On boundary value problems for nonlinear elliptic equations on unbounded domains

By L. SIMON (Budapest)

Introduction

In [1] it has been proved the existence of variational solutions of boundary value problems for the equation

$$\sum_{|\alpha| \leq m} (-1)^{|\alpha|} D^{\alpha} f_{\alpha}(x, u, \dots, D^{\beta} u, \dots) + g(x, u) = F, \quad x \in \Omega$$

where Ω is a possibly unbounded domain in R^n , $|\beta| \leq m$. The terms $f_{\alpha}(x, \xi)$ are required to have polynomial growth in ξ , in the term g(x, u), however, no growth restriction is imposed but it is supposed that g (essentially) satisfies the sign condition $g(x, u)u \geq 0$ and for all t>0, $x\mapsto \sup |g(x, u)| \in L^1(\Omega)$.

dition $g(x, u)u \ge 0$ and for all t>0, $x\mapsto \sup_{|u| \le t} |g(x, u)| \in L^1(\Omega)$.

In the present paper it will be proved the existence of variational solutions of boundary value problems for the elliptic equation

$$(0.1) \quad \sum_{|\alpha| \leq m} (-1)^{|\alpha|} D^{\alpha} f_{\alpha}(x, u, \dots, D^{\beta}u, \dots) + \sum_{|\alpha| \leq l} (-1)^{|\alpha|} D^{\alpha} g_{\alpha}(x, u, \dots, D^{\beta}u, \dots) = F$$

where $|\beta| \le m$, l is an integer with the property $l < m - \frac{n}{p}(1 - p + \varrho)$, p and ϱ are real numbers such that $1 , <math>p - 1 < \varrho \le p$. Functions f_{α} satisfy the same conditions as in [1] and in [2], g_{α} are supposed to satisfy (essentially)

$$(0.2) g_{\alpha}(x,\xi) \, \xi_{\alpha} \ge 0,$$

$$(0.3) |g_{x}(x,\xi)| \leq C(\xi') (K(x) + |\xi''|^{\varrho})$$

where $\xi = (\xi', \xi'')$ and ξ' contains those coordinates ξ_{β} of ξ for which $|\beta| < m - \frac{n}{p}$; $K \in L^{p/q}(\Omega)$.

In [3] and in [4] it is shown that there exist variational solutions of problems for (0.1) but g_{α} are supposed to satisfy other conditions instead of (0.3). In [5] the Dirichlet problem in bounded Ω for second order equations is considered with l=0 if $g_{\alpha}=g$ satisfies a condition of type (0.3).

76 L. Simon

§ 1. Preliminaries

Let $\Omega \subset \mathbb{R}^n$ be a (possibly) unbounded domain, p>1, m a positive integer. Assume that Ω has the weak cone property (see [6]) and for all sufficiently large μ , there exists a bounded $\Omega_{\mu} \subset \Omega$ with the weak cone property such that $\Omega_{\mu} \supset \{x \in \Omega : |x| < \mu\}$. Denote by $W_p^m(\Omega)$ the usual Sobolev space of real valued functions u whose distributional derivatives of order $m \in \mathbb{R}^m$ belong to $L^p(\Omega)$. The norm on $W_p^m(\Omega)$ is

 $||u||_{W_p^m(\Omega)} = \left\{ \sum_{|\alpha| \le m} \int |D^\alpha u|^p dx \right\}^{1/p},$

where $\alpha = (\alpha_1, \ldots, \alpha_n)$, $|\alpha| = \sum_{j=1}^n \alpha_j$, $D^z = D_n^{\alpha_1} \ldots D_n^{\alpha_n}$, $D_j = \frac{\partial}{\partial x_j}$. By $W_{p,0}^m(\Omega)$ will be

denoted the closure in $\|\cdot\|_{W_p^m(\Omega)}$ of $C_0^\infty(\Omega)$, the set of infinitely differentiable functions with compact support contained in Ω .

