Operational calculus on a subset of R^n

HARRIS S. SHULTZ (Fullerton, Calif.)

Abstract

The space of distributions on $[0, a_1) \times ... \times [0, a_n)$ is characterized as the algebra of operators (on a class of test functions) which commute with convolution. With convolution identified with multiplication, some operational formulas are developed.

If X is in \mathbb{R}^n , then x_i will be understood to denote the *i*-th component of X. Thus, $X=(x_1, x_2, ..., x_n)$. For $0 < a_i \le \infty$, define L to be the set of locally integrable complex-valued functions of n real variables on the subset $J = \prod_{i=1}^n [0, a_i)$ of \mathbb{R}^n . These functions are extended to be zero for any $x_i < 0$.

Definition. For f and g in L we define the convolution

(1)
$$f * g(X) = \int_{0}^{x_{n}} \dots \int_{0}^{x_{1}} f(X - U)g(U) du_{1} \dots du_{n} \quad (X \text{ in } J).$$

The space L is closed under this operation, which is commutative and associative. Let Q be the subset of L consisting of those functions which are infinitely differentiable and which, along with all partial derivatives, vanish on $\{X \in J \mid \text{some } x_i = 0\}$. A mapping A from Q into Q is said to be *perfect* if A(p*q) = Ap*q for all p and q in Q. If we define the product of two operators to be the composition of the operators, then the set P of all perfect operators is an algebra.

For i=1, ..., n, we denote by f_i the partial derivative of f with respect to the i-th variable and by D_i the perfect operator which maps q into q_i .

Denote by \mathscr{D}'_+ the space of all distributions on $\prod_{i=1}^n (-\infty, a_i)$ having support in J. The space \mathscr{D}'_+ can be viewed as the dual of the space \mathscr{D}_- of infinitely differentiable functions having support in some subset $\prod_{i=1}^n (-\infty, c_i]$ of $\prod_{i=1}^n (-\infty, a_i)$.

Definition. For F and G in \mathcal{D}'_+ we define

(2)
$$\langle F * G, \varphi \rangle = \langle F(X), \langle G(U), \varphi(U+X) \rangle \rangle$$
 (φ in \mathscr{D}_{-}).

The space \mathcal{D}'_+ is closed under this operation. For f and g in L, the definitions of f*g given in (1) and in (2) agree. For each F in \mathcal{D}'_+ and each q in Q the distribution F*q belongs to Q and is given by the equation

$$F * q(X) = \langle F(U), q(X-U) \rangle$$

(cf. [4, Theorem 27.5]).

106 H. S. Shultz

Definition. For F in \mathcal{D}'_+ we define $\{F\}q(X) = F*q(X)$ for all q in Q. By the associativity of convolution, $\{F\}$ is a perfect operator and $\{F*G\} = \{F\}$

 $= \{F\}\{G\}$ for all F and G in \mathscr{D}'_+ .

For each X in \mathbb{R}^n we denote by X^i the vector $(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n)$. For each i we denote by K_i the subset $\{X_i|X\in J\}$ of \mathbb{R}^{n-1} and by L_i the set of locally integrable functions on K_i . These functions are extended to be zero for any $x_i<0$.

Definition. If h belongs to L_1 , we define

$${h}^1 q(X) = \int \dots \int h(X^1 - U^1) q(x_1, u_2, \dots, u_n) du_2 \dots du_n$$

for all X in J and q in Q. If h belongs to L_i , where $2 \le i \le n$, we define $\{h\}^i$ similarly.

Theorem. If h belongs to L_i then $\{h\}^i$ is a perfect operator.

PROOF. We give the proof for i=1. If we define $f(X)=h(X^1)$, then

$$\{f\}D_1q(X) = \int_0^{x_n} \dots \int_0^{x_1} f(X-U)q_1(U) du \dots du_n =$$

$$= \int_0^{x_n} \dots \int_0^{x_1} h(X^1 - U^1)q_1(U) du_1 \dots du_n =$$

$$= \int_0^{x_n} \dots \int_0^{x_2} h(X^1 - U^1) \left[\int_0^{x_1} q_1(U) du_1 \right] du_2 \dots du_n =$$

$$= \int_0^{x_n} \dots \int_0^{x_2} h(X^1 - U^1)q(x_1, u_2, \dots, u_n) du_2 \dots du_n$$

for all X in J and all q in Q. So, $\{h\}^1 = D_1\{f\}$; it follows that $\{h\}^1$ is a perfect operator.

