Operational calculus in algebras

By ELIGIUSZ MIELOSZYK (Gdańsk)

In this paper on the basis of Bittner operational calculus

$$CO(L^0, L^1, S, T(q), s(q), Q)$$

— see [1], [2] we introduce a new operational calculus $CO(L^0, L^1, S_p, T_p(q), s_p(q), Q)$ and the multiplication \circ such that the derivative S_p , and the limit condition $s_p(q)$ satisfy conditions (1) and (2).

Let an operational calculus $CO(L^0, L^1, S, T(q), s(q), Q)$ be given, where $L^1 \subset L^0$, L^1 , L^0 are commutative algebras with unity 1, and with the multiplication \cdot , such that for $f, g \in L^1$

(1)
$$S(f \cdot g) = (Sf) \cdot g + f \cdot (Sg),$$

(2)
$$s(q)(f \cdot g) = (s(q)f) \cdot (s(q)g).$$

Theorem 1. If there exists a solution $u \in Inv$ of the abstract differential equation

$$Su = pu$$

with the condition

(4)
$$s(q)u = u_0, u \in L^1, p \in L^0, u_0 \in \text{Ker } S,$$

then abstract differential equation (3) with condition (4) has only one solution.

PROOF. If equation (3) with condition (4) had two solutions u, v we would get

$$Su = pu$$
, $Sv = pv$

and

$$s(q)u = u_0, \quad s(q)v = u_0$$

i.e.
$$S(u-v) = p(u-v), \quad s(q)(u-v) = 0$$

because operations S and s(q) are linear operations. On the basis of theorems with [8] u-v=0, then u=v. (Theorem 1 is also true when multiplication \cdot is non-commutative.)

Definition 1. We will say that there exists an element $u \stackrel{\text{def}}{=} E_1^{T(q)p}$ if and only if $E_1^{T(q)p}$ is a solution of the abstract differential equation

$$Su = pu$$

with condition

(6)
$$s(q)u = 1$$
, where $u \in L^1$, $p \in L^0$ (1 $\in \text{Ker } S - \text{see}$ [7]) and $E_1^{T(q)p} \in \text{Inv.}$

Corollary 1. If there exists an element $E_1^{T(q)p}$, then formula

(7)
$$E_1^{T(q)p} E_1^{-T(q)p} = 1$$

is true

PROOF. Let $v = 1 - E_1^{T(q)p} E_1^{-T(q)p}$. Finding Sv and s(q)v we will get Sv = 0, s(q)v = 0. From the last tuo facts it follows that v = 0, i.e. formula (7) is true.

Theorem 2. If there exists an element $E_1^{T(q)p}$ then three operations:

$$S_p u \stackrel{\mathrm{df}}{=} S u + p u,$$

(9)
$$T_p(q)f \stackrel{\mathrm{df}}{=} [T(q)(f \cdot E_1^{T(q)p})] \cdot E_1^{-T(q)p},$$

(10)
$$s_p(q)u \stackrel{\text{df}}{=} (s(q)u) \cdot E_1^{-T(q)p}$$

satisfy axioms of operational calculus, where $u \in L^1$, $f \in L^0$. Operation S_p is a derivative, operation $T_p(q)$ is an integral, operation $s_p(q)$ is a limit condition.

PROOF. Operations S_p , $T_p(q)$, $s_p(q)$ are linear operations. Applying the axioms of operational calculus $CO(L^0, L^1, S, T(q), s(q), Q)$ and theorems about derivative, integral and limit condition in algebras (see [3]) we will get

$$\begin{split} S_pT_p(q)f &= S_p\{[T(q)(f \cdot E_1^{T(q)p})] \cdot E_1^{-T(q)p}\} = \\ &= S\{[T(q)(f \cdot E_1^{T(q)p})] \cdot E_1^{-T(q)p}\} + \\ &+ p \cdot [T(q)(f \cdot E_1^{T(q)p})] \cdot E_1^{-T(q)p} = \\ &= f \cdot E_1^{T(q)p} \cdot E_1^{-T(q)p} - p \cdot [T(q)(f \cdot E_1^{T(q)p})] \cdot E_1^{-T(q)p} + \\ &+ p \cdot [T(q)(f \cdot E_1^{T(q)p})] \cdot E_1^{-T(q)p} = f, \end{split}$$
 i.e.
$$S_pT_p(q)f = f \quad \text{for} \quad f \in L^0.$$

