On the convergence of linear martingales

By ISTVÁN FAZEKAS (Debrecen)

§ 1. Introduction

The following generalization of the notion of martingale has been studied by MACQUEEN [7]. Let $(\xi_t, F_t, t=1, 2, ...)$ be an adapted sequence of random variables and suppose that

(1)
$$E\{\xi_s|F_{s-1}\} = a_1\xi_{s-1} + \dots + a_m\xi_{s-m}$$

for s>m, where m is a fixed positive integer and $a_1, ..., a_m$ are non-random coefficients. From equation (1) we get that

(2)
$$\xi_s = a_1 \xi_{s-1} + \dots + a_m \xi_{s-m} + \delta_s,$$

where δ_s is a martingale difference. This autoregressive scheme is widely studied in the literature. Deep investigations have been devoted in particular to the stationarity of the process ξ_s in the Gaussian case (see [1], p. 108). However, it has been pointed out in [7], that the process ξ_s is more closely related to a martingale than a stationary

process, if the coefficients a_k are positive and $\sum_{k=1}^m a_k = 1$. In this special case classical martingale convergence theorems of Doob are true for ξ_s (see [7], Section 3).

The aim of this paper is to give a new proof for the results of MacQueen (part

(a) and (b) of our Theorem 3). Part (c) of Theorem 3 is new.

Our method is the following: we reduce our problem with the help of the transformation described in (6) and (7) to the study of an m-dimensional process X_t for which

(3)
$$E\{X_t|F_{t-1}\} = \Lambda X_{t-1}.$$

We prove some general results for the vector-valued process X, (Theorems 1 and 2) which imply the convergence of ξ_t .

§ 2. Definitions and preliminary remarks

Definition 1. Let (Ω, F, P) be a probability space, F_s (s=1, 2, ...) an increasing sequence of σ -subalgebras of F and ξ_s (s=1, 2, ...) real random variables (r.v.'s) defined on (Ω, F, P) . We call the process $(\xi_s, F_s, s=1, 2, ...)$ a linear martingale if ξ_s is F_s -meas-

100 I. Fazekas

urable, $E|\xi_s| < \infty$ for every s and

(4)
$$E\{\xi_s|F_{s-1}\} = a_1(s)\xi_{s-1} + \dots + a_m(s)\xi_{s-m}$$

for all s>m, where m is a fixed positive integer, and $a_k(s)$ (k=1, ..., m; s>m) are nonnegative non-random coefficients for which $\sum_{k=1}^{m} a_k(s) = 1$ (s>m). (We suppose that there exists an s for which $a_m(s) \neq 0$.)

From equation (4) it follows that

(5)
$$\zeta_s = a_1(s) \zeta_{s-1} + \ldots + a_m(s) \zeta_{s-m} + \delta_s,$$

where $\delta_s = \xi_s - E\{\xi_s | F_{s-1}\}\$ is a martingale difference. If the initial r.v.'s $\xi_1, ..., \xi_m$, the coefficients

$$a_k(s)$$
 $(k = 1, ..., m; s = m+1, m+2, ...)$

and the martingale difference $(\delta_s, F_s, s=m+1, m+2, ...)$ are given, then there exists a process $(\xi_s, F_s, s=1, 2, ...)$ satisfying (5) and thus also (4).

In order to study the convergence properties of the process ξ_t we introduce the *m*-dimensional vectors

(6)
$$X_t = \begin{pmatrix} \xi_t \\ \vdots \\ \xi_{t-m+1} \end{pmatrix}, \quad \Delta_t = \begin{pmatrix} \delta_t \\ 0 \\ \vdots \\ 0 \end{pmatrix},$$

and a matrix of type $m \times m$:

(7)
$$\Lambda(t) = \begin{pmatrix} a_1(t) & \dots & a_m(t) \\ 1 & 0 \\ & \ddots & \\ 0 & 1 & 0 \end{pmatrix}.$$

With these notations we have

(8)
$$E\{X_t|F_{t-1}\} = \Lambda(t)X_{t-1}$$
 and

$$(9) X_t = \Lambda(t)X_{t-1} + \Delta_t$$

for t>m.

Remark 1. This transformation is widely used to study discrete time autoregressive processes ([1], p. 109).

