Almost contact metric submersions and structure equations

By D. CHINEA (Islas Canarias)

In [2] and [3] we have examined the differential geometric properties of almost
contact Riemannian submersions between almost contact metric manifolds (almost
contact metric submersions).

In this paper we introduce two new structure equations for almost contact metric
submersions and use them to study the influence of a given structure defined in the
total space on the fibre submanifolds and the base space, and vice versa. Also, we
examine the interrelation between the minimality of the fibres and the influence of a
given type of almost contact structure of the total space on the determination of the
corresponding structure on the base space, and vice versa.

0. Preliminaries

A (2n+ 1)-dimensional real differentiable manifold M of class C*= is said to
have a (g, &, n)-structure or an almost contact structure if it admits a field ¢ of
endomorphisms of the tangent spaces, a vector field £, and a 1-form n satisfying

n@) =1
¢* = —I1+n®¢

where I denotes the identity transformation [9]. Then @{=0 and ne=0; moreover
the endomorphism ¢ has rank 2n, [1].
If a manifold M with a (¢, &, n)-structure admits a Riemannian metric g such

that
geX,9Y) = g(X,Y)—n(X)n(Y),

where X, Yey(M), then M is said to have (¢, &, n, g)-structure or an almost con-
tact metric structure and g is called a compatible metric, [9]. An immediate conse-
quence is n(X)=g(X, ). The 2-form ® on M defined by

2(X,Y) = g(X, ¢Y)

is called the fundamental 2-form of the almost contact metric structure.
Let M be a manifold with an almost contact structure (¢, ¢, #) and consider the

manifold M X R. We denote a vector field on M X R by [X 4 ag}-] where X is tangent

to M, t the coordinate of R and a is a C= function on M X R. S. SAsAKI and
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Y. HATAKEYAMA [10] define an almost complex structure J on M X R by

o) - for-sercn )

and they prove that J is integrable if and only if
N+2dn®¢ =0

where N is the Nijenhuis tensor of ¢.
Now, if g is a Riemannian metric on the manifold M with (¢, &, i)-structure,
we define a Riemannian metric on M X R by

d d
h[[X,a W]’ (Y, bm]] = g(X,Y)+ab
and another by
h® = e**h,

where o: MX R—~R is defined by o(x, )=t for all (x, 7)e MX R. Then, the fol-
lowing conditions are equivalent [8]:
i) g is metric compatible with the (¢, , n)-structure.
ii) h is a Hermitian metric on (M X R, J).
iii) A® is a Hermitian metric on (M XR, J).

J. OuBINA obtained in [8] (see also [7]) a classification of the different types of
almost contact structure on a manifold M through the types of the associated almost
Hermitian structures (J, h) and (J, h°) on M X R, by using Gray—Hervella’s classifi-
cation of almost Hermitian manifolds [5].

We recall the various classes of almost contact metric structures here involved
(for the properties, definitions and examples of the different types of almost contact
metric structures, we refer the reader to [1], [8], [7]). Let V and é denote the Rieman-
nian connection and the coderivative in M, then (M, ¢, &, n, g) is said to be
(1) Quasi-K-cosymplectic (QKC) if: (Vy@)Y+(V,x@)oY—n(Y )V, xE=0,

(2) Quasi-trans-Sasakian (qtS) if:

(VB (Y, Z)+ (Vo D)oY, Z)+1(V ) Vo) Z =~ [8(5Y )50 (2) -

—g(X, Z) 30 (Y)—g(X, oY ) (8P (0Z) —n(Z)on)+ (X, Z) (5@ (Y ) —n(Y ) dn)]
(3) Semi-cosymplectic (sC) if d@=0 and dn=0,
(4) Semi-Sasakian (sS) if n:% odb.

A 2r-dimensional immersed submanifold M of a (2n+ 1)-dimensional almost
contact metric manifold A7 with structure (@, &, 7, g) is said to be invariant if $X
is tangent to M for any tangent vector X of M.

Any invariant submanifold M with the structure (¢, g) is an almost Hermitian
manifold and £ is normal to M, where ¢ and g are the restrictions of @and gin M, [12].