Let N be the number of multiindices α satisfying $|\alpha| \leq m$. The vectors $\xi = (\xi_0, ..., \xi_\beta, ...) \in \mathbb{R}^N$ will be written in the form $\xi = (\eta, \zeta)$ where η consists of those ξ_β for which $|\beta| \leq m-1$. Assume that I. Functions $f_\alpha \colon \Omega \times \mathbb{R}^N \to \mathbb{R}$ satisfy the Carathéodory conditions, i.e. they are

I. Functions $f_{\alpha} : \Omega \times \mathbb{R}^N \to \mathbb{R}$ satisfy the Carathéodory conditions, i.e. they are measurable with respect to x for each fixed $\xi \in \mathbb{R}^N$ and continuous with respect to ξ for almost all $x \in \Omega$.

II. There exist a constant $c_1>0$ and a function $K_1\in L^q(\Omega)$ (where 1/p+1/q=1) such that

$$|f_{\alpha}(x,\xi)| \leq c_1 |\xi|^{p-1} + K_1(x)$$

for all $|\alpha| \le m$, a.e. $x \in \Omega$ and all $\xi \in \mathbb{R}^N$.

III. For all (η, ζ) , $(\eta, \zeta') \in \mathbb{R}^N$ with $\zeta \neq \zeta'$ and a.e. $x \in \Omega$

$$\sum_{|\alpha|=m} [f_{\alpha}(x,\eta,\zeta) - f_{\alpha}(x,\eta,\zeta')] (\xi_{\alpha} - \xi_{\alpha}') > 0.$$

IV. There exist a constant c_2 and a function $K_2 \in L^1(\Omega)$ such that for a.e. $x \in \Omega$ and all $\xi \in \mathbb{R}^N$

$$\sum_{|\alpha| \leq m} f_{\alpha}(x, \xi) \, \xi_{\alpha} \geq c_2 |\xi|^p - K_2(x).$$

V. Functions p_{α} , r_{α} : $\Omega \times \mathbb{R}^{N} \to \mathbb{R}$ satisfy the Carathéodory conditions and

$$g_{\alpha} = p_{\alpha} + r_{\alpha}$$
.

VI. $p_{\alpha}(x, \xi)\xi_{\alpha} \ge 0$ and $|r_{\alpha}(x, \xi)| \le h_{\alpha}(x)$ for all $\xi \in \mathbb{R}^{N}$ and a.e. $x \in \Omega$ where $h_{\alpha} \in L^{p/\varrho}(\Omega)$.

VII. There exist a continuous function C and a function $K \in L^{p/\varrho}(\Omega)$ such that

$$|p_\alpha(x,\xi)| \le C(\xi') \left(K(x) + |\xi''|^\varrho\right)$$

for all $|\alpha| \le l$, $\xi = (\xi', \xi'') \in \mathbb{R}^N$ and a.e. $x \in \Omega$.

VIII. V is a closed subspace of $W_p^m(\Omega)$ with the property: $v \in V$, $\varphi \in C_0^\infty(\mathbb{R}^n)$ imply that $\varphi v \in V$. $(V \text{ may be e.g. } W_p^m(\Omega) \text{ or } W_{p,0}^m(\Omega).)$

Set

(1.1)
$$p_{\alpha,\mu}(x,\xi) = \begin{cases} p_{\alpha}(x,\xi) & \text{if } |x| \leq \mu, \ |p_{\alpha}(x,\xi)| \leq \mu, \\ \mu \frac{p_{\alpha}(x,\xi)}{|p_{\alpha}(x,\xi)|} & \text{if } |x| \leq \mu, \ |p_{\alpha}(x,\xi)| > \mu, \\ 0 & \text{if } |x| > \mu, \end{cases}$$

$$r_{\alpha,\mu}(x,\xi) = \begin{cases} r_{\alpha}(x,\xi) & \text{if } |x| \leq \mu, \ |r_{\alpha}(x,\xi)| \leq \mu, \\ \mu \frac{r_{\alpha}(x,\xi)}{|r_{\alpha}(x,\xi)|} & \text{if } |x| \leq \mu, \ |r_{\alpha}(x,\xi)| \geq \mu, \\ 0 & \text{if } |x| > \mu, \end{cases}$$

