About eigensolutions of abstract differential
equations with mixed conditions

By R. BITTNER, Z. KOBUS (Gdansk)

Introduction

Let’s take Operational Calculus CO(L® L', S, Tq, sq, q, Q), where L° L' are
linear spaces, S: L'—L° (onto) is a linear operation called derivative.

Linear operations 7(q): L°—~L', s(q): L'—=Ker S, such that ST (¢)=idy,
T(q)S=id .—s(g) are called integral and limit condition. Index g€Q defines
uniqueily integral and limit condition (definition and properties of the Operational
Calculus see [3]).

We assume, that Ker S is algebra with unit.

Linear space Z(X) is a set of results that is fractions of the form %, where f

is an element of the linear space X, while U: X—X is an endomorphism and at
the same time an injection belonging to a commutative subgroup n(X) (see [3]).
If A: X-X is a commutative endomorphism with injections Ué€n(X), then

operation u:%— definition in the results space Z(X) with the formula

(1) I
is called an operator.
In particular operator p= L is the so called operator of HEAVISIDE (see [3]).

Tg
In this work we will use the formula
(2 S*x = pPPx—pP"Xo—P" T X — ... — PXy-ys

n=sg% 1=01.,n~1

if only xeL" (proof see [3]).
In the space L*cL° kéN we introduce the relation of equivalence %:

3 xZye A S@Sa-)=0 (s 0.

0sisk-1
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Set @;::L“/%, whose elements are abstract’s classes

k—1 k
@ [x]; = [Zo' T‘(q)S(q)S‘xL
is called a set of Taylor’s jets (see [4], [7]). Operation 7'(¢) with the property
t(q)e =[iIT'(q)cls, ccKerS
is called an abstract variable. Hence

&:=[x)k = iltZ'li';gz—i'l,w:.-, x; = s(q)SixcKer S.

i=0

CHAPTER I
EXPOTENTIAL FUNCTIONS. HEAVISIDE'S THEOREM S*
§ 1. Logarithm. Expotential functions and expotential polynomials.

Df. 1.1. Commutative endomorphism R with derivative S and with limit con-
dition s(g) is called a logarithm, if

(I.I.1) (I-T(q)R)f=0 entails f=0 for fEL® or what gives the same result

(1.1.2) . Sf=Rf, s(gf =0 implies f=0.

Df. 1.2. If there exist elements f#0 satisfying condition s(g)f=0 and equa-
tion Sf= R/, then endomorphism R#0 is called ecigenendomorphism and element
f eigenelement. When R=pid;,, when number g is called eigenvalue.

Theorem 1.1. If there exists a solution of equation
(1.1.3) Sx = Rx, s(q)x = ¢, ceKerS, R-logarithm,
then there exists only one.

Proor. Let’s assume, that x,, x,, x,#x, are solutions of the equation (1.1.3).
So
Sx; = Rx;, s(g)x, =c

Sxs = Rx;, 3(@)xs = c.

Substracting these equations and applying linear character of logarithm R and then
using (1.1.2) we obtain contraction with our assumption, what was to be proved.

Let R be logarithm and let a solution of equation (1.1.3) exist. We define this
solution

(1.1.9) x = eR@¢

* This chapter is written on the basis of [3] §6.
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Df. 1.3. Function

(1.1.5) eRa:Ker SL
given by the formula
(1.1.6) C=gmie

is called exponential function.

Theorem 1.2. If result c) I—TqR is an element of space L°, then exponential
function can be defined with operator I(I—TqR=P) P—R in the following way:
i i ¢ == L

(L.L7) eRic I=Tek =~ p-R &

ProoF. Let x=eR¢. Multiplying both sides of the equation (1.1.3) by integral
Tq and applying limit condition, we get

x—c =TqRx.
Dividing by I—TgR is possible because R is logarithm. Hence we have

- c
~ I-TqR’

Multiplying numerator and denominator of the fraction by p we get

(1.1.8) X

(1.1.9) P Y
what was to be proved.

Theorem 1.3. Let’'s assume, that together with the expotential function

.
1-TqR

as a result belonging to space L°, further results

ce™g =

(1.1.10) L - 4 e, m=12 ...

(I—T(q)R +1 (p-—-R mi1
are also elements of space L°. Than all these elements belong to space L=. Defining

™(q) e T"(g)c
Lo, Tt TR
we have also

S [—';Ef) oRH@) c] - (';_TI(S)!- R e —t%(?— e®@ Re,
(1.1.12)

s[%e‘“‘"c]=0 for m=12,....
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ProoF. Let’s notice the following identity:

" Yge _ _T"(g)c T™(q)Re
(I=T(@R™ ~ (I-T(@R)" " (I-T(9)R"+**"

From the assumption it follows, that the right side is an element of space L°. In such
a case

(1.1.13)

r™'(q)c
T() (I-T(g) Ry"*+!