Now, let (M, ¢, &, n, g) and (M, ¢", &, n’, g’) be almost contact metric mani-
folds, with dim M=2m+1 and dim M'=2m’+1. A smooth surjective mapping
f: M—~M’ is called a Riemannian submersion [6] if:

(1) f has maximal rank, and
(2) j:m fol is a linear isometry.
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We say that f is an almost contact metric submersion if f is a Riemannian sub-
mersion which, additionally, is
(3) An almost contact mapping (i.e., ¢"f, =1, ¢.

Vectors on M which are in the kernel of f, are tangent to the fibres (F, =
=f~*(m’), me M") and are called vertical vectors. Vectors which are orthogonal to
the vertical distribution are said to be horizontal. We denote the vertical and hori-
zontal distributions in the tangent bundle of the total space M by V(M) and
H(M), respectively. Then T(M) enjoys an orthogonal decomposition: T(M)=
=V(M)® H(M). The orthogonal projection mappings are denoted v: T(M)—~
—+V(M) and h: T(M)—H(M), respectively.

Since the fibres F,,. are even-dimensional and invariant submanifolds M, F,,
with the structure (¢, g) is almost Hermitian and the vector field £ is horizontal
(we shall suppose that f:£={’), [2]. For the properties of the different types of
almost contact metric submersions, we refer the reader to [2], [3].

1. The structure equations of an almost contact metric submersion

Let /- (M, @, & n,8)—~(M’, 9", &, n',g") be an almost contact metric submer-
sion. We define a tensor A" by

A*(X., Y) = Ax(pY—waY,

for all horizontal vector fields X and Y, where A4 is the O’Neill configuration tensor
[6], i.e.,
A£F= UV*EhF'FhV*EUF,

for all E, FEx(M), where v denotes the Riemannian connection in M.

Let H denote the mean curvature vector field of the fibre submanifolds, F,,,
of the submersion, let @, ®” and @ denote the fundamental 2-forms of the total space,
base space and of the fibres, respectively, and denote by 8, " and d the coderivatives
on said manifolds, respectively. Finally, if X is a horizontal vector field, we denote
the vector field /o X on M’ by X..

Theorem 1.1. Ler f: M—~M" be an almost contact metric submersion, and let E
be a vector field on M. Then

dP(E) = g(H, tphE)+6’¢’(hE*)+3¢5(uE)+71 g(tr A%, vE)

and
on = —g(H, &+ -f.

PROCE. Lot {8y, oo Byoois OBss s OB ooy B iy Bgps OFy iy OF s £} 08,
a local ¢-basis defined on an subset of M, whose horizontal vector fields F; are basic
and the vector fields E; are vertical. For any vector field £ on M, we have,

30 (E) = -z (Ve ®)(Ei,E) + (Y, ) (9E;, E))— f (V£ ®)(F,, E)+

+(Vor, @) (@ F;, E))—(V; D), E).
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Thus, if E=V is vertical, we deduce

(V) = 56(V)+2lg(tr A% V)
and if E=X is horizontal ([2])

SB(X) = g(H, pX)+5'® (X)-f.
S0,

3B(E) = 6 (hE)+SB(cE) = g(H, phE)+ 5 &’ (hE,.)f+3t5(vE)+-21—g(trA‘, vE).

The other relation is deduced from [2, Prop. 1.3 and Theor. 3.1].

The equations of Theorem 1.1 are called the structure equations ofthe submer-
sion. Next, we study the influence of the structure equations on some types of almost
contact metric submersion.

If f: M—~M’" is a quasi-K-cosymplectic submersion: AypY=—A4,0X for
all X, Y horizontals, and 6¢=6’¢’=§5=5q= d'n’=0, then, the structure equations
are equivalen to

g(H, 9X) =0 for all X horizontal, and g(H,¢) =0,

and we get

Theorem 1.2. Let f: M—~M' be a quasi-K-cosymplectic submersion. Then the
fibres F,. are minimal submanifolds of M.