(1.2)
$$r_{\alpha,\mu}(x,\xi) = \begin{cases} r_{\alpha}(x,\xi) & \text{if } |x| \leq \mu, \ |r_{\alpha}(x,\xi)| \leq \mu, \\ \mu \frac{r_{\alpha}(x,\xi)}{|r_{\alpha}(x,\xi)|} & \text{if } |x| \leq \mu, \ |r_{\alpha}(x,\xi)| > \mu, \\ 0 & \text{if } |x| > \mu, \end{cases}$$

(1.3)
$$g_{\alpha,\mu}(x,\xi) = p_{\alpha,\mu}(x,\xi) + r_{\alpha,\mu}(x,\xi).$$

Assumptions I., II., V., VI. and (1.1)—(1.3) imply that formulas

$$\langle T(u), v \rangle = \sum_{|\alpha| \le m} \int_{\Omega} f_{\alpha}(x, u, ..., D^{\beta}u, ...) D^{\alpha}v \, dx,$$

$$\langle S_{\mu}(u), v \rangle = \sum_{|\alpha| \leq l} \int_{\Omega} g_{\alpha,\mu}(x, u, ..., D^{\beta}u, ...) D^{\alpha}v dx$$

define linear continuous functionals T(u) resp. $S_{\mu}(u)$ on V for any fixed (sufficiently large) μ.

By assumptions I.—V. and (1.1)—(1.3) operator $T+S_{\mu}$ satisfies the conditions of [2] for (sufficiently large) fixed μ and thus we have

Lemma 1. For any $F \in V^*$ there exists $u_n \in V$ such that

$$(T+S_u)(u_u)=F.$$

Lemma 2. Assume that $(u_i) \rightarrow u$ weakly in V and for any bounded domain $\omega \subset \Omega$

$$\lim_{j\to\infty} \int_{0}^{\infty} h_j dx = 0$$

where

$$h_j(x) = \sum_{|\alpha|=m} [f_{\alpha}(x, u_j, ..., D^{\gamma}u_j, ..., D^{\beta}u_j, ...) -$$

(1.5)
$$-f_{\alpha}(x, u_{j}, ..., D^{\gamma}u_{j}, ..., D^{\beta}u, ...)](D^{\alpha}u_{j} - D^{\alpha}u)$$

 $|\gamma| < m$, $|\beta| = m$. Then there is a subsequence (u_i) of (u_i) such that $D^{\beta}u_i' \rightarrow D^{\beta}u$ a.e. in Ω for all β with $|\beta| \leq m$.

PROOF. Since $(u_i) \rightarrow u$ weakly in V thus there is a subsequence (\tilde{u}_i) of (u_i) such that

$$D^{\gamma}\tilde{u}_i \rightarrow D^{\gamma}u$$
 a.e. in Ω for $|\gamma| < m$

(see e.g. [7]). Further, by assumption III. $h_i \ge 0$ and so (1.4) and Fatou's lemma imply that

$$h_j \to 0$$
 a.e. in ω .

78 L. Simon

Thus there exists $\omega_0 \subset \omega$ of measure 0 such that for $x \in \omega \setminus \omega_0$

(1.6)
$$|D^{\beta}u(x)| < \infty, |K_1(x)| < \infty, |K_2(x)| < \infty$$

and

$$(1.7) D^{\gamma}\tilde{u}_{j}(x) \rightarrow D^{\gamma}u(x)(|\gamma| < m), \ \tilde{h}_{j}(x) \rightarrow 0.$$