$$T_p(q)S_pu = \{T(q)[(Su + pu) \cdot E_1^{T(q)p}]\} \cdot E_1^{-T(q)p} = \\ &= \{T(q)[(Su) \cdot E_1^{T(q)p}]\} \cdot E_1^{-T(q)p} + \\ &+ [T(q)(p \cdot u \cdot E_1^{T(q)p})] \cdot E_1^{-T(q)p} = \\ &= u \cdot E_1^{T(q)p} \cdot E_1^{-T(q)p} - [T(q)(p \cdot u \cdot E_1^{T(q)p})] \cdot E_1^{-T(q)p} - \\ &- [s(q)(u \cdot E_1^{T(q)p})] \cdot E_1^{-T(q)p} + \\ &+ [T(q)(p \cdot u \cdot E_1^{T(q)p})] \cdot E_1^{-T(q)p} = \\ &= u - (s(q)u) \cdot E_1^{-T(q)p}, \end{split}$$
 i.e.
$$T_p(q)S_pu = u - S_p(q)u \quad \text{for} \quad u \in L^1,$$

so operations S_p , $T_p(q)$, $s_p(q)$ satisfy the axioms of Bittner operational calculus.

Corollary 2. If L^1 , L^0 are non-commutative algebras then theorem 2 is true for $p = \alpha \mathbf{1}$, $\alpha \in \mathbb{R}$.

Corollary 3. For a given derivative S_p , integral $T_p(q)$ and limit condition $s_p(q)$ the operation

$$\widetilde{S}_p u \stackrel{\mathrm{df}}{=} a \cdot (S_p u), \quad a \in L^\circ, \quad a \in Inv, \quad u \in L^1$$

is a derivative, the operation

$$\widetilde{T}_p(q)f \stackrel{\mathrm{df}}{=} T_p(q)(a^{-1} \cdot f), f \in L^{\circ}$$

is an integral, the operation

$$\tilde{s}_p(q)u \stackrel{\mathrm{df}}{=} s_p(q)u, \quad u \in L^1$$

is a limit condition (compare also [4]).

Theorem 3. If $a_1, a_2 \in L^0$, $a_1 \in Inv$ and if there exists an element $E_1^{T(q)(a_1^{-1}a_2)}$ then the abstract differential equation

$$(11) a_1 \cdot Su + a_2 \cdot u = f$$

with condition

(12)
$$s(q)u = u_0$$
, where $u \in L^1$, $f \in L^0$, $u_0 \in \operatorname{Ker} S$

has only one solution defined by formula

(13)
$$u = [T(q)(a_1^{-1} \cdot f \cdot E_1^{T(q)(a_1^{-1} a_2)})] \cdot E_1^{-T(q)(a_1^{-1} a_2)} + u_0 \cdot E_1^{-T(q)(a_1^{-1} a_2)}.$$

PROOF. The proof of the theorem follows directly from theorem 2 and corollary 3, and from the theorems of the operational calculus.

Definition 2. If there exists an element $E_1^{T(q)p}$ then for the elements $x, y \in L^0$ we will define the multiplication $x \circ y$ by the formula

$$(14) x \circ y \stackrel{\mathrm{df}}{=} E_1^{T(q)p} \cdot x \cdot y.$$

Properties of the multiplication o.

1. For the multiplication \circ unity $\mathbf{1}_0$ is defined by the formula

(15)
$$\mathbf{1}_0 = E_1^{-T(q)p}.$$

2. Element $x \in L^0$ has an inverse x^{-1} for the multiplication \cdot if and only if element $x \in L^0$ has an inverse $x^{-1} \circ$ for the multiplication \circ .

