Remarks on Hyers’s theorem

By LASZLO SZEKELYHIDI

Abstract. In this note we study the connections between Hyers's theorem on the stability of
linear functional equations and amenability. We prove a stronger version of Hyers’s theorem on
amenable semigroups and state some open problems concerning Hyers’s theorem.

In this note C denotes the set of complex numbers and throughout the paper
G is a fixed semigroup with identity e. We shall use the operators of left and right
translations ,7 and T, defined for any function f: G—C by

JTf(x) = f(rx), T,f(x) =f(xy)
further, the left and right difference operators ,4 and 4, defined by

A=,T-1, 4,=T,~I

where / denotes the identity operator. For the products ; 5 , 4 and 4, , , we use
the notations , _ "A and 4%, respectively further °4= 2°=7."For any
integer n=0 we let

B,(G) = {f:G = Cl(x,y1, s Yas1) = M5y, [ (x) is bounded},
PG ={fG~Cl&' ., fx)=0 forall x,p,..,yas2 in G},

M,(G) = {f:G ~ C| 4 .., f(x) = n'f(y) forall x,y in G}.

Obviously we have M,(G)<S P,(G)S B,(G) for all n. The elements of P,(G) are
called polynomials of degree at most n and the elements of M,(G) are called mono-
mials of degree n. The elements of By(G) are just the bounded complex functions
on G, further Py(G) and M (G) can be identified with C. We note, that B,(G) and
P,(G) are also meaningful for n=—1, and B_,(G)=By(G), P_,(G)={0}.

We introduce a seminorm on B,(G) for n=0 by

Il = sup 14552, S@+C 1P/
If n=—1 welet ||[fl-:=|l[[/lllo- It is easy to see that |||f||l,=0 if and only if f
is a polynomial of degree at most n with f(e)=0. Obviously, [[[f]||o is just the sup-
norm of fin By(G).
Now we formulate a property of G for all n, which relates to Hyers’s theorem.
We say that G has the property (H,) if there exists a mapping F,: B,(G)—P,(G)
such that
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(H1) F, is linear,

(H2) F,(p)=p for all p in P,(G) with p(e)=0.

(H3) I—F, maps B,(G) into B,(G) continuously.
This definition is motivated by the fact that Hyers's theorem can be formulated as
follows:

Theorem 1. (HYERS, [5].) If G is a commutative semigroup with identity, then it
has property (H,) for all n.

(See also [1], [6].) At the same time, not all semigroups with identity have pro-
perty (H,). Forti [3] gave an example, which shows that the free group on two ge-
nerators fails to have property (H,). Nevertheless, there are lots of noncommutative
semigroups having the property (H,) for all n. To see this we need the notion of
amenable semigroups. We say that G is amenable, if there exists a nonnegative
linear functional M: B,(G)—C which is translation invariant and normalized in
the sense M(1)=1. Nonnegativity means that M(f)=0 for all f=0, and trans-
lation invariance means, that M(,Tf)= M(T f)=M(f) for all ¥ in G and f in
By(G). Such a functional M is called an mvarlant mean on G. It is known (see e.g.
[4]), that all commutative semigroups amenable, but the free group on two genera-
tors fails to be amenable. The problem of characterizing all amenable groups or
semigroups is still unsolved (see [4]).

Returning to Hyers’s theorem, we proved in [7], that if G is amenable, then it
has property (H,) for all n. It means, we have

Theorem 2. (SzEKELYHIDL, [7).) If G is an amenable semigroup with identity, then
it has property (H,) for all n.

Actually, we can prove more, but first we formulate another property of G,
which seems to be stronger then (H,) and may enlighten the relation between
amenability and the validity of Hyers’s theorem. We say, that G has property (P,),
if there exists a mapping @,: B,(G)—~M,(G) such that

(P1) @, is linear,

(P2) &,(m)=m for all m in M,(G),

(P3) I—®, maps B,(G) into B,_4(G) continuously,

(P4) &, is translation invariant.

The aim of this work is to prove the following statements:
1. If (P holds for k=1, ...,n then (H) holds for k=1, ....,n
2. (P,) is equivalent to amenability.
3. (P,) implies (P,) for all n.

Theorem 3. If G has property (P,) for k=1, ..., n, then it has property (H,) for
k=L, ol

PRrOOF. Let f be arbitrary in B,(G), then by (P,) we have
f=®(f)+h
where f; belongs to B,_(G), and |||fi||[x-1=C||[f]|[x. Now, by (P,-,) we have
S = B (H)+fe
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with some f; in B, _,(G), and ||| fo||c-2=C.l||f||lc- Continuing this process we obtain

=P () +Ppr(H)+ ... +P1(fi-1) + /o
where f; is in By(G) and ||| fi]llo=Ci||f]llc- If we define

Fo(f) = & () +Br1(D)+ ... +P1(fx-1)

then we see that F, maps B,(G) into P, (G) linearly, and 7—F, maps B,(G) into
By(G) continuously. Hence we have (H1) and (H3). To prove (H2), first we show
that @,(p)=0 for all p in P,_,(G). By the results of [7], each polynomial has a
unique representation as the sum of monomials. Hence, it is enough to prove that
&, (m)=0 for all monomials m of degree smaller than k. Of course, we may sup-
pose, that k=1. First we show that #,(1)=0. Let g be any additive function
(that is, any element of M,(G)), then we have

b (a) = O (Tya) = P (a+a(y))=P(a)+a(y) (1)

