On the convergence of linear martingales

By ISTVAN FAZEKAS (Debrecen)

§ 1. Introduction

The following generalization of the notion of martingale has been studied by
MACQUEEN [7]. Let (&, F,.1=1,2,...) be an adapted sequence of random vari-
ables and suppose that

(l) E{Ele-l} = al.és—l'}' cee +am§s—m

for s=m, where m is a fixed positive integer and a,, ..., 4, are non-random coeffi-
cients. From equation (1) we get that

(2) és — alés—l-" Ll +an6.l—m+5s,

where J, is a martingale difference. This autoregressive scheme is widely studied in
the literature. Deep investigations have been devoted in particular to the stationarity
of the process &, in the Gaussian case (see [1], p. 108). However, it has been pointed
out in [7], that the process &, is more closely related to a martingale than a stationary

m
process, if the coefficients a, are positive and > a,=1. In this special case classical

martingale convergence theorems of Doob are true for & (see [7], Section 3).

The aim of this paper is to give a new proof for the results of MacQueen (part
(a) and (b) of our Theorem 3). Part (c) of Theorem 3 is new.

Our method is the following: we reduce our problem with the help of the trans-
formation described in (6) and (7) to the study of an m-dimensional process X,
for which

3) E{X,|F,} = AX, ;.

We prove some general results for the vector-valued process X, (Theorems 1 and 2)
which imply the convergence of &,.

§ 2. Definitions and preliminary remarks

Definition 1. Let (Q, F, P) be a probability space, F, (s=1, 2, ...) an increas-
ing sequence of o-subalgebras of F and ¢, (s=1,2,...) real random variables
(r.v.’s) defined on (L, F, P).

We call the process (&,, F,, s=1,2,...) a linear martingale if ¢, is F,-meas-
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urable, E||<e< for every s and

@ E{,|Fo-1} = a1()&s-1+ .. + () &s-m

for all s>m, where m is a fixed positive integer, and a,(s) (k=1, ..., m; s>m)
are nonnegative non-random coefficients for which tzu; a(s)=1 (s>m). (We sup-

pose that there exists an s for which a,,(s)#0.)
From equation (4) it follows that

(5) és o al(s)§!—1+ Lk +am(s)fs—m +6n
where 8,=¢,—E{&,|F,-,} is a martingale difference.
If the initial r.v.’s &, ..., &, the coefficients
a(s) k=1,...m; s=m+1,m+2,..)

and the martingale difference (6,, F,, s=m+1,m+2,...) are given, then there
exists a process (&, F,, s=1, 2, ...) satisfying (5) and thus also (4).

In order to study the convergence properties of the process &, we introduce the
m-dimensional vectors

5
(rfx ) 0

©) X,=\: » 4=1.|,
‘fr-m+1 6

and a matrix of type mXm:

a(t) ... au(n)

1 0
Y a0=| " .

0 1 0

With these notations we have

t)) E{X,|F,-} = A(D)X,-,
and
(9) X: = A(’)Xt—l"‘dr
for t=m.

Remark 1. This transformation is widely used to study discrete time auto-
regressive processes ([1], p. 109).

For the sake of brevity a process (X,, F,, t=1,2,...) with property (8) will
be called a A-martingale:

Definition 2. An adapted m-dimensional stochastic process (X,, F;, 1=1,2, ...)
is called a A-martingale if X, is integrable and E{X,.,|F,}=A4(+1)X, for
t=1,2, ..., where A(7) is a given non-random matrix (1=1, 2, ...). (Equivalently,
(X,, F,) is a A-martingale if (9) is satisfied, where (4,, F,) is a martingale dif-
ference.)
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From equation (9) one easily deduces that X, has the following representation
(10) X,= A OX,+ > A, w4, @¢=3),
u=s+1

where the matrices A(?, u) are the solutions of the equations

A, W)= AWWA@—1,u) for t=>u,

(11)
A(u,u) = I (the identity matrix).

Equations (10) and (11) can be considered as the discrete analogues of the solution
of a stochastic differential equation (see Theorem 4.2.4 of [4]).
In the sequel || -|| denotes the norm of a vector or a matrix.

§ 3. Convergence of A-martingales

We shall prove that under certain conditions the classical martingale con-
vergence theorems of Doob are true for A-martingales. We assume that the limit

(12) lim A(t, u) = A(u)

exists for every u=1,2,....
Let us introduce the accompanying martingale of X;:

t
Y, = 2 AW)4,,
=1
where 4,=2X;. i
Lemma 1. If the A-martingale (X,, F,) is bounded in L, (x=1), i.e.

sup E|XJ* = ¢ <=,

then its accompanying martingale (Y,, F,) is also bounded in L,:
sup E[Y,||* = e.

PrOOF. Let us consider the following martingale:

Y,.= 3 A(t, w4,

u=1
for 1=s=t, where t is fixed. For the submartingale |Y, J* (1=s=7) we have
ENY,l* = E|Y,, * = E|X||* = ¢
for every s=t. Since

limY,,= > AW4, =Y,

u=1

for every fixed s, we get by Fatou’s lemma E|Y||*=c.
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In addition to assumption (12), we need the following stability condition for
the solution of equation (11):

(13) 4@ w)— AW = c-u (t = w),

where 2 ¢, <eo.

5=0
In the sequel, we suppose that there exists a positive function C,(w) for which
(14) Ci(w)]4(0)] = [|A(w) 4, ()|
for every u=1 and weQ.