(16)
$$x^{-1_0} = E_1^{-T(q)p} \cdot E_1^{-T(q)p} \cdot x^{-1}.$$

3. The multiplication \circ satisfies condition (1) for the derivative S_p and condition (2) for the limit condition $s_p(q)$. (Condition (2) usually is not satisfied for $s_p(q_1)$, $q_1 \neq q_2$.)

4. If the multiplication is defined by formula (14) then operations S_p , $T_p(q)$,

 $s_p(q)$ satisfy the theorems from chapter II. paragraph 1 of the paper [3].

Examples.

A. Using the operational calculus

$$CO\left(C^{0}((a, b), R), C^{1}((a, b), R), \frac{d}{dt}, \int_{t_{0}}^{t}, \Big|_{t=t_{0}}, R\right)$$

we may define the derivative S_p , the integral $T_p(t_0)$ and the limit condition $s_p(t_0)$ by the following formulas

$$S_{p}\{u(t)\} \stackrel{\text{df}}{==} \left\{ \frac{du(t)}{dt} + p(t)u(t) \right\},$$

$$T_{p}(t_{0})\{f(t)\} \stackrel{\text{df}}{==} \left\{ e^{-\int_{t_{0}}^{t} p(\tau)d\tau} \int_{t_{0}}^{t} f(\tau)e^{\int_{t_{0}}^{\tau} p(\xi)d\xi} d\tau \right\} \quad \text{(see [6])}$$

$$S_{p}(t_{0})\{u(t)\} \stackrel{\text{df}}{==} \left\{ u(t_{0})e^{-\int_{t_{0}}^{t} p(\tau)d\tau} \right\},$$

where $u = \{u(t)\} \in C^1((a, b), R), f = \{f(t)\}, p = \{p(t)\} \in C^0((a, b), R).$

The multiplication o defined by formula (14) has the following form

$$x \circ y = \{x(t)\} \circ \{y(t)\} \stackrel{\mathrm{df}}{=} \left\{ e^{\int_0^t p(\tau)d\tau} x(t)y(t) \right\}, x, y \in C^0((a, b), R)$$

B. In case of the operational calculus with the directional derivative

$$S\{u(x_1, x_2, ..., x_n)\} \stackrel{\mathrm{df}}{=} \left\{ \sum_{i=1}^n b_i \frac{\partial u(x_1, ..., x_n)}{\partial x_i} \right\},\,$$

the integral

$$T(x_n^0)\{f(x_1, x_2, ..., x_n)\} \stackrel{\text{df}}{=}$$

$$\stackrel{\text{df}}{=} \left\{ \frac{1}{b_n} \int_{x_0}^{x_n} f\left(x_1 - \frac{b_1}{b_n}(x_n - \tau), x_2 - \frac{b_2}{b_n}(x_n - \tau), \dots, x_{n-1} - \frac{b_{n-1}}{b_n}(x_n - \tau), \tau \right) d\tau \right\}$$

and the limit conditions

$$s(x_n^0)\{u(x_1, x_2, ..., x_n)\} \stackrel{\text{df}}{=}$$

$$\stackrel{\text{df}}{=} \left\{ u \left(x_1 - \frac{b_1}{b_n} (x_n - x_n^0), x_2 - \frac{b_2}{b_n} (x_n - x_n^0), \dots, x_{n-1} - \frac{b_{n-1}}{b_n} (x_n - x_n^0), x_n^0 \right) \right\}$$

where
$$u \in L^1 \stackrel{\text{df}}{=\!=\!=} C^2(R^{n-1}x\langle x_n^1 x_n^2 \rangle, R), \quad f \in L^0 \stackrel{\text{df}}{=\!=\!=} C^1(R^{n-1}x\langle x_n^1, x_n^2 \rangle, R),$$