Set

$$\xi^{(j)}(x) = (..., D^{\beta}\tilde{u}_{j}(x), ...)$$

where $|\beta| = m$. By assumptions I., II., IV. and by (1.6), (1.7)

$$\tilde{h}_{j}(x) \geq \sum_{|\alpha|=m} f_{\alpha}(x, \tilde{u}_{j}, ..., D^{\gamma} \tilde{u}_{j}, ..., D^{\beta} \tilde{u}_{j}, ...) D^{\alpha} \tilde{u}_{j} - \\
- \sum_{|\alpha|=m} |f_{\alpha}(x, \tilde{u}_{j}, ..., D^{\gamma} \tilde{u}_{j}, ..., D^{\beta} \tilde{u}_{j}, ...) D^{\alpha} u| - \\
- \sum_{|\alpha|=m} |f_{\alpha}(x, \tilde{u}_{j}, ..., D^{\gamma} \tilde{u}_{j}, ..., D^{\beta} u, ...) (D^{\alpha} \tilde{u}_{j} - D^{\alpha} u) \geq \\
\geq c_{2} |\xi^{(j)}(x)|^{p} - c_{3}(x) [1 + |\xi^{(j)}(x)|^{p-1} + |\xi^{(j)}(x)|] \quad \text{if} \quad x \in \omega \setminus \omega_{0}.$$

 $(D^{\gamma}\tilde{u}_{j}(x))$ is bounded for a fixed $x \in \omega \setminus \omega_{0}$.) Since by (1.7) $\tilde{h}_{j}(x)$ is bounded for a fixed $x \in \omega \setminus \omega_{0}$ thus $\xi^{(j)}(x)$ is bounded, too. Consequently, $(\xi^{(j)}(x))$ contains a subsequence which converges to a vector $\xi^{*}(x)$.

Now we show that

(1.8)
$$\xi^*(x) = \xi(x) = (..., D^{\beta}u(x), ...).$$

Indeed, applying (1.5) to the subsequence of $(\tilde{h}_j(x))$ and letting $j \to \infty$ (by (1.7)) we obtain

$$0 = \sum_{|\alpha|=m} [f_{\alpha}(x, u(x), ..., D^{\gamma}u(x), ..., \xi^{*}(x)) -$$

$$-f_{\alpha}(x, u(x), ..., D^{\gamma}u(x), ..., \xi(x))[\xi_{\alpha}^{*}(x) - \xi_{\alpha}(x)]$$

which implies (1.8) in virtue of assumption III.

So we have shown that all convergent subsequences of $(\xi^{(j)}(x))$ tend to $\xi(x)$. Therefore $\lim_{j\to\infty} \xi^{(j)}(x) = \xi(x)$ and thus by (1.7) $D^{\beta}\tilde{u}_j \to D^{\beta}u$ a.e. in ω for all β with $|\beta| \le m$. Hence (by a "diagonal process") easily follows Lemma 2 since ω is an arbitrary bounded subset of Ω .

§ 2. The existence theorem

Theorem. Suppose that conditions I.—VIII. are fulfilled. Then for any $F \in V^*$ there exists $u \in V$ such that

(2.1)
$$\sum_{|\alpha| \leq m} \int_{\Omega} f_{\alpha}(x, u, ..., D^{\beta} u, ...) D^{\alpha} v \, dx +$$

$$+ \sum_{|\alpha| \leq l} \int_{\Omega} g_{\alpha}(x, u, ..., D^{\beta} u, ...) D^{\alpha} v \, dx = \langle F, v \rangle$$

for all $v \in V$.

PROOF. By Lemma 1 for any $j=j_0, j_0+1, j_0+2, ...$ there is $u_i \in V$ such that

(2.2)
$$\langle (T+S_j)(u_j), v \rangle = \langle F, v \rangle$$
 for all $v \in V$.

From assumptions IV., VI. and (1.1)—(1.3) it follows that (u_i) is bounded in V. Thus there exist a subsequence (u_{i_k}) of (u_i) and $u \in V$ such that

$$(2.3) (u_{f_k}) \to u \text{weakly in } V,$$

(2.4)
$$D^{\gamma}u_{j_k} \to D^{\gamma}u$$
 a.e. in Ω for $|\gamma| \le m-1$

(see [7]).