Theorem 1. Let (X,, F,, t=1,2,...) be a A-martingale satisfying conditions
(13) and (14).
(a) If supE|X/||<c<-<=, then '!im X,=X. almost surely (a.s.) and E|X.| <
4 - OO

- oo,
(b) X, converges in L, as t—~<o if and only if the family {X,; 1=1,2,...} is
uniformly integrable.

ProoF. (a) Let Y, be the accompanying martingale of X,. By Lemma I
sup E|Y,|<c. It follows from Doob’s theorem (see [5], p. 319) that }im ;=Y. as

and E| Y.l <-<. Condition (13) implies that

as) X=Xl = | 3[40 0 - 4@ = 3 ci-uldul =

s=0

t—1 n -1
= 2 lldi-sles = Z;lldf-.llcs+ _2;1 [|4e-sll €-

t

It has been proved that the series > A(u)4,=Y, is convergent a.s. Therefore by
uml

(14) 1i_m 4,(®)=0 and sup |4, (@) =c(w)<< for almost all w€Q. Now inequal-

ity (15) and condition g'c,-ﬁm together imply that }im | X;—Y/J=0 as. So,
s=0 b
in view of }im Y,=Y. as. we have}im X=X.=Y,. as.

(b) Uniform integrability implies that sup E|X,|<c<-<s. By part (a) of this
theorem }i_.“l X,=X. a.s. hence X, converges also in L, because of the uniform
integrability.

Conversely, convergence in L, always implies uniform integrability.

Remark 2. If A(t,u)—~A(u) as t—-o=, then the accompanying martingale Y,
has the form Y,=A(1)X,, t=1.

Indeed, by (10) and (11)

t t }
A, DX, = JA(s, DAL wd, = 3 A(s,u)4,
u=1 u=1

for s>1, where 4,=X,. If s tends to infinity we get Y, =A4(7)X,.
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Remark 3. (a) Under conditions (13) and (14) uniform integrability of X,
implies uniform integrability of Y,. Indeed, from equation

E{X,.|F} = A(L,u)X,
for 1+ we get
E{X.|F}= AwX,=7Y,.

(b) If in (14) C,(w)=C,=const., then the uniform integrability of Y, implies
the uniform integrability of X,. Indeed, by the proof of Theorem 1 !un | X;—Y,||=0

m L,.
(c) The decomposition X,=Y,+Z, is the (unique) Riesz decomposition of the
uniformly integrable A-martingale X,.

Remark 4. Let B be a Banach space with the Radon—Nikodym property (cf.
[2]). Theorem 1 is valid for B-valued A-martingales too.

Theorem 2. Let (X,, F,) be a A-martingale. Suppose that |A(t,uw)|=K for
t=u. Assume that conditions (12) and (14) hold and in (14) C,(w)=C,=const.
IfSI.’lpEHX,”"-c:m, where a=1, then }im X;=X.in L, (and a.s.).

Proor. It follows from Lemma 1 that s?pEllY,II’-:w for the accompanying
martingale Y,. By the theorem of Doob }im Y,=Y. in L,. From this and from
the inequality of Burkholder (cf. [3], p. 384) we infer that

I 13

E| 3 A(t.wA)* =B,E( 3 At w4, =

u=s+1 u=s+1

= BIK“E(F‘?;I 14.°y" = B K*Cy E(Z I4@) 4,77 =

t
= B,K°Ci*Bi'E|| 3 A@WA|* = B,K*Ci*B E|Y,-Y,|* <¢
u=3+41

if s>s, for every t=s.
Finally, from equality

5 3
X,~Y. = C—=Y)+( 3 A, a,~-Y)+ 3 At,u)4,
u=1 u=s+1
we get the desired convergence.

§ 4. Convergence of linear martingales

Let (&, F,, t=1,2,...) be a linear martingale. Assume that the coefficients
a,(s) do not depend on s: a.(s)=a, s>m, k=1,2,...,m. Let d be the greatest
common divisor of those integers k for which a,=0.

Theorem 3. Let us suppose that d=1.
(a) If sup E|&|<-<o, then &, converges almost surely as t—eo.
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(b) &, converges in L, as t—co iff the family {{;: t=1,2,...} is wuniformly
integrable.
(¢) Let a=>1. If SI'IpEIE,I‘{ o, then &, converges in L, as t— oo.

ProoF. In §2 we have constructed the A-martingale X(7), the matrix A(¢)
and the martingale difference 4, corresponding to ¢&,. By the conditions of our theo-
rem A=A(t) is the transition matrix of a non-decomposable acyclic Markov
chain with m states. From the theory of Markov chains it is well known that the
elements of the matrices A(f, u)=A'""* converge exponentially fast to the elements
of the matrix A(u)=A=(a;) as t-eo, where a;=p; (i,j=1,...,m) and p;=

= 2"' a; Zm‘ ia; (j=1,...,m) is the unique stationary distribution of the Mar-
i=j i=1
kov chain.
Therefore conditions (13) and (14) are true. Thus Theorems 1 and 2 imply the
present result.

Remark 5. The first component of the martingale ¥;:

n= (2 (2 a)en-n) 3 ia

can be regarded as an accompanying martingale of &,.

Remark 6. (a) In the case of d>1 Theorem 3 implies the convergence of the
subsequences &;, &;14y Eiioas ... fOr every l=i<d.

(b) Let (&, F,) and (n,,G, be independent martingales and suppose that
}i“:l cf,;é!ira n,. The linear martingale &, n,, &, 7, ... IS not convergent (case

d=1).
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