 $x_n^0 \in \langle x_n^1 x_n^2 \rangle, b_i \in R \quad \text{for} \quad i = 1, 2, ..., n, b_n \neq 0 \quad (\text{see [4]})$

the multplication o defined by formula (14) has the following form

The derivative S_p , the integral $T_p(x_n^0)$ and the limit condition $s_p(x_n^0)$ are defined by the formulas

$$S_{p}\{u(x_{1},x_{2},...,x_{n})\} \stackrel{\text{df}}{=}$$

$$\stackrel{\text{df}}{=} \left\{ \sum_{i=1}^{n} b_{i} \frac{\partial u(x_{1},x_{2},...,x_{n})}{\partial x_{i}} + p(x_{1},x_{2},...,x_{n})u(x_{1},x_{2},...,x_{n}) \right\},$$

$$T_{p}(x_{n}^{0}) \{f(x_{1},x_{2},...,x_{n})\} \stackrel{\text{df}}{=}$$

$$\stackrel{\text{df}}{=} \left\{ e^{-\frac{1}{b_{n}} \int_{x_{n}^{0}}^{x_{n}} p\left(x_{1} - \frac{b_{1}}{b_{n}}(x_{n} - \tau), x_{2} - \frac{b_{2}}{b_{n}}(x_{n} - \tau), ..., x_{n-1} - \frac{b_{n-1}}{b_{n}}(x_{n} - \tau), \tau \right) d\tau} \right\}$$

$$\cdot \frac{1}{b_{n}} \int_{x_{n}^{0}}^{x_{n}} f\left(x_{1} - \frac{b_{1}}{b_{n}}(x_{n} - \tau), ..., x_{n-1} - \frac{b_{n-1}}{b_{n}}(x_{n} - \tau), \tau \right) d\tau} d\tau$$

$$\cdot e^{\frac{1}{b_{n}} \int_{x_{n}^{0}}^{x} p\left(x_{1} - \frac{b_{1}}{b_{n}}(x_{n} - \xi), ..., x_{n-1} - \frac{b_{n-1}}{b_{n}}(x_{n} - \xi), \xi \right) d\xi} d\tau} d\tau} ,$$

$$s_{p}(x_{n}^{0}) \{u(x_{1}, x_{2}, ..., x_{n})\} \stackrel{\text{df}}{=}} d\tau} \left\{ u\left(x_{1} - \frac{b_{1}}{b_{n}}(x_{n} - x_{n}^{0}), x_{2} - \frac{b_{2}}{b_{n}}(x_{n} - x_{n}^{0}), ..., x_{n-1} - \frac{b_{n-1}}{b_{n}}(x_{n} - \tau), \tau} d\tau} \right) d\tau} \right\}$$

$$\cdot e^{\frac{1}{b_{n}} \int_{x_{n}^{0}}^{x_{n}} p\left(x_{1} - \frac{b_{1}}{b_{n}}(x_{n} - \tau), ..., x_{n-1} - \frac{b_{n-1}}{b_{n}}(x_{n} - \tau), \tau} d\tau} \right) d\tau} \right\}$$

where $u \in L^1$, $f, p \in L^0$.

C. Into the space C(N) of real sequences $a = \{a_k\}$ let us introduce the derivative S = P according to the formula

$$P\{a_k\} \stackrel{\mathrm{df}}{=} \{a_{k+1}\}.$$

Introducing to the space C(N) the multiplication of the sequences $a = \{a_k\}, b = \{b_k\}$ according to the formula

$$a*b \stackrel{\mathrm{df}}{=} \left\{ \sum_{i=0}^{k} {k \choose i} a_i b_{k-i} \right\}$$

we may prove that condition

$$S(a*b) = (Sa)*b + a*(Sb)$$

is satisfied (see [2]).

The limit condition s corresponding to the derivative S=P has the form

$$s\{a_k\} \stackrel{\text{df}}{=} \begin{cases} a_0 & \text{for } k = 0\\ 0 & \text{for } k = 1, 2, \dots \end{cases}$$
 (see [2]).

