Operational calculus in algebras

By ELIGIUSZ MIELOSZYK (Gdansk)

In this paper on the basis of Bittner operational calculus
CO(L, L, S, T(g). s(g), Q)

— see [1], [2] we introduce a new operational calculus CO(L°, L', Sp. T, »(@), 5,(9), Q)
and the multiplication o such that the derivative S,, and the llmlt condmon 5,(q)
satisfy conditions (1) and (2).

Let an operational calculus CO(L®, L', S, T(q), s(g), Q) be given, where L' L°,
L', I° are commutative algebras with unity 1, and with the multiplication -, such
that for f, gelL!

(M S(f-8) = (Sf)-g+/-(S8),
(2) S@)(f+8) = (s(@f)-(s(g)2)-
Theorem 1. If there exists a solution uclnv of the abstract differential equation
3) Su = pu
with the condition
4) s(Qu = u,, ucl', peL®, wu,cKersS,

then abstract differential equation (3) with condition (4) has only one solution.
Proor. If equation (3) with condition (4) had two solutions u, v we would get
Su = pu, Sv=pv

and
s(@Qu =u,, s(@v=1u,

ie. Su—2) =pu—v), s(@u—v)y=20

because operations S and s(g) are linear operations. On the basis of theorems with
[8] u—v=0, then w=v». (Theorem 1 is also true when multiplication - is non-
commutative.)

Definition 1. We will say that there exists an element u ET@» if and only if
ET@r js a solution of the abstract differential equation

(5 Su = pu
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with condition
(6) s(@u =1, where wu€eL', pel® (1cKer S—see[7])
and E{@rclny.

Corollary 1. If there exists an element E]9?, then formula

(7) EIT(G)P Ef T@r _ 1
is true

PROOF. Letv = 1—E{?E; ™" Finding Sv and s(g)v we will get Sv=0,
s(g)v=0. From the last tuo facts it follows that »=0, i.e. formula (7) is true.

Theorem 2. If there exisis an element E{‘9? then three operations:

®) S,u <L Su+pu,
©9) To(@)f == [T(q)(f+ EPP)]- Ey "",
(10) Sp(qu 2L (s(q)u)- Ex 9"

satisfy axioms of operational calculus, where ucL', fEL°. Operation S, is a deriva-
tive, operation T,(q) is an integral, operation s,(q) is a limit condition.

Proor. Operations S,, T,(q). 5,(g) are linear operations. Applying the axioms
of operational calculus CO(L, L', S, T(g), s(¢), Q) and theorems about deriva-
tive, integral and limit condition in algebras (see [3]) we will get

S, T,@)f = S{[T(@q)(f+ E1 ) E; "%} =
= S{[T(¢)(f+ E{“")]- Ey "97} +
+p+[T(q)(f+ E{ ®P)]« Ey T =
= E;f(e)v_ Er T@p _ p-[T(@)(f- E]T(q)p)] ¥y T@p
+p-[T(@)(f- Ell'(e)p)]. E;T@r _ f
b S,Ty@f =f for felL.
T,(@)Spu = {T(@)[(Su-+pu)- ET O} - B 797 =
= {T(q)[(Su)- E{ @7} - Ey 79" 4
+IT(g)(p-u- Ef9P)- E; 7O =
= U Elr(q)n - E,‘T(q'w —[T(@)(p-u- E!‘-'”(q)p)] % T(Q)p _
—[s(q)(u- E{ %)) Ey 97 4
+[T(@Q)(p-u- ES9P)]. EyTO? =
— u—(s(q)- B,

i.e. T,(q)S,u = u—s,(qu for wucl’,
so operations S,. T,(¢), 5,(¢) satisfy the axioms of Bittner operational calculus.
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Corollary 2. If L', L° are non-commutative algebras then theorem 2 is true for
p=al, a€R.

Corollary 3. For a given derivative S,, integral T,(q) and limit condition s,(q)
the operation

Soul a-(S,u), acl°, aclmw, ucL!
is a derivative, the operation
T@f <T@ @[, feL°
is an integral, the operation
5,(u L s,(q)u, ucl}
is a limit condition (compare also [4]).

Theorem 3. If a,, a;€L°, a,€Inv and if there exists an element E]@@1 ‘a9 then
the abstract differential equation

(11) a,-Su+ay-u=f
with condition
(12) s(@Q)u = uy, where wucL', feL® wu,cKerS

has only one solution defined by formula
(13) u = [T(g)(a, 1.1. Ef‘(tl)(d?‘da))] Y TigXai a) 4 o, . E- T(gXa;i 'a),

Proor. The proof of the theorem follows directly from theorem 2 and corol-
lary 3, and from the theorems of the operational calculus.

Definition 2. 1f there exists an element EY@? then for the elements x, yeL®
we will define the multiplication xoy by the formula

(14) xoy 2L EJ@OP. x.y.

Properties of the multiplication o.

1. For the multiplication o unity 1, is defined by the formula
(15) 1, = E; TP,

2. Element x€ L° has an inverse x~! for the multiplication - if and only if ele-
ment x€L° has an inverse x~'o for the multiplication o.