It follows, that @,(1)=0 implies a=0 for all a in M,(G). But this means, that
M,(G)={0} for all n=1, and in particular @,(1)=0. Now suppose that ®,(m)=0
for all monomials m of degree smaller than k—1, and let m be arbitrary in M, _,(G)
(k=2). Let a=0 be any element of M,(G) (we may suppose by the above con-
siderations, that there exists such an a). Then m-a belongs to M, (G) and we have

D (m-a) = (T, (m-a)) = @ (Tym-a)+a(y)- D, (T,m).
It follows from [7], but it can also be proved directly, that
T,m = m+p,+4q,,

where p, is in M, _,(G) and g, is in P,_3(G). Hence g,-a is in P,_,(G), and by our
assumption we have

D (m-a) = P (m-a)+ Py (p,-a)+a(y)- Dy (m),
that is
D (py-a)+a(y)- P (m) = 0,

for all y in G. If y=x, then @,(m)=0 implies that a- @, (m) is of degree k+1,
and this contradicts the fact, that @, maps into M,(G). This contradiction proves
our statement. Now let p be arbitrary in P,(G) with p(e)=0. We express p as a
sum of monomials

P = mg+mi_‘+ +m1

with m; in M;(G) (j=1..... k). Hence, with the above notations we have
D (p) = my

and
D (pj) = my

where p;=p;.1—P;,(p;js) for j=1, ... k-1, and p,=p. It follows, that
Fi(p) = ®p(p)+ Pi—a(pi-1) + ... +P1(p1) = my+ ... +my = p,

wich was to be proved.
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Theorem 4. G is amenable if and only if it has property (P,).

PrROOF. Let G be amenable, and let M be any invariant mean on G. If we let
®,=M, then obviously @, maps B,(G) into M, (G)=C, further &, is linear and
translation invariant. Condition (P2) is trivially fulfilled, and we evidently have
(P3), as for all fin B,(G)

= @oCOM-1 = lIlLF = Mllo = lIlfllo+ 1M = 2| ]lo

as the norm of the normalized linear functional M is obviously 1. Conversely, sup-
pose that G has property (Py). It means, that there exists a nonzero, translation
invariant bounded linear functional @, on B,(G). Then obviously the total varia-
tion |®,| (see e.g. [2]) of @, is a nonzero, nonnegative translation invariant linear
functional on By(G). As |®,| is nonzero and nonnegative, we have |®,|(1)+0, and
then (|®@,|(1))~". @, is an invariant mean on G.

Theorem 5. If G has property (P,), then it has property (P,) for all n.

PrOOF. By theorem 4, G is amenable. Let M be any invariant mean on G. Then
for all fin B,(G) the function k(f) defined by

k(f)(x) = (= 1)'M,,... M, (4,7 ., f(e)

is bounded, and f—k(f) belongs to P,(G) (see [7]). Obviously k( f)(e)=0, hence
we have
f=my+my_ + ... +m+k(f)+f(e),

where m, belongs to M, (G). It is easy to see (and it follows from [7]) that

M) = e, (S~ K()(E)

holds for all x in G. Now let

P,(f) = m,.
Obviously @, is linear and @,(f) is in M,(G). On the other hand,

S=@u(f) = Myt ... +m+k(f)+f(e),
which is an element of B,_,(G). If m is in M, (G), then
A;:—.l...r,.'xm(e) =0

for all y,.....»,,x in G, hence k(m)=0 and

®,(m) = m.
It means, that (P1) and (P2) are fulfilled. We show, that @, is translation invariant.

Indeed, for all x, y in G we have
OuT,)(X) = o B (T 1)+ o (VP M M (8o, s, (T,F)(O)) =
1 n
= B SOV (P My M (8 B SO) = = B

Similarly, we obtain @, (I () =2,(f)(x).
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Finally, to prove continuity in (P3), we notice that

f= ¢n(f)+pn—1+k(f)+f(e)!
where p, ., belongs to B,_,(G), and p(e)=0. Further

k(NI +S(@) = |(= 1) My My, (457, <@ +(=1)"f(@))] = [[|f]ls
for all xin G, that is |||k(f)+f(e)||[o=]||f]||.- On the other hand, we obviously have

IK(S) +1(@llla-1 = Culllk(f)+1(@)lllo

where C, depends only on n. Now it follows
1f = Pa(Mln-1 = [|Pa-1+ &) +S(@llla-1 = | £(F) +S(E)llln-1 =
= Glllk(f)+£@lllo = Calll f1ll»

and the theorem is proved.

Corollary 6. Amenability of G implies that G has the property (P,), and hence the
property (H,) for all n.

Remarks 7. In theorem 3 we were unable to prove that (P,) is stronger than
(H,) for a fixed n. It would be also interesting to know, whether the converse of
theorem 5. is true. If so, at least for »=1, then amenability would equivalent
to (P,), which is a stronger form of Hyers’s original theorem. We can state these
questions as open problems:

1. Is it true, that (P,) implies (H,)?

2. Is it true, that (P,) implies amenability?

3. Is it true, that (H,;) implies amenability?
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