Remarks on Hyers's theorem

By LÁSZLÓ SZÉKELYHIDI

Abstract. In this note we study the connections between Hyers's theorem on the stability of linear functional equations and amenability. We prove a stronger version of Hyers's theorem on amenable semigroups and state some open problems concerning Hyers's theorem.

In this note C denotes the set of complex numbers and throughout the paper G is a fixed semigroup with identity e. We shall use the operators of left and right translations $_{v}T$ and T_{v} defined for any function $f: G \rightarrow C$ by

$$_{\mathbf{v}}Tf(x) = f(yx), \quad T_{\mathbf{v}}f(x) = f(xy)$$

further, the left and right difference operators , Δ and Δ , defined by

$$_{y}\Delta = _{y}T - I, \quad \Delta_{y} = T_{y} - I$$

where I denotes the identity operator. For the products $y_1 d \dots y_n \Delta$ and $\Delta y_n \dots y_1 d$ we use the notations $y_1, \dots, y_n \Delta$ and $\Delta y_1, \dots, y_n d$, respectively further $0 \Delta = \Delta 0 = I$. For any integer $n \ge 0$ we let

$$B_n(G) = \{ f: G \to C | (x, y_1, ..., y_{n+1}) \to \Delta_{y_1, ..., y_{n+1}}^{n+1} f(x) \text{ is bounded} \},$$

$$P_n(G) = \{ f: G \to C | \Delta_{y_1, ..., y_{n+1}}^{n+1} f(x) = 0 \text{ for all } x, y_1, ..., y_{n+1} \text{ in } G \},$$

$$M_n(G) = \{ f: G \to C | \Delta_{y_1, ..., y}^{n} f(x) = n! f(y) \text{ for all } x, y \text{ in } G \}.$$

Obviously we have $M_n(G) \subseteq P_n(G) \subseteq B_n(G)$ for all n. The elements of $P_n(G)$ are called polynomials of degree at most n and the elements of $M_n(G)$ are called monomials of degree n. The elements of $B_0(G)$ are just the bounded complex functions on G, further $P_0(G)$ and $M_0(G)$ can be identified with C. We note, that $B_n(G)$ and $P_n(G)$ are also meaningful for n=-1, and $B_{-1}(G)=B_0(G)$, $P_{-1}(G)=\{0\}$.

We introduce a seminorm on $B_n(G)$ for $n \ge 0$ by

$$|||f|||_n = \sup_{y_1,\dots,y_{n+1}} |\Delta_{y_1,\dots,y_{n+1}}^{n+1} f(e) + (-1)^n f(e)|.$$

If n=-1 we let $|||f|||_{-1}=|||f|||_0$. It is easy to see that $|||f|||_n=0$ if and only if f is a polynomial of degree at most n with f(e)=0. Obviously, $|||f|||_0$ is just the supnorm of f in $B_0(G)$.

Now we formulate a property of G for all n, which relates to Hyers's theorem. We say that G has the property (H_n) if there exists a mapping $F_n: B_n(G) \to P_n(G)$ such that

(H1) F_n is linear,

(H2) $F_n(p) = p$ for all p in $P_n(G)$ with p(e) = 0,

(H3) $I - F_n$ maps $B_n(G)$ into $B_0(G)$ continuously.

This definition is motivated by the fact that Hyers's theorem can be formulated as follows:

Theorem 1. (Hyers, [5].) If G is a commutative semigroup with identity, then it has property (H_n) for all n.

(See also [1], [6].) At the same time, not all semigroups with identity have property (H_n) . Forti [3] gave an example, which shows that the free group on two generators fails to have property (H_1) . Nevertheless, there are lots of noncommutative semigroups having the property (H_n) for all n. To see this we need the notion of amenable semigroups. We say that G is amenable, if there exists a nonnegative linear functional $M: B_0(G) \to C$ which is translation invariant and normalized in the sense M(1)=1. Nonnegativity means that $M(f)\geq 0$ for all $f\geq 0$, and translation invariance means, that M(f)=M(f)=M(f) for all f=0, and f=0 in f=0. Such a functional f=0 is called an invariant mean on f=0. It is known (see e.g. [4]), that all commutative semigroups amenable, but the free group on two generators fails to be amenable. The problem of characterizing all amenable groups or semigroups is still unsolved (see [4]).