Consider an arbitrary bounded domain $\omega \subset \Omega$ and take a function $\Theta \in C_0^{\infty}(\mathbb{R}^n)$ such that $\Theta \ge 0$ and $\Theta(x) = 1$ for $x \in \omega$. By Sobolev's imbedding theorems (see e.g. [6]) it may be supposed that

(2.5)
$$D^{\gamma}u_{j_k} \to D^{\gamma}u$$
 in $L^p(\Omega \cap \text{supp }\Theta)$ for $|\gamma| \leq m-1$

and

(2.6)
$$D^{\gamma}u_{j_k} \to D^{\gamma}u$$
 in $L^{q_1}(\Omega \cap \operatorname{supp} \Theta)$ for $|\gamma| \leq l < m - \frac{n}{p}(1 - p + \varrho)$

where q_1 is defined by $\frac{1}{p/\varrho} + \frac{1}{q_1} = 1$. By assumption VIII. $\Theta(u_{j_k} - u) \in V$ and so by (2.2)

(2.7)
$$\sum_{|\alpha| \leq m} \int_{\Omega} f_{\alpha}(x, u_{j_k}, \dots, D^{\beta} u_{j_k}, \dots) D^{\alpha}[\Theta(u_{j_k} - u)] dx +$$

$$+ \sum_{|\alpha| \leq l} \int_{\Omega} g_{\alpha, j_k}(x, u_{j_k}, \dots, D^{\beta} u_{j_k}, \dots) D^{\alpha}[\Theta(u_{j_k} - u)] dx = \langle F, \Theta(u_{j_k} - u) \rangle.$$

Since $(u_i, -u) \rightarrow 0$ weakly in V thus

(2.8)
$$\Theta(u_{J_k} - u) \to 0$$
 weakly in V .

In virtue of (2.7) we have

(2.9)
$$\sum_{|\alpha|=m} \int_{\Omega} [f_{\alpha}(x, u_{j_{k}}, ..., D^{\gamma}u_{j_{k}}, ..., D^{\beta}u_{j_{k}}, ...) - f_{\alpha}(x, u_{j_{k}}, ..., D^{\gamma}u_{j_{k}}, ..., D^{\beta}u, ...)] \Theta D^{\alpha}(u_{j_{k}} - u) dx =$$

$$= \sum_{|\alpha|=m} \int_{\Omega} f_{\alpha}(x, u_{j_{k}}, ..., D^{\gamma}u_{j_{k}}, ..., D^{\beta}u, ...) \Theta D^{\alpha}(u - u_{j_{k}}) dx +$$

$$+ \sum_{|\alpha|=m} \int_{\Omega} f_{\alpha}(x, u_{j_{k}}, ..., D^{\gamma}u_{j_{k}}, ..., D^{\beta}u_{j_{k}}, ...) \sum_{|\gamma| \leq m-1} c_{\gamma} D^{\gamma}(u - u_{j_{k}}) D^{\alpha-\gamma} \Theta dx +$$

$$+ \sum_{|\alpha| \leq m-1} \int_{\Omega} f_{\alpha}(x, u_{j_{k}}, ..., D^{\gamma}u_{j_{k}}, ..., D^{\beta}u_{j_{k}}, ...) D^{\alpha}[\Theta(u - u_{j_{k}})] dx +$$

$$+ \sum_{|\alpha| \leq l} \int_{\Omega} g_{\alpha, j_{k}}(x, u_{j_{k}}, ..., D^{\beta}u_{j_{k}}, ...) D^{\alpha}[\Theta(u - u_{j_{k}})] dx + \langle F, \Theta(u_{j_{k}} - u) \rangle$$

where $|\gamma| < m$, $|\beta| = m$.

80 L. Simon

Now we show that all the terms in the right of (2.9) converge to 0 as $k \to \infty$. By (2.3) $D^{\alpha}(u_{j_k} - u) \to 0$ weakly in $L^p(\Omega)$, further by (2.4), assumption I.

(2.10)
$$\Theta f_{\alpha}(x, u_{j_{k}}, ..., D^{\gamma}u_{j_{k}}, ..., D^{\beta}u, ...) \rightarrow \Theta f_{\alpha}(x, u, ..., D^{\gamma}u, ..., D^{\beta}u, ...)$$

a.e. in Ω and so by assumption II., (2.5) and Vitali's theorem (2.10) is valid in $L^q(\Omega)$ norm, too. Thus the first term in the right of (2.9) converges to 0.