€L,

i.e.

T"(q)c N
(I-T(g)Ry"+*~

for every natural m. Through induction we get that all these elements are the elements

of space L*.
Of course
e - TR
{144 S[T(") (I—T(q)R)““] “ =T (@R
and
(1.1.15) S[T(q) (!_ang‘fq)):“) =
so we have proved that element
™'(q)c

T(q)

(I-T(9)R)"*
fs an element of space L. Applying definition 1.1.11 we get

@) _ 9 ra,

(I-T(@R™* ~ m! :
Tlu—l(q)c - 'r.‘_—l(Q) enf(qjc
(I-T(@9)R)" (m—1)! :
T"(@Re __ _ ™) reo)ge.

(I—T(@QR™* ~ m!

From identity (1.1.13) and formulas (1.1.14), -(l.l.ISJ we obtain formulas (1.1.12).
We get (1.1.10) multiplying the numerator and denominator of the left side of the
identity by p™*i,

Results %‘f) eM@¢ are called expotential functions if they belong to space L°.

Df. 14. Linear combination of arbitrary expotential functions is called expo-
tential polynomial.
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It is then of the form
m n Ik
(1.1.16) w(t(q) = 2 Z#e“:‘("cﬁj.
J=1k;=0 Jj*

On the basis of (1.1.10) expotential polynomial has also the form

(1.1.17) V)= > é‘ T R)Hl e, €E(LY).

=1k

§ 2. Heaviside’s theorem about expotential functions of the operator p.

Theorem 2.1. (The first Heaviside’s theorem). In case when the degree of the
numerator does not exceed the degree of the denominator and when polynomial H (p)
can be presented in the form

(1.2.1) H(p) = Bu(p—R)(P—Ro)-...-(p—R,),
the rational function of operator p

K(p) o AP+ Ay 1P ...+ A p+ A é
H(p) B.p"+ By 1P '+...4+B,p+ B,

can be defined by the ordinary expotential functions with the formula
K(0) & KR
7O ¢ " 2 B R (R

where Ay, Ay, ..., A,, By, By, ..., Bp€n(X), Ry, R, ..., R,, are logarithms differents
from zero, H'(R)=(R,—Ry): ... (Ry— Ry .)(Ry— Ry11) - ... - (Ry— R,).

Proor. From the assumption we have

K(p) _ K(p) B - T
pH(p) B.p(p—R)-...-(p—R,) p p—R, ~  p—R,’

because in this case the degree of the numerator is lower from the degree of denomi-
nator and there exists distribution into ordinary proper fractions. Hence we have

K(p) = B, Ko(p—Ry): ... (p—R,)+B, Ky p(p—Ry) - ... (p—R,) +... +
+B,K,p(P—Ry)- ... (P—R,,—y)

K(R) _ KR
B R(R—R) - (Ri—Re) Ri— Rz - (Ry—Rp) B RH (R)

for k=1,2,..,m

(1.2.2) F(p)c:=

(1.2.3) F(p) = eRi @,

and hence

Kk=

All these calculations are permissible, if it is allowed to devide by R, and R,—R;;
We have also

K(0) = B, Koy(—Ry))-...-(—R,) = K, H(0).
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hence
K(0)

Ko T _H(O') .

So

F(c) = g—%g-c = [K.,+K1 p—pRl

what was to be proved.

Theorem 2.2. (The second Heaviside’s theorem). Let’s admit for denominator
H(p) a canonical distribution with multiple roots and with zero root.

+ s +K"'F-—-£RT-] c = Kyc+ ZKJ-CRJ‘(‘)C’

j=1

1
(1.2.4) H(p) = Bpp*(p—Ry...(p—R)™, go =
Then
_K(p) & " T

(125  F(pe=Jose= 2 dutmpret 3 2 Aoy €0,
where

"K(p)
L o=, 7737 i

1 (p—R)=K(p)

1.2.7) Ay, = puny (r—1)! dp"" [ PI;(P) !