Returning to Hyers's theorem, we proved in [7], that if G is amenable, then it has property (H_n) for all n. It means, we have

Theorem 2. (Székelyhidi, [7].) If G is an amenable semigroup with identity, then it has property (H_n) for all n.

Actually, we can prove more, but first we formulate another property of G, which seems to be stronger then (H_n) and may enlighten the relation between amenability and the validity of Hyers's theorem. We say, that G has property (P_n) , if there exists a mapping $\Phi_n : B_n(G) \to M_n(G)$ such that

(P1) Φ_n is linear,

(P2) $\Phi_n(m) = m$ for all m in $M_n(G)$,

(P3) $I - \Phi_n$ maps $B_n(G)$ into $B_{n-1}(G)$ continuously,

(P4) Φ_n is translation invariant.

The aim of this work is to prove the following statements:

- 1. If (P_k) holds for k=1,...,n then (H_k) holds for k=1,...,n.
- (P₀) is equivalent to amenability.
- 3. (P_0) implies (P_n) for all n.

Theorem 3. If G has property (P_k) for k=1, ..., n, then it has property (H_k) for k=1, ..., n.

PROOF. Let f be arbitrary in $B_k(G)$, then by (P_k) we have

$$f = \Phi_k(f) + f_1$$

where f_1 belongs to $B_{k-1}(G)$, and $|||f_1|||_{k-1} \le C_1 |||f|||_k$. Now, by (P_{k-1}) we have

$$f_1 = \Phi_{k-1}(f_1) + f_2$$

with some f_2 in $B_{k-2}(G)$, and $|||f_2|||_{k-2} \le C_2 |||f|||_k$. Continuing this process we obtain

$$f = \Phi_k(f) + \Phi_{k-1}(f_1) + \dots + \Phi_1(f_{k-1}) + f_k,$$

where f_k is in $B_0(G)$ and $|||f_k|||_0 \le C_k |||f|||_k$. If we define

$$F_k(f) = \Phi_k(f) + \Phi_{k-1}(f_1) + \dots + \Phi_1(f_{k-1})$$

then we see that F_k maps $B_k(G)$ into $P_k(G)$ linearly, and $I-F_k$ maps $B_k(G)$ into $B_0(G)$ continuously. Hence we have (H1) and (H3). To prove (H2), first we show that $\Phi_k(p)=0$ for all p in $P_{k-1}(G)$. By the results of [7], each polynomial has a unique representation as the sum of monomials. Hence, it is enough to prove that $\Phi_k(m)=0$ for all monomials m of degree smaller than k. Of course, we may suppose, that $k \le 1$. First we show that $\Phi_k(1)=0$. Let a be any additive function (that is, any element of $M_1(G)$), then we have

$$\Phi_k(a) = \Phi_k(T_v a) = \Phi_k(a+a(y)) = \Phi_k(a) + a(y) \Phi_k(1).$$

It follows, that $\Phi_k(1) \neq 0$ implies a=0 for all a in $M_1(G)$. But this means, that $M_n(G) = \{0\}$ for all $n \geq 1$, and in particular $\Phi_k(1) = 0$. Now suppose that $\Phi_k(m) = 0$ for all monomials m of degree smaller than k-1, and let m be arbitrary in $M_{k-1}(G)$ ($k \geq 2$). Let $a \neq 0$ be any element of $M_1(G)$ (we may suppose by the above considerations, that there exists such an a). Then $m \cdot a$ belongs to $M_k(G)$ and we have

$$\Phi_k(m \cdot a) = \Phi_k(T_y(m \cdot a)) = \Phi_k(T_y m \cdot a) + a(y) \cdot \Phi_k(T_y m).$$

