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The isochronism problem is concerned with the differential equation

) Y +f(») =0 ('=d/dy),

where the function f(y) is continuous, yf(y)>0 if y+0. Suppose that the function
F(y) defined by

© F(y) = [ f(n)dn

satisfies the limit relation lllim F(y)= . Then every solution of (1) is oscillatory
y|—=e=

and periodic. The isochronism problem is the following: under which conditions on
f(») will every solution of (1) have the same period? Clearly, in the case f(y)=cy
with some constant ¢>0 every solution has the period 2n/)c. But there are still
infinitely many other functions f(y) which have the same property. A good treatment
of this problem and also the references can be found in M. UrRABE’s book [4]. The
situation changes if we require the isochronism not of the complete periods but of
the quarter periods, i.e. the time between the zeros and extremants should be the same
for every solution. Then there is the only possibility f(y)=c,y for y"=0 or f(y)=
=c,y for y'<0.

In general we should distinguish four quarter periods according to the possibili-
ties y=0, y’>0 or y=0,y" <0 or y<0,y’=0 or y<0, y"<0. In what follows we
shall treat only the first of these. The other cases can be treated similarly.

Here we extend our problem to more general differential equations

3) Y'+i(»)e0) =0,

where the function f(y) behaves in the same manner as above, and the function
g(z) satisfies the following conditions:

(i) g(z) is continuous and positive on R\ {0},
(ii) the limits [ z/g(z)dz exist,
+0

(iii) the function G(z2)= f {/g({)d{ satisfies the relations

lim G(z) =<,

|g|...¢n
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and finally 4 is a positive parameter. Moreover we suppose that every solution of (3)
is oscillatory.

Let y=y(r) be a solution of (3). Multiplying (3) by »’/g(y’) and integrating we
obtain

4) G(y'(1))+AF(y(1)) = const.

Suppose that y(0)=0 and »’(0)=0. Then there is a value t=0 such that y'(1)=0
and »’(1)=0 on 0=t<rt. Let y(r)=a then clearly t=1(a, A) and by (4)

G(y' () +AF(y(1)) = AF(a),
y' = G (A(F(a)—F(y(1)),

where the function G3*(z) is the inverse function of G(z) on R*. Hence we obtain

hence

t(a, A) ’ a
2 y' () dt 2 dn
‘@)= | erare-roo)) - J croc@-Fm)”
Finally by making use of the substitution ¢=F(y) we find
F(a) dﬁ
) 1@, )= [

¢ Sf(F:'(9)-G'(A(F(@)-9)’

where F;'(y) denotes the inverse function of F(y). Now we can formulate our main
result.

Theorem 1. If the quarter period of the solutions of (3) given by (5) depends only
on A and is independent of a then there are positive constants n, a, B such that f(y)=

=", g(2)=pz'"" if y,z>0.
Proor. Let ¢(&), y(&) be introduced by

1 1
(&) = Q) Y = Gk

then by the condition of Theorem 1 we can write t(a, A)=1(4) and by (5)

(6) () = [ o@v(Ax-9)dé

0
for all x=F(a)=>0. Let the function ¥ (&) be defined by

(7 ¥ (&) = t(DY (A -t ()Y (&)
Then from (6) it follows that

(8) fxga(f)'f’(x—ﬁ) di=0 forall x=>0.
0

The integral in (8) is of convolution type and it is well known (see J. MIKUSINSKI
[3]) that a convolution (8) can be zero only if one of its factors is zero. In our case



Isochronism problems for nonlinear second order differential equations 165

@(&)=0 for ¢=>0 hence ¥(&)=0, ie.
&) MY () = 1(A) Y (©).
Putting ¢=1 into (9) we get ¥4

y() _ (A = 3().

i TORET0)
By (9) the function 3(A) satisfies the functional equation
(11) 3(48) = 3 () IQ).