For the sake of brevity a process $(X_t, F_t, t=1, 2, ...)$ with property (8) will be called a Λ -martingale:

Definition 2. An adapted m-dimensional stochastic process $(X_t, F_t, t=1, 2, ...)$ is called a Λ -martingale if X_t is integrable and $E\{X_{t+1}|F_t\} = \Lambda(t+1)X_t$ for t=1, 2, ..., where $\Lambda(t)$ is a given non-random matrix (t=1, 2, ...). (Equivalently, (X_t, F_t) is a Λ -martingale if (9) is satisfied, where (Δ_t, F_t) is a martingale difference.)

From equation (9) one easily deduces that X_t has the following representation

(10)
$$X_t = A(t, s)X_s + \sum_{u=s+1}^t A(t, u)\Delta_u \quad (t > s),$$

where the matrices A(t, u) are the solutions of the equations

(11)
$$A(t, u) = A(t)A(t-1, u) \text{ for } t > u,$$
$$A(u, u) = I \text{ (the identity matrix)}.$$

Equations (10) and (11) can be considered as the discrete analogues of the solution of a stochastic differential equation (see Theorem 4.2.4 of [4]).

In the sequel | | . | denotes the norm of a vector or a matrix.

§ 3. Convergence of A-martingales

We shall prove that under certain conditions the classical martingale convergence theorems of Doob are true for A-martingales. We assume that the limit

$$\lim_{t\to\infty}A(t,u)=A(u)$$

exists for every u=1, 2, ...

Let us introduce the accompanying martingale of X_t :

$$Y_t = \sum_{u=1}^t A(u) \Delta_u,$$

where $\Delta_1 = X_1$.

Lemma 1. If the Λ -martingale (X_t, F_t) is bounded in L_{α} $(\alpha \ge 1)$, i.e.

$$\sup_{t} E \|X_{t}\|^{\alpha} \leq c < \infty,$$

then its accompanying martingale (Y_t, F_t) is also bounded in L_a :

$$\sup E\|Y_t\|^{\alpha}\leq c.$$

PROOF. Let us consider the following martingale:

$$Y_{t,s} = \sum_{u=1}^{s} A(t,u) \Delta_{u}$$

for $1 \le s \le t$, where t is fixed. For the submartingale $||Y_{t,s}||^{\alpha}$ $(1 \le s \le t)$ we have

$$E\|Y_{t,s}\|^{\alpha} \leq E\|Y_{t,t}\|^{\alpha} = E\|X_{t}\|^{\alpha} \leq c$$

for every $s \le t$. Since

$$\lim_{t\to\infty}Y_{t,s}=\sum_{u=1}^sA(u)\Delta_u=Y_s$$

for every fixed s, we get by Fatou's lemma $E||Y_s||^{\alpha} \le c$.

102 I. Fazekas

In addition to assumption (12), we need the following stability condition for the solution of equation (11):

(13)
$$||A(t, u) - A(u)|| \le c_{t-u} \quad (t \ge u),$$
 where $\sum_{s=0}^{\infty} c_s < \infty$.

In the sequel, we suppose that there exists a positive function $C_1(\omega)$ for which (14) $C_1(\omega) \|\Delta_u(\omega)\| \leq \|A(u)\Delta_u(\omega)\|$

for every $u \ge 1$ and $\omega \in \Omega$.

Theorem 1. Let $(X_t, F_t, t=1, 2, ...)$ be a Λ -martingale satisfying conditions (13) and (14).

(a) If $\sup_{t} E \|X_{t}\| < c < \infty$, then $\lim_{t \to \infty} X_{t} = X_{\infty}$ almost surely (a.s.) and $E \|X_{\infty}\| < \infty$

(b) X_t converges in L_1 as $t \to \infty$ if and only if the family $\{X_t; t=1, 2, ...\}$ is uniformly integrable.