Since by assumptions I., II.

$$f_{\alpha}(x, u_{j_k}, ..., D^{\gamma}u_{j_k}, ..., D^{\beta}u_{j_k}, ...)$$

is bounded in $L^q(\Omega)$ thus (2.5) implies that the second and third terms in the right of (2.9) converge to 0 as $k \to \infty$.

From assumptions V.-VII. it follows that

$$g_{\alpha,j_{\nu}}(x,u_{j_{\nu}},...,D^{\gamma}u_{j_{\nu}},...,D^{\beta}u_{j_{\nu}},...)$$

is bounded in $L^{p/\varrho}(\Omega \cap \text{supp } \Theta)$ thus (2.6) implies that the fourth term in the right of (2.9) converges to 0 as $k \to \infty$. Finally, from (2.8) it follows that the last term in the right of (2.9) converges to 0 as $k \to \infty$.

Thus we have shown that the term in the left of (2.9) converges to 0 as $k \to \infty$ and so by assumption III. and by $\Theta \ge 0$ we find that (1.4) is valid for any bounded $\omega \subset \Omega$. Consequently, from Lemma 2 we obtain that (u_{j_k}) contains a subsequence $(u_{j'_k})$ such that

(2.11)
$$D^{\beta}u_{j'_{k}} \rightarrow D^{\beta}u$$
 a.e. in Ω if $|\beta| \leq m$.

Thus assumption I. implies that

$$f_{\alpha}(x, u_{j'_{b}}, ..., D^{\beta}u_{j'_{b}}, ...) \rightarrow f_{\alpha}(x, u, ..., D^{\beta}u, ...)$$

a.e. in Ω and so by assumption II., Hölder's inequality Vitali's theorem shows that for any $v \in V$

(2.12)
$$\lim_{k\to\infty} \langle T(u_{j'_k}), v \rangle = \langle T(u), v \rangle.$$

By using (1.1)—(1.3), assumption V. and (2.11) we obtain

$$g_{\alpha,j_k'}(x,u_{j_k'},\,\ldots,\,D^\beta u_{j_k'},\,\ldots) \rightarrow g_\alpha(x,u,\,\ldots,\,D^\beta u,\,\ldots)$$

a.e. in Ω and so by assumptions VI., VII., Hölder's inequality Vitali's theorem shows that for any $v \in V$

(2.13)
$$\lim_{k\to\infty} \left\langle s_{j'_k}(u_{j'_k}), v \right\rangle = \sum_{|\alpha|\leq l} \int_{\Omega} g_{\alpha}(x, u, ..., D^{\beta}u, ...) D^{\alpha}v \, dx.$$

Thus from (2.2), (2.12), (2.13) one obtains (2.1) and the proof of the theorem is complete.

References

- [1] J. R. L. Webb, Boundary value problems for strongly nonlinear elliptic equations, J. London Math. Soc. (2), 21 (1980), 123-132.
- [2] F. E. Browder, Pseudo-monotone operators and nonlinear elliptic boundary value problems on unbounded domains, Proc. Natl. Acad. Sci. USA, 74 (1977), 2659-2661.
- [3] L. Simon, On strongly nonlinear elliptic equations in unbounded domains, Ann. Univ. Sci. Budapest, 28 (1985), 241-252.
- [4] Л. Шимон, О сильно нелинейных эллиптических уравнениях в неограниченной области, Дифференциальные уравнения, 22 (1986), 472-483.
- [5] L. BOCCARDO—F. MURAT—J. P. PUEL, Résultats d'existence pour certains problèmes elliptiques quasilinéaires, Publications du Laboratoire d'Analyse Numerique, Université Pierre et Marie Curie & C. N. R. S., 1982, 1—45.
 [6] О. В. Бесов—В. П. Ильин—С. М. Никольский, Интегральные представления функ-
- ций и теоремы вложения, «Наука», Москва, 1975.
- [7] D. E. EDMUNDS—J. R. L. Webb, Quasilinear elliptic problems in unbounded domains, Proc. Roy. Soc. London, Ser. A, 337 (1973), 397—410.

(Received January 18, 1985)