It follows from [7], but it can also be proved directly, that

$$T_y m = m + p_y + q_y$$

where p_y is in $M_{k-2}(G)$ and q_y is in $P_{k-3}(G)$. Hence $q_y \cdot a$ is in $P_{k-2}(G)$, and by our assumption we have

$$\Phi_k(m \cdot a) = \Phi_k(m \cdot a) + \Phi_k(p_v \cdot a) + a(y) \cdot \Phi_k(m),$$

that is

$$\Phi_k(p_y \cdot a) + a(y) \cdot \Phi_k(m) = 0,$$

for all y in G. If y=x, then $\Phi_k(m)\neq 0$ implies that $a\cdot \Phi_k(m)$ is of degree k+1, and this contradicts the fact, that Φ_k maps into $M_k(G)$. This contradiction proves our statement. Now let p be arbitrary in $P_k(G)$ with p(e)=0. We express p as a sum of monomials

$$p = m_k + m_{k-1} + ... + m_1$$

with m_i in $M_i(G)$ (j=1,...,k). Hence, with the above notations we have

$$\Phi_k(p) = m_k$$

and

$$\Phi_k(p_i) = m_i$$

where $p_j = p_{j+1} - \Phi_{j+1}(p_{j+1})$ for j=1, ..., k-1, and $p_k = p$. It follows, that

$$F_k(p) = \Phi_k(p) + \Phi_{k-1}(p_{k-1}) + \dots + \Phi_1(p_1) = m_k + \dots + m_1 = p,$$

wich was to be proved.

Theorem 4. G is amenable if and only if it has property (P_0) .

PROOF. Let G be amenable, and let M be any invariant mean on G. If we let $\Phi_0 = M$, then obviously Φ_0 maps $B_0(G)$ into $M_0(G) = C$, further Φ_0 is linear and translation invariant. Condition (P2) is trivially fulfilled, and we evidently have (P3), as for all f in $B_0(G)$

$$|||f - \Phi_0(f)||_{-1} = |||f - M(f)||_0 \le |||f||_0 + |M(f)| \le 2||f||_0$$

as the norm of the normalized linear functional M is obviously 1. Conversely, suppose that G has property (P_0) . It means, that there exists a nonzero, translation invariant bounded linear functional Φ_0 on $B_0(G)$. Then obviously the total variation $|\Phi_0|$ (see e.g. [2]) of Φ_0 is a nonzero, nonnegative translation invariant linear functional on $B_0(G)$. As $|\Phi_0|$ is nonzero and nonnegative, we have $|\Phi_0|(1)\neq 0$, and then $(|\Phi_0|(1))^{-1}$. Φ_0 is an invariant mean on G.

Theorem 5. If G has property (P_0) , then it has property (P_n) for all n.

PROOF. By theorem 4, G is amenable. Let M be any invariant mean on G. Then for all f in $B_n(G)$ the function k(f) defined by

$$k(f)(x) = (-1)^n M_{y_1} ... M_{y_n} (\Delta_{y_1, ..., y_n, x}^{n+1} f(e))$$

is bounded, and f-k(f) belongs to $P_n(G)$ (see [7]). Obviously k(f)(e)=0, hence we have

$$f = m_n + m_{n-1} + ... + m_1 + k(f) + f(e),$$

where m_k belongs to $M_k(G)$. It is easy to see (and it follows from [7]) that

$$m_n(x) = \frac{1}{n!} x_1 \dots x^n \Delta(f - k(f))(e)$$

holds for all x in G. Now let

$$\Phi_n(f) = m_n$$
.

