Two scales of spaces of periodic generalized functions

By STEVAN PILIPOVIC (Novi Sad)

Introduction

Spaces D’{m,} and D’{m,} of periodic ultradistributions are investigated in [1],
[2] and [5].

In the first two papers elements of these spaces are characterized by the growth
rate of their Fourier coefficients. In the third one the characterization of elements
of these spaces as infinite sums of derivatives of the corresponding L2*(0, 2x)-func-
tions is given.

In this paper we shall give the construction of some new spaces of periodic
generalized functions and the characterizations of their elements. Also we shall
give the relations between these spaces and the spaces of periodic ultradistributions.

Basic notions

We shall recall basic notions and notation from [2] and [5].
Let m, be a sequence of positive numbers for which we assume:

(l) m: = Mg My, k= l) 21 ceey
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(We do not neea the stronger condition supposed in [2]:
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(3) There are constants 4 and H such that
Mpyq = AH"m,‘, k = 0, ]., cee s

Testing function spaces are defined in [2] in the following way:
D(my, L), L=0, denotes the space of all smooth functions on the unit circle
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K such that @€D(m,, L) iff

lo®]...
Il == sup] e k=01, ) <

(Ipll< = sup {[((®)]; 7€[0, 27]}).
D{m,} = ind !!i_-lg D(my, L),

D(my) = proj }_i_r_% D(my, L),

where these limits are taken in the topological sense.
Condition (2)" is equivalent to the following one:

2 is a subspace of the space D(m,).

(2 is the space of trigonometrie polynomials)

In this paper we shall observe separately conditions:

(2Ya 2 is a subspace of D {m,};

(2b 2 is subspace of D(my).

Since D(m,)cD {m}, clearly, (2)’'b implies (2)’a but contrary, it does not hold.
For example if
(3) =L k=01

4 m=k, k=0,1,..

with L>1, we obtain that for D {m} (2)’a holds but (2)’b does not hold.

As in [2] we put
j'k
o(4) = sgp;:, A=1.

It follows from [2] that D(m,)# 2 if we suppose that o(i)< o forevery i=1.
If m; is of the form (3) or (4), [2] does not give characterizations of the space
D {m,} because p(i)=-o= for every Ai=l.
Proposition 1. Condition (2)'b is equivalent to (1)< < for every i=1.
ProoF. Since (") .=;* the assertion follows from
sk . j’k
sup Tome o, 0=<L <1 iff SEPE <oo, A=1.
Hence, if (2)’a holds and (2)’b does not hold for the characterization of the
spaces D’ {m,} we can only apply Theorem 3 from [5].

Construction of spaces o/ (exp, k), p=1,2, ...

We denote ([5]) by ., the space of all functions ¢¢€L2(0,2n)NC=(0. 2n)
for which
79(@) :=sup {loWls; k = p} <=, p=0,1, ..,

(lelz = [ lo@) dr)
0
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and .
(o®, &™) = (— 1)*(in)*(gp, e'™).

This space is introduced in [7] as an example of the «/-type spaces.
As in [5] we put (in the topological sense)

Aper {mt} = ind I!ln.l Aper(mh L),

Aper(mk) = pl.'Oj }}_rg Aper(mt » L):
where

4, o el
Ap,,(m,‘, L)= (p€‘4per$ lele,e= Z Fi3 bades b
k=0 ni&

Proposition 2. If m.=Ck! for some C=0, then
(@) Apec(k!) = D(k!) . D(my);
(ii) Ay {k'} = D{k!} . D{m,},
where Ac_.B means “A is continuously embedded in B as a dense subspace”.

ProoF. The assertions follows directly from [5. Theorem 1] and from the fact
that 2 is a dense subspace of mentioned spaces.
We shall use the following notation:

exp, k = exp(exp(...(expk)...)).
p

In [4] we generalize spaces of &/ and o/ -type by introducing the spaces exp, &/
and exp, &’. If we apply results from [4] to the space L*(0,2n) and #=i % we
obtain the definition of the space 7, (exp, k) and several properties of these spaces.

Definition 1. s, (exp, k), p is a fixed natural number, is the space of all ¢
from 7, for which

oo 2 S
M@= 3 laf(exp,m)* <, k=0,1,... (p= 3 a,e™).

n=—eco = —oa

Proposition 3. (i) o/, (exp, k) C. e, (exp,_ k) Oy, a8, p=2,3, where
& is the space C=(0.2n) with the usual sequences of norms.
(i1) If @€ty (exp, k) then

L - TR ® meEs.
Eﬁ(p: Z — Z l' S Z n: !! I'"pqo("'p)

m;=0 my: my =0 mgy: m,=0 p

also belongs to of,.(exp, k) and the mapping E}: oy (exp, k) =~y (exp, k) is
continuous.
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(iii) The sequence of norms ,y,, k=0,1,... on o, (exp,k) is equivalent to
the following sequence of norms:
5 b 5 o

= S My (m,) 7
k(@) WZ=' ml!_‘_om,---mpz_'o =5 lo®™ ., & =1,2, ...

The proof of thls proposition follows from the correspondmg assertions in [4].
Clearly, ¢,= Z‘ a,e'™ convergesto ¢= Z a,e’™ in of,,(exp, k) for any

n=-—7 n=—oo

@€, (exp, k). Thus we obtain that 2 is a dense subspace of 7, (exp, k),
pmll ..