On the basis of theorem 2 we can define the derivative S_p , the integral T_p and the limit condition s_p . Operations S_p , T_p , s_p are defined by the formulas

$$\begin{split} S_{p}\{a_{k}\} &\stackrel{\text{df}}{=} \{a_{k+1} + \{p_{k}\} * \{a_{k}\}\}, \\ T_{p}\{a_{k}\} &\stackrel{\text{df}}{=} \{T(\{a_{k}\} * \{E_{1}^{T(p_{k})}\})\} * \{E_{1}^{-T(p_{k})}\}, \\ s_{p}\{a_{k}\} &\stackrel{\text{df}}{=} \{s\{a_{k}\}\} * \{E_{1}^{-T(p_{k})}\}, \{a_{k}\}, \{p_{k}\} \in C(N), \end{split}$$

where

$$T\{u_k\} \stackrel{\text{df}}{=} \begin{cases} 0 & \text{for } k = 0 \\ u_{k-1} & \text{for } k = 1, 2, ..., \quad \{u_k\} \in C(N) \end{cases}$$
$$\{E_1^{T\{p_k\}}\} \stackrel{\text{df}}{=} \{v_k\}.$$

and

The sequence $\{v_k\}$ is defined by the recurrent formula

$$\begin{cases} v_0 = 1 \\ v_{k+1} = \sum_{i=0}^k \binom{k}{i} v_i p_{k-i}, & k \ge 1. \end{cases}$$

The multiplication o has the form

$$\{x_k\} \circ \{y_k\} \stackrel{\mathrm{df}}{=} \{E^{T\{p_k\}}\} * \{x_k\} * \{y_k\}.$$

Series $\sum_{k=0}^{\infty} a_k \frac{x^k}{k!}$ convergent in interval |x| < R and sequences $\{a_k\}$ of real numbers are isomorphic. The derivative d/dt is equivalent to operation P (see [2]).

Cauchy's multiplication of the series is evidently equivalent to the multiplica-

tion * of the sequences.

If $\{p_k\} = (-1, 0, 0, ...)$ then $S_p = \Delta$ then for the operation Δ there exists a multiplication defined by the formula (16), where the sequence $\{E_1^{T(-1,0,0,...)}\}\stackrel{\text{df}}{=} \{v_k\}$ is defined by the formula

 $\{v_k\} = \{(-1)^k\}.$

From the examples presented it follows how many types of equations can be solved: ordinary differential equations, partial differential equations difference equations.

I should like to express my sincerce thenks to Prof. Dr. Hab. R. BITTNER for his directions and remarks on this paper.

Reference

- [1] R. BITTNER, Algebraic and analytic properties of solutions of abstract differential equations. Rozprawy Matemat. 41 (1964), 1-63.
- [2] R. BITTNER, Rachunek operatorów w przestrzeniach liniowych. Warszawa 1974.
- [3] R. BITTNER-E. MIELOSZYK, About eigenvalues of differential equations in the operational calculus. Zeszyty Naukowe PG, Matematyka 11 (1979), 87-99.
- [4] R. BITTNER-E. MIELOSZYK, Application of the operational calculus to solving non-homogeneous linear partial differential equations of the first order with real coefficients. Zeszyty Naukowe PG, Matematyka 12 (1982), 33-45.
- [5] R. BITTNER-E. SADOWSKA, Derivative, integral and limit condition in non abelian grups. Zesyty Naukowe UG, Matematyka 1 (1972), 15-20.
- [6] J. DIMOVSKI, Operational calculus for the general linear differential operator of the first order. Compt. rend. Acad. bulg. Sci. 26 (1973), 1579—1582. [7] E. MIELOSZYK, Partial difference equation (in preparation).
- [8] E. Mieloszyk, About solving some abstract linear differential equation (in preparation).
- [9] D. Przeworska-Rolewicz, Operational calculus and algebraic analysis. Proc. Conf. Varna, Sept. 30—Oct. 6, 1975, Sofia 1979, 178—181.
- [10] E. Sadowska, On the solvability of the differential equation Sx = f of the first order. Zeszyty Naukowe UG, Matematyka 1 (1972), 117-123.

(Received February 12, 1984)