PROOF. (a) Let Y_t be the accompanying martingale of X_t . By Lemma 1 $\sup_t E \|Y_t\| < c$. It follows from Doob's theorem (see [5], p. 319) that $\lim_{t \to \infty} Y_t = Y_{\infty}$ a.s. and $E \|Y_{\infty}\| < \infty$. Condition (13) implies that

(15)
$$||X_{t}-Y_{t}|| = ||\sum_{u=1}^{t} [A(t,u)-A(u)]\Delta_{u}|| \le \sum_{u=1}^{t} c_{t-u}||\Delta_{u}|| =$$

$$= \sum_{s=0}^{t-1} ||\Delta_{t-s}|| c_{s} = \sum_{s=0}^{n} ||\Delta_{t-s}|| c_{s} + \sum_{s=n+1}^{t-1} ||\Delta_{t-s}|| c_{s}.$$

It has been proved that the series $\sum_{u=1}^{r} A(u) \Delta_u = Y_r$ is convergent a.s. Therefore by (14) $\lim_{u \to \infty} \Delta_u(\omega) = 0$ and $\sup_{u} \|\Delta_u(\omega)\| \le c(\omega) < \infty$ for almost all $\omega \in \Omega$. Now inequal-

ity (15) and condition $\sum_{s=0}^{\infty} c_s < \infty$ together imply that $\lim_{t\to\infty} ||X_t - Y_t|| = 0$ a.s. So, in view of $\lim_{t\to\infty} Y_t = Y_\infty$ a.s. we have $\lim_{t\to\infty} X_t = X_\infty = Y_\infty$ a.s.

(b) Uniform integrability implies that $\sup_{t} E||X_{t}|| < c < \infty$. By part (a) of this theorem $\lim_{t\to\infty} X_{t} = X_{\infty}$ a.s. hence X_{t} converges also in L_{1} because of the uniform integrability.

Conversely, convergence in L_1 always implies uniform integrability.

Remark 2. If $A(t, u) \rightarrow A(u)$ as $t \rightarrow \infty$, then the accompanying martingale Y_t has the form $Y_t = A(t)X_t$, $t \ge 1$. Indeed, by (10) and (11)

$$A(s,t)X_t = \sum_{u=1}^t A(s,t)A(t,u)\Delta_u = \sum_{u=1}^t A(s,u)\Delta_u^{\frac{1}{t}}$$

for s > t, where $\Delta_1 = X_1$. If s tends to infinity we get $Y_t = A(t)X_t$.

Remark 3. (a) Under conditions (13) and (14) uniform integrability of X_t implies uniform integrability of Y_t . Indeed, from equation

$$E\{X_{u+t}|F_u\} = A(t,u)X_u$$

for $t \to \infty$ we get

$$E\{X_{\infty}|F_u\} = A(u)X_u = Y_u.$$

- (b) If in (14) $C_1(\omega) = C_1 = \text{const.}$, then the uniform integrability of Y_t implies the uniform integrability of X_t . Indeed, by the proof of Theorem $\lim_{t\to\infty} ||X_t Y_t|| = 0$ in L_1 .
- (c) The decomposition $X_t = Y_t + Z_t$ is the (unique) Riesz decomposition of the uniformly integrable Λ -martingale X_t .

Remark 4. Let B be a Banach space with the Radon—Nikodym property (cf. [2]). Theorem 1 is valid for B-valued Λ -martingales too.

Theorem 2. Let (X_t, F_t) be a Λ -martingale. Suppose that $||A(t, u)|| \le K$ for $t \ge u$. Assume that conditions (12) and (14) hold and in (14) $C_1(\omega) = C_1 = const$. If $\sup_t E ||X_t||^{\alpha} < \infty$, where $\alpha > 1$, then $\lim_{t \to \infty} X_t = X_{\infty}$ in L_{α} (and a.s.).

PROOF. It follows from Lemma 1 that $\sup_{t\to\infty} E\|Y_t\|^{\alpha} < \infty$ for the accompanying martingale Y_t . By the theorem of Doob $\lim_{t\to\infty} Y_t = Y_{\infty}$ in L_{α} . From this and from the inequality of Burkholder (cf. [3], p. 384) we infer that

$$E \Big\| \sum_{u=s+1}^{t} A(t, u) \Delta_{u} \Big\|^{\alpha} \leq B_{1} E \Big(\sum_{u=s+1}^{t} \|A(t, u) \Delta_{u}\|^{2} \Big)^{\alpha/2} \leq$$

$$\leq B_{1} K^{\alpha} E \Big(\sum_{u=s+1}^{t} \|\Delta_{u}\|^{2} \Big)^{\alpha/2} \leq B_{1} K^{\alpha} C_{1}^{-\alpha} E \Big(\sum_{u=s+1}^{t} \|A(u) \Delta_{u}\|^{2} \Big)^{\alpha/2} \leq$$

$$\leq B_{1} K^{\alpha} C_{1}^{-\alpha} B_{2}^{-1} E \Big\| \sum_{u=s+1}^{t} A(u) \Delta_{u} \Big\|^{\alpha} = B_{1} K^{\alpha} C_{1}^{-\alpha} B_{2}^{-1} E \|Y_{t} - Y_{s}\|^{\alpha} < \varepsilon$$

if s > s, for every t > s.