Proposition 4. For p=2,3, ... and a=0, s, (exp, k)< D((k!)?).

Proor. We have

1/a
(l )’ = exp (2A'*) = C, exp (exp 2)

spn’),

where C,=0 is a suitable constant. This implies the assertion.

Thus we see that spaces o/ (exp,k), p=1,2,... makes a scale of spaces
which may not be constructed by the methods given in [l] and [2]. The corresponding
dual spaces o/, (exp, k) p=1,2, ... satisfy the following assertions:

Proposition 5. (1) &’ c..dp,,_D (kD) . ...l g (€XD, -1 k) T g (EXP K) . ..
il
(i) If feddy. (exp, k) then there exists a sequence of complex numbers b,,
n=0, 1, ..., such that

(5) Fo ¥ R b G EW, =0k,

n=—es

where the series converges weakly in o (exp, k).
(iii) The series on the right side of (5) converges weakly in sf,,(exp,k) iff
there exists a non-negative integer r such that

> |bu*exp(—2r(exp,-y n)) <=.

(iv) If feod, e,(exp, k) then there exist a sequence Somympys M=0,1, ..., ...,
m,=0,1, .. from 12(0, 2n1) and a non-negative integer r such that
N W A -
6 i 1 p"1 {m)
© / ...;);jo my ! ...,"S:'o mg! ,.én m,! my /™
(7) sup {|| fom,....mpllas M= 0,1, ..., oc.y mp =0, 1, ...} <oo.

Conversely, if a sequence Simy ...myy Jrom L*(0, 2n) satisfies (7). then a unique
element from s, (exp, k) is defined by the series on the right of (6) (in the sense of
weak convergence).

Proor. (i) follows from Proposition 4 (i) and the other assertions follow from
the corresponding assertion in [4].
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Construction of spaces </, {exp,k}, p=1,2, ...

Now we shall define spaces o, {exp, k} and we shall give several properties
of these spaces.

Definition 2. o, { }=ind Ei"i oy (k!, L) (in the topological sense).

Proposition 6. <7, { }=D {k!}.
Proor. This follows from the inequalities

ol = Cill@lar, s @l = Call@lLim,2

where C; and C, are suitable constant and H is from (3), which are proved in [5,
Theorem 1].
By computing ¢(4) for m,=k!, [2, Theorem 1] implies:

Proposition 7. ¢ L*(0,2n) belongs to o,.{ } iff for some non-negative
integer k

oo

2 la(@)fn <.

fiz= — oo

Definition 3. o, {exp, k} is a subspace of o, { } such that @</, {exp, k}
if for some non-negative integer k

e

p?l{k(‘p) T 2 Iauiz(expp n)ﬂﬂt Gt

We supply this space by the inductive topology.

Proposition 8. (i) .o, {exp, k} C. Ay {exp,-1 k} v Ap{ } . 6.
(i) If o€, (exp, k) then

= (kym = mie, .
¢~ Effo = 2 ¥ Znﬁr"‘w‘“‘r’
Wy . "y, - L

is a continuous mapping from sf,. {exp,k} into the same space.
(i) The sequence of norms ,y,u, k=1,2,... and ,0,, are equivalent.

PrOOF. (ii) and (iii) can be proved in the same way as in Proposition 3. The
proof that . { }—.& can be deduced from the definition of D {k!} by using the
fact that for any compact subset of (0, 27) there exists the corresponding compact
subset on the unit circle.

In the same way as in Proposition 4 and can prove:

Proposition 9. o, {exp, k} . D{(k!)*} for p=2,3, ... and a>0.

The same remark given after Proposition 4 holds for the scale of space
Ayer {€xp, k}.

Proposition 10. ()8’ C-» oy { } =D'{k!} Cs Ao {€XPp—-1 Kk} Cor Hge, {€XP, K}
R
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@) If fEd;,,{exp, k} then there exists a sequence of complex numbers b,,
n=0, +1, +2, .... such that (in the sense of weak topology).

®) f= 3 ae™ b={(fe™), n=0,+l,

(iii) The series on the right side of (8) converges weakly in <, {exp,k}
for every non-negative integer r

> bl exp,m) 2 <

(v) If festye {expg k} then there exists a sequence fi, . m, ™m=0,1,
wem,=0,1, ... from L*(0,2n) such that

2 .
(10) 5 pmmy)! A o T mplls <o
m=0 my=0 o my' my=0 m?*"l

for every non-negative integer r.
Com*erse!y if a sequence y SN Jrom L*0, 27n) satisfies (10), then a unique
element from s, {exp,k} is defined l)) the sequence on the right side of (9).

Proor. We shall only prove (iv) since (i), (ii) and (iii) can be proved by standard
arguments.

We denote by e, {€xp, k, 1/r}(Z,e. {exp, k, 1/r}) the subspace of o, { }
such that @€, {exp, k, 1/r }(PE e, {exp, k, 1/r}) if 04, (@)= (pru(p)=<=.)
One can easily prove that the mappings i,: & {exp, k, 1/r}—~o,., {exp,, 1/r+1}
are compact. Since the sequences ,0,, and ,y,,, r=1,2,..., are equivalent and
the product of a continuous and a compact mapping is compact we obtain that

e {€xp, k} 1s an inductive limit of an injective compact sequence of (B)-spaces.
Now the rest of the proof is the same as the proof of Theorem 3 from [5].
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