(16) x—lo = E;T(G)P.E;T(d}ﬁ.x-!-

3. The multiplication o satisfies condition (1) for the derivative S, and con-
dition (2) for the limit condition s,(¢). (Condition (2) usually is not satisfied for
@) q=q) ;

4. If the multiplication is defined by formula (14) then operations S,, T,(q),
s,(q) satisfy the theorems from chapter II. paragraph 1 of the paper [3].
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Examples.
A. Using the operational calculus

co [C’“((a, b), R), C*((a, b), R), -%, /. s R]

we may define the derivative S,, the integral 7,(7,) and the limit condition s,(7,)
by the following formulas

S 2D 4 peyu),

[ 4
J p(oas p(&as
d

T Lfe e [ e } (see[6])

r
plt)de

sp(to) {u(t)} -d——r- {“(fn)f -'{ },
where u = {u(1)}eC'((a, b), R), f={f(0)}, p={p(t)}€C’((a,b), R).
The multiplication o defined by formula (14) has the following form

t

p()dr
xop = x@oly®) = fed " <)y ®), x yeC¥((a, b), R)

B. In case of the operational calculus with the directional derivative

S{uCars 32y s 2} £ { 55,2 T,

the integral
T(xg){f(xls Hke iy xﬂ)} x

vt {?l”- fnf[xl——gi-(x..—t), xz—-%(x,,—r), Lot S bn-s (x,— 1), r] dr}

xﬂ n b.l'

and the limit conditions

s(xg){“(xl, Xgs oiv's x")} ar

£ {u[xl—%(xn_xg)v xz"'%(xu_xg)-: ey Xp—1

Pt (), )|

where  u€L'& C*(R**x(x3x®), R), feL®=C'(R*x{x% %), R),
xXe(xix2, beR for i=1,2,...,nb, #0 (seel[4])
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the multplication o defined by formula (14) has the following form

A,Oy = {x(xli KXoy veny xn)}o{y(xll KXoy veny xlt)} —'Li

bn—l

X

1 by by

i K fp(xl—-s:(x“—t).x;—z(x,.—t).---.x.41— S
C A

(x,—1t)t) de
x(xlsxsy sany xn) -

» P01 X455 - <o %)

The derivative S, the integral T,(x}) and the limit condition s,(xJ) are defined by
the formulas

Sp{u(x1,x2,5 -..s Xp)} .-

dt R R oy )
= {I‘_Z; bi '_(132x—|"'—+p(xbx2’ i xn)u(xl’xzy ss=y xn)}5

T, (x){f (%1, X2, ---» Xa)} 2.

» B b, e
e {e—-i}: x_‘!. P(xl-"ii‘("ﬂ“""‘l”ﬁ(‘n'ﬂ'""“n-l_" :,.I (.t”—T).f)dt
13 b, b,-1
et ff Xp—=—(Xp=T)y ceey X1 ——0—(x,— 1), 7] *
by 4 b, b,

.31— ft ?(""%L(xﬂ"‘n'““"n-1-—b—;:-l(x,.—{).:)dg }
.o o x: » n 5 )
Sp (e {u(x1. %, .oy X}
d=£ {u[xl—-g—l(x,.—xg), xz""’gi'(x,,—xg), revy xn_l—%__l(xn_xg), xg).

x"
—"ix{ p(xl—-zf(x"—t). iy B b';: Lx,—1) :)dt}

-2

where uclLl, f, peL®.
C. Into the space C(N) of real sequences a= {a;} let us introduce the derivative
S=P according to the formula

P{a} = {a+1}-
Introducing to the space C(N) the multiplication of the sequences a= {a,}, b={b;}

according to the formula
af Sk
a*b = { Z ( ,]a;b._i}
i=o \I

we may prove that condition

S(axb) = (Sa)»b+ ax(Sb)
is satisfied (see [2]).



142 E. Micloszyk

The limit condition s corresponding to the derivative S=P has the form

- {“° bt Bl (see [2)).

g o TSR
On the basis of theorem 2 we can define the derivative S,, the integral T, and the
limit condition s,.
Operations S,, T,, s, are defined by the formulas

Spla) =4 {acs1+{Pd *{a}},
T, {a} < {T({a} »{E" ™))}« {Er T},

spla) £ {s{a)} = (Er "%} {ad, {pdeC(N),
where
0 for k=0

daf
T} = {“k-—l for k=1,2,.., {uw}eC(N)

and .
(EF") L ().

The sequence {v,} is defined by the recurrent formula

v, = 1

k (k
Vg1 = -Zo [l-]”ipt—is k=1.
The multiplication o has the form

(o {nd < AT} * Pad {0

% convergent in interval |x|<R and sequences {a;} of real

numbers are isomorphic. The derivative d/dr is equivalent to operation P (see [2]).
Cauchy’s multiplication of the series is evidently equivalent to the multiplica-
tion % of the sequences.
If {p}=(-~1,0,0,...) then S,=4 then for the operation 4 there esists a

multiplication defined by the formula (16), where the sequence {ET(-1.0.0.-0}.4L £}
is defined by the formula
{oe} = {(= '}

From the examples presented it follows how many types of equations can be
solved: ordinary differential equations, partial differential equations difference
equations.

I should like to express my sincerce thenks to Prof. Dr. Hab. R. BITTNER for
his directions and remarks on this paper.

Series 3 a
k=0
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