Finally, from equality

$$X_t - Y_{\infty} = (Y_s - Y_{\infty}) + (\sum_{u=1}^s A(t, u) \Delta_u - Y_s) + \sum_{u=s+1}^t A(t, u) \Delta_u$$

we get the desired convergence.

§ 4. Convergence of linear martingales

Let $(\xi_t, F_t, t=1, 2, ...)$ be a linear martingale. Assume that the coefficients $a_k(s)$ do not depend on $s: a_k(s) = a_k, s > m, k = 1, 2, ..., m$. Let d be the greatest common divisor of those integers k for which $a_k > 0$.

Theorem 3. Let us suppose that d=1.

(a) If $\sup E|\xi_t| < \infty$, then ξ_t converges almost surely as $t \to \infty$.

(b) ξ_t converges in L_1 as $t \to \infty$ iff the family $\{\xi_t: t=1, 2, ...\}$ is uniformly integrable.

(c) Let $\alpha > 1$. If $\sup E|\xi_t|^{\alpha} < \infty$, then ξ_t converges in L_{α} as $t \to \infty$.

PROOF. In § 2 we have constructed the Λ -martingale X(t), the matrix $\Lambda(t)$ and the martingale difference Δ_t corresponding to ξ_t . By the conditions of our theorem $\Lambda = \Lambda(t)$ is the transition matrix of a non-decomposable acyclic Markov chain with m states. From the theory of Markov chains it is well known that the elements of the matrices $A(t, u) = A^{t-u}$ converge exponentially fast to the elements of the matrix $A(u)=A=(a_{ij})$ as $t\to\infty$, where $a_{ij}=p_j$ (i,j=1,...,m) and $p_j=$ $=\sum_{i=1}^{m} a_i / \sum_{i=1}^{m} i a_i$ (j=1,...,m) is the unique stationary distribution of the Mar-

Therefore conditions (13) and (14) are true. Thus Theorems 1 and 2 imply the present result.

Remark 5. The first component of the martingale Y:

$$\eta_t = \left(\sum_{k=1}^m \left(\sum_{i=k}^m a_i \right) \xi_{t+1-k} \right) / \sum_{i=1}^m i a_i$$

can be regarded as an accompanying martingale of ξ_t .

Remark 6. (a) In the case of d>1 Theorem 3 implies the convergence of the

subsequences $\xi_i, \xi_{i+d}, \xi_{i+2d}, \dots$ for every $1 \le i < d$. (b) Let (ξ_t, F_t) and (η_t, G_t) be independent martingales and suppose that $\lim \xi_t \neq \lim \eta_t$. The linear martingale $\xi_1, \eta_1, \xi_2, \eta_2, \dots$ is not convergent (case d > 1).

Acknowledgement. The author wishes to thank Professor Yu. A. ROZANOV for his support during the preparation of this paper and Professor C. C. HEYDE for references [6] and [7].

References

- [1] M. ARATÓ, Linear Stochastic Systems with Constant Coefficients, Lecture Notes in Control and Information Sciences, Springer-Verlag (Berlin-Heidelberg-New York, 1982).
- [2] S. D. Chatterji, Martingale convergence and the Radon—Nikodym theorem in Banach spaces, Math. Scand. 22 (1968), 21-41.
- [3] Y. S. Chow and H. Teicher, Probability Theory, Springer-Verlag (New York-Heidelberg-Berlin, 1978).
- [4] M. H. A. Davis, Linear Estimation and Stochastic Control, Chapman and Hall Ltd. (London, 1977).

[5] J. L. Doob, Stochastic Processes, John Wiley & Sons (New York, 1953).

- [6] C. C. HEYDE, On a probabilistic analogue of the Fibonacci sequence, J. Appl. Prob. 17 (1980), 1079-1082.
- [7] J. B. MacQueen, A linear extension of the martingale convergence theorem, Ann. Prob. 1 (1973), 263-271.

(Received March 10, 1985)