The function Y (2) in (10) is continuous for A>0 hence the function 3(4) is also con-
tinuous and the only solutions of (11) is (see J. AczEL [1])

(12) 3(4) = A7 with some VvER.

From the definition of the function (&) we know !gﬁl Y (&)= hence the

value of v in (12) is positive. On the other hand the function  (¢) must be integrable
hence there remains the only possibility O<v<1 in (12).
Making use of the relations (10), (12) we can write (6) as

(13) () =y [ oOx-)~"de.
0

Since the function ¢(¢) is uniquely determined by this convolution integral, we can
try to solve it in the form

(14) @) = e(1)¢{* with some pu€R.
Then by the substitution £=xs in (13) we obtain the relations

(15) p+v=1 0<pv<l,
1
o ds
(1) = '1’(1)(0(1)! Fa—s)y "

Now we are able to determine the functions f(y), g(z) . By our definition and
by (10), (12) we know ¥(&)=1/G7'(&)=y(1)é", hence G31(&)=¢&"/y(1), there-
fore G(&)=[y(1)&]Y". Due to (iii) dG(z)/dz=z/g(z) hence

(16) 8 =gy

By (14) and by the definition of ¢(¢&) we have f(F3%(&))=2"/9(1). Let
y=F;%&). Then {=F(y) and f(y)=F*(y)/¢(1). Since f(y)=dF(y)/dy we obtain
from (15) '

F'(y)

v

7’%)- = [ F*(9)f(s)ds =
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hence F(y)=[v/e(1)]'/*y'/*, consequently

* .o

1

Let n=1/v—1, then by (15) n>0 and the functions f(y), g(z) are of the
required form which proves Theorem 1.

Let us observe that according to our Theorem 1 the function H(y,z)=
=f(y)g(z) satisfies the following relation

(17) H(cy,cz) = cH(y,z) for all ¢=>0.

i.e. it is a homogeneous function of first degree.
A differential equation of the form

(18) Y'+h(y,y) =0

is called a half-linear differential equation if the function h(y, z) is defined, continuous
and satisfies the homogenity relation (17) for all (y, z)¢ RX(R\{0}). This definition
is a somewhat weakened form of the one given by I. BIHARI [2] who assumed the con-
tinuity of h(y, z) on the whole R2%. To show an interesting property of the solutions
of the half-linear differential equations first we give the definition of perfect isochro-
nism.

Definition. Let I, be a halfray through the origin of the plane y’y. Let y, (1),
ya(t) be two solutions of (18) with the initial conditions (y; (%), yi(t))€ly, i=1, 2.
The differential equation (18) has the property of perfect isochronism if the points
(¥i(1), y:(2)), i=1,2 are on a halfray going through the origin for all r=t¢,.

Then we have the following result:

Theorem 2. If a differential equation of the form (18) has the property of perfect
isochronism then it is half-linear.

ProoF. Let y;(t), i=1,2 be solutions of (18) such that the points (y;(¢),
yi(1)), i=1,2 for t=t, are on the same halfray going through the origin. Then
there is a positive function ¢(¢) for r=t, such that

ya(0) = (D) yi (D),
ya(0) = c(t) y1(2).

Suppose y,(1)#0. Since y,(t), yi(t) are differentiable the function c(t) is also dif-
ferentiable. Differentiating the first relation in (19) we obtain yi;=c'y,+cyi=
=c’y,+ys, hence ¢’y;=0 or ¢’(1)=0, ie. c(t)=c=const>0. If we differentiate
the second relation in (19) we find y;=cy; or by (18)

(19)

h(cyy, cyp) = ch(n, y1),

hence the function h(y, z) is a homogenenous function of first degree. Thereby the
proof is complete.
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Naturally there arises the problem of the isochronism of the quarter periods of
the nonlinear differential equations

Y'+ih(y,y) =0, i=>0.

Is it true that if the quarter periods depend only on 4 for all A=>0 then the function
h(y, z) is a homogenous function of first degree? The expected affirmative answer
would be a generealization of Theorem 1.
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