Obviously Φ_n is linear and $\Phi_n(f)$ is in $M_n(G)$. On the other hand,

$$f - \Phi_n(f) = m_{n-1} + \dots + m_1 + k(f) + f(e),$$

which is an element of $B_{n-1}(G)$. If m is in $M_n(G)$, then

$$\Delta_{y_1, ..., y_n, x}^{n+1} m(e) = 0$$

for all $y_1, ..., y_n, x$ in G, hence k(m)=0 and

$$\Phi_n(m) = m.$$

It means, that (P1) and (P2) are fulfilled. We show, that Φ_n is translation invariant. Indeed, for all x, y in G we have

$$\begin{split} & \Phi_n(T_y f)(x) = \frac{1}{n!} \Delta_{x, \dots, x}^n(T_y f)(e) + \frac{1}{n!} (-1)^{n+1} M_{y_1} \dots M_{y_n} \left(\Delta_{x, \dots, x}^n \Delta_{y, \dots, y_n}^n(T_y f)(e) \right) = \\ & = \frac{1}{n!} \Delta_{x, \dots, x}^n f(y) + \frac{1}{n!} (-1)^{n+1} M_{y_1} \dots M_{y_n} \left(\Delta_{x, \dots, x}^n \Delta_{y_1, \dots, y_n}^n f(y) \right) = = \Phi_n(f)(x). \end{split}$$

Similarly, we obtain $\Phi_n(yTf)(x) = \Phi_n(f)(x)$.

Finally, to prove continuity in (P3), we notice that

$$f = \Phi_n(f) + p_{n-1} + k(f) + f(e),$$

where p_{n-1} belongs to $B_{n-1}(G)$, and p(e)=0. Further

$$|k(f)(x) + f(e)| = |(-1)^n M_{y_1} \dots M_{y_n} (\Delta_{y_1, \dots, y_n, x}^{n+1} f(e) + (-1)^n f(e))| \le |||f|||_n$$

for all x in G, that is $|||k(f)+f(e)|||_0 \le |||f|||_n$. On the other hand, we obviously have

$$|||k(f)+f(e)|||_{n-1} \leq C_n|||k(f)+f(e)|||_0$$

where C_n depends only on n. Now it follows

$$|||f - \Phi_n(f)|||_{n-1} = |||p_{n-1} + k(f) + f(e)|||_{n-1} = |||k(f) + f(e)|||_{n-1} \le C_n |||k(f) + f(e)|||_0 \le C_n |||f|||_n,$$

and the theorem is proved.

Corollary 6. Amenability of G implies that G has the property (P_n) , and hence the property (H_n) for all n.

Remarks 7. In theorem 3 we were unable to prove that (P_n) is stronger than (H_n) for a fixed n. It would be also interesting to know, whether the converse of theorem 5. is true. If so, at least for n=1, then amenability would equivalent to (P_1) , which is a stronger form of Hyers's original theorem. We can state these questions as open problems:

1. Is it true, that (P_n) implies (H_n) ?

2. Is it true, that (P_1) implies amenability?

3. Is it true, that (H_1) implies amenability?

References

- M. Albert—J. A. Baker, Functions with bounded n-th differences, Ann. Polon. Math. 43 (1983), 93—103.
- [2] N. DUNFORD—J. T. SCHWARTZ, Linear Operators I., Interscience Publishers, Inc., New York, 1958.
- [3] G. L. Forti, Remark, Twenty-second International Conference On Functional Equations, Oberwolfach, West Germany, 1984. "To appear in Aequationes Math.)

[4] P. Greenleaf, Invariant Means On Topological Groups, Van Nostrand, 1969.

- [5] D. H. HYERS, Transformations with bounded m-th differences, Pacific Journal of Math. 11 (1961), 591—602.
- [6] L. SZÉKELYHIDI, Note on a stability theorem, Canad. Math. Bull. 25 (5), (1982), 500-501.
- [7] L. Székelyhidi, The Fréchet equation and Hyers's theorem on noncommutative semigroups (To appear in Ann. Polon. Math.).

MATHEMATISCHES INSTITUT UNIVERSITÄT BERN SIDLERSTRASSE 5. CH-3012 BERN, SCHWEIZ (PRESENT ADDRESS) DEPARTMENT OF MATHEMATICS KOSSUTH LAJOS UNIVERSITY H-4010 DEBRECEN, PF. 12. HUNGARY (PERMANENT ADDRESS)

(Received July 10, 1985)