Theorem. If f and f_i are in L, then

$${f_i} = D_i {f} - {f(x_1, ..., x_{i-1}, 0, x_{i+1}, ..., x_n)}^i$$

for i=1, ..., n.

PROOF. We give the proof for i=1. For each q in Q we can integrate by parts to obtain

$$\begin{aligned} \{f_1\}q(X) &= \int_0^{x_n} \dots \int_0^{x_1} f_1(U) q(X-U) \, du_1 \dots du_n = \\ &= -\int_0^{x_n} \dots \int_0^{x_2} f(0, u_2, \dots, u_n) q(x_1, x_2-u_2, \dots, x_n-u_n) \, du_2 \dots du_n + \\ &+ \int_0^{x_n} \dots \int_0^{x_1} f(U) q_1(X-U) \, du_1 \dots du_n = -\{f(0, x_2, \dots, x_n)\}^1 q(X) + \{f\} D_1 q(X) = \\ &= [D_1\{f\} - \{f(0, x_2, \dots, x_n)\}^1] q(X). \end{aligned}$$

We say that a perfect operator A is *invertible* if there is a perfect operator B such that AB is the identity. In this case we write $B = A^{-1}$. As in [3], the perfect operator $D_1 + ... + D_n$ is invertible; its inverse is given by the equation

$$(D_1 + ... + D_n)^{-1}q(X) = \int_0^\infty q(x_1 - t, ..., x_n - t) dt$$
 (X in J)

and the equation

$$(D_1 + ... + D_n)^{-1} \{f\} = \{ \int_0^\infty f(x_1 - t, ..., x_n - t) dt \}$$

holds for all f in L.

We conclude by showing that the space \mathcal{D}'_+ is algebraically isomorphic to the space P of perfect operators.

Theorem. The mapping $F \mapsto \{F\}$ from \mathcal{D}'_+ into P is linear and one-to-one.

PROOF. The linearity follows from the bilinearity of convolution. Suppose $\{F\}=0$. For $\varphi\in\mathscr{D}_-$ there exist $x_i< a_i$ such that $\varphi(U)=0$ if some $u_i\geq x_i$. If we define $p(U)=\varphi(X-U)$, then $p\in Q$ and

$$\langle F, \varphi \rangle = F * p(X) = \{F\} p(X) = 0.$$

Since φ in \mathscr{D}_{-} was arbitrary, it follows that F=0.

Corollary. If f and g are in L and $\{f\}=\{g\}$, then f=g almost everywhere.

Theorem. The mapping $F \mapsto \{F\}$ is a linear bijection of \mathcal{D}'_+ onto P.

PROOF. It only remains to prove the surjectivity. Let A be a perfect operator. Let q_1, q_2, q_3, \ldots be a "delta sequence" in Q. For any φ in \mathscr{D}_- there exist, as before, $x_i < a_i$ such that $\varphi(U) = 0$ if some $u_i \ge x_i$. If we define $p(U) = \varphi(X - U)$, then $p \in Q$ and

$$Ap(X) = \lim_{n \to \infty} Aq_n * p(X) = \lim_{n \to \infty} \langle Aq_n(U), p(X-U) \rangle = \lim_{n \to \infty} \langle Aq_n(U), \varphi(U) \rangle.$$

Since the sequence $\langle Aq_n, \varphi \rangle$ converges for all φ in \mathcal{D}_- , we infer from the sequential completeness of \mathcal{D}'_+ the existence of F in \mathcal{D}'_+ such that

$$\langle F, \varphi \rangle = \lim_{n \to \infty} \langle Aq_n, \varphi \rangle$$
 (all φ in \mathcal{D}_{-}).

Now, for any q in Q, we have

$${F}q(X) = \langle F(U), q(X-U) \rangle = \lim_{n \to \infty} \langle Aq_n(U), q(X-U) \rangle =$$

$$= \lim_{n\to\infty} Aq_n * q(X) = \lim_{n\to\infty} q_n * Aq(X) = Aq(X).$$

Thus, $A = \{F\}$.

Bibliography

- V. A. DITKIN and A. P. PRUDNIKOV, Operational Calculus in Two Variables and its Applications, Pergamon Press, Oxford, 1962.
 H. S. SHULTZ, A new algebra of distributions on Rⁿ, Publ. Math. (Debrecen) 25 (1978), 85—88.
 H. S. SHULTZ, Operational calculus for functions of two variables, SIAM J. Math. Anal. 9
- (1978).
- [4] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967.
- [5] S. VASILACH, Sur un calcul opérationnel algébrique pour functions de deux variables, Rev. Math. Pures et Appl., 2 (1957), 181-238.

(Received Marc. 18, 1985.)