If f: M—M"’ is an almost contact metric submersion and M is quasi-trans-
Sasakian, then

SD(X) = %‘,-5'45'()(*);: for all X horizontal

SO(V) = ;_—271-865(1/), for all ¥ vertical,

and
m r_’
Thus, the structure equations are reduced to
m-—m’ _, _, .
———— 0P’ (X,)f=g(H, pX) forall X horizontal
m’+1 PSR | - :
-;n—-_'—,",-:l—3¢(y) = E-g(trA s V) for all ¥V vertleal,
and

’

m-m ., ,
é'n" = g(H,?),

so, we obtain,



Almost contact metric submersions and structure equations 211

Theorem 1.3. Let f: M—~M" be an almost contact metric submersion and M a
quasi-trans-Sasakian manifold. Then the fibres F,, of f are minimal submanifolds of M
if and only if M’ is quasi-K-cosymplectic.

Finally, if m—m’#1 we get

Theorem 1.4. Let f: M—~M’ be an almost contact metric submersion and M a
quasi-trans-Sasakian manifold. Then the fibres F,,. of f are quasi Kaehler manifolds if
and only if tr A*=0.

2. The structure equations of almost contact metric semi-submersions

If f: M—~M’ is an almost contact metric submersion and M is semi-cosym-
plectic, then the structure equations of the submersion are

g(H, qphE)+5’¢'(hE*)+5@(vE)+—;- gltrA*, vE) =0, and g(H,&) =4d&n"-f.

We begin our applications of the structure equations by proving a theorem
first announced in [2].

Theorem 2.1. Let f: M—~M’ be an almost contact metric submersion and M
a semi-cosimplectic manifold. Then M’ is semi-cosymplectic if and only if the fibres
F,. of f are minimal submanifolds (if and only if f is a harmonic mapping).

Proor. Let X be a basic vector field on M. The first of the structure equations
implies that,
g(H, pX) = —d'¥'(X)f,

g(H, &) = d'nf.

Thus, H=0 if and only if 6'®'=06"n"=0, i.e., if and only if M’ is semi-cosym-
plectic.

Theorem 2.2. Let f: M—~M’ be an almost contact metric submersion and M a
semi-cosimplectic manifold. Then the fibres F,. of M are semi-Kaehler if and only if
tr A*=0.

ProoF. Let V be a vertical vector field on M. Then, the first of the structure
equations implies that,

and the second,

S8() = — g(tr 4", V),
from which we deduce the theorem.
Also, we have

Theorem 2.3. Let f: M—~M’ be an almost contact metric submersion whose base
space M’ is semi-cosymplectic and whose fibres are both minimal and semi-Kaehler.
Then the total space M is semi-cosymplectic if and only if tr A*=0.

This may be reformulated as:
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Theorem 2.4. Let f: M—~M’ be a harmonic almost contact metric submersion
whose base space is semi-cosymplectic and whose fibres are minimal. Then M is semi-
cosymplectic if and only if tr A*=0.

Now, if f: M—~M’ is an almost contact metric submersion and M a semi-Sasa-
kian manifold, then the structure equations are,

2mn(E) = g(H, qohE)+5'¢’(hE*)+56(vE)+%g(tr A*, vE), and &P’ f= g(H, &),
so, we get.

Theorem 2.5. Let f: M—~M’ be an almost contact metric submersion and M
a semi-Sasakian manifold. Then the fibres F,. of M are semi-Kaehler if and only if
tr A*=0.

Theorem 2.6. Let f: M—~M’ be an almost contact metric submersion and M
semi-Sasakian. Then the fibres F,. of f are minimal submanifolds of M if and only if

" l >y
n —%5¢.

Finally, if we consider in M’ the almost contact metric structure [cp’, -%— &

2
m w5 :
== q',—ng], we obtain,

Theorem 2.7. Let f: M—~M’ be an almost metric submersion and M a semi-
Sasakian manifold. Then M' is semi-Sasakian if and only if the fibres F,, of f are mini-
mal submanifolds (if and only if f is a harmonic mapping).

Theorem 2.8. Let f: M—~M’ be an almost contact metric submersion, M’ a
semi-Sasakian manifold and the fibres F,, semi-Kaehler and minimal submanifolds.
Then the total space M is semi-Sasakian if and only if tr A*=0.
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