), \varphi(Nm_{l}(n))\right) \frac{1}{n}.$$

The sum on the right hand side is majorated by $\ll t(p^{H_1})$. Since

$$1 \leq \sum_{n \in B_{l+H_2}} \frac{1}{n} < q,$$

68 Z. Daróczy and I. Kátai: On additive arithmetical functions with values in topological groups II

we get that

$$\varrho\left(\varphi\left(\frac{p^kN}{q^tM}\right),\,0\right)\ll t(p^{H_1-1})+t(q^{H_2-1}).$$

Let now $(k, l) = (k_t, l_t)$. Then (2.1) is satisfied by a suitable sequence $H_1 = H_1(t) \rightarrow \infty$. This implies that

$$\varphi\left(\frac{p^{k_t}N}{q^{l_t}M}\right) \to 0,$$

and so the proof of Lemma 2 is finished.

References

 Z. DARÓCZY and I. KÁTAI, On additive arithmetical functions with values in topological groups I Publ. Math. (Debrecen) 32 (1985),

[2] I. KATAI, Multiplicative functions with regularity properties I., II., III. Acta Math. Hung. 42 (1983), 295—308, 43 (1984), 105—130, 43 (1984), 259—272.

(Received December 27, 1984)