Proor. Similarly as in the proof of theorem 2.1 we look for distribution of func-

tion ;p) ¢ into common fractions, obtaining
K(P) _ Ag Ay Aoco Ay Ay
pH(p) ¢~ ot T i ? TR T =Ry Sk
Au, An Ah:
e bt b €
(p—R)! (p—R) (P—R)

Multiplying the last identity by p***' and then derivating r-fold with regard to vari-
able p we obtain

& [PK(p)]_ %ol peer
e o (7 ek Sl i v s A b
of g . d’ Ay _ A
+(ao+l)P' [(p_Rl)g1+"'+ R)l]+p’ p’ (p—_Rl)'1+".+(p"'Rj)1]-

Substituting p=0 we get formula (1.2.6). Similarly, multiplying the considered iden-
tity by (p— R,)*, then deriviting it r-fold and substituting p= R, we get identity
(1.2.7).



About eigensolutions of abstract differential equations with mixed conditions 221

Remembering, that

1 *(q) P (@) &4
A e Bt R

we get (1.2.5).
We will use formula (1.2.5) under the assumption that it is allowed to divide by
endomorphisms R; and R;—R;.

CHAPTER II.
EIGENSOLUTIONS OF THE ABSTRACT DIFFERENTIAL LINEAR
EQUATIONS OF THE ORDER N AND THE SYSTEM OF
EQUATIONS OF THE FIRST ORDER

§ 1. The existence of the eigensolutions of the abstract differential linear equation
with mixed conditions.

Let’s consider linear differential equations of the order n
(2.1.1) a,5"x+a,_1S" 'x+...+a,Sx+a,x = Ax,
xeL", A, a;en(LY).
Onto solution x we impose conditions on the mixed type
(2.1.2) Z Za‘}'x“=0, r=12,..,waf)cKerS,
where it
(2.1.3) Xppi=0(t) SPx = |g=t,(8*%), B=0,1,...,r5j=1,..., N,

while

@14 42+ ’("’)

I(To) 1)

g +.. +—(_T)T m-1s

tfPeKerS,, i=0,1,...,m—1,

is Taylor’s jet of the class 47;, where S, is arbitrary derivative (see [4], [7]).
Applying formulas (2) and (2.1.1) we get

(2.1.6) a,(P"x—p"Xq—p" 1 X} — ... = pxXa-1) + 8y (P I x— "1 XG

=P ix— . = pX-9) + ... + a1 (px —pxy) +apx = Ax.
Hence
s W(p) Ny
2.1.7 = = i, i=0,1,..n-1,
( ) x :-_-Zo' W(p}.)xo xX=3(g)Sx, i=0 n—1
where
(2.1.8) W(p, ) =a,,p"+a,,_1p""+...+alp+(ao-l)

(2.1.9) W(p)=a,p" '+a,_,p" "' +...4a;.,p for i=0,1,..,n—1.
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Formula (2.1.7) can be applied when the roots of polynomial W (p, 4) are logarithms
of derivative S.

Let 0, Ry, R,, ..., R, be the roots of the equation W (p, 1)=0 with multiplica-
tion factors recpectively o, o, %,, ..., %. Applying the Second Heaviside’s Theorem
we get

120 o+1=r +1=r
2.1.1 = ) I () A o R R.r(c)] .
(h o x=Z|Fawli 2 S @+1-1)! %
whnere
i L d" [ p*W(p)
(i) — il i
il A= dp’" LW (p,7)

1 d=* [(p—R)W,(p)

AP =
R=p. (r—=D1! dp™=* L pW(p, 7)

It is easy to notice that

¥ [;01'1—’—3 "
o'(fj)s‘—i):l——i-z (o +1=r—p)! for “0+1_"—ﬁ—0,
(otg+1—7)! 0 P R
similarly for
_t:;ifl;eﬂkl(q)
(oo +1—r)! :

Acting with operation ¢ onto general solution (2.1.10) we have

n=1 r!n‘l‘l—r—ﬂ

erLR) xy= 3|24 I+ 3 Zapey{ 2 (0)x

i=0 Lr=0 flo+l

[ m+1-r-' ek @) "(‘q)ﬁ—’ RE-v R flq)]}]x"
X (e +1—r—v)! 3 +m ks )

Substituting the so defined x;; into equations (2.1.2) we get the system

j=1 fi=0 or(%'l‘l -r=pf! " =isat o } ymo \V
!Gk'l'l r=v

! a+1l=r
R0y O pi-.R r(e)]}] =0
(o +1—r—v)! s +(cq+l—r)! e X 3

System (2.1.13) is a system of homogeneous W equations with unknown x§, x{, ...
“ssy xg,_l .

If the order of the matrix a of this system is smaller than », then equation (2.1.1)
with conditions (2.1.12) has eigensolutions defined with the formula (2.1.10), where
constants x§, x{, ..., xJ_, are solutions of the system (2.1.3), where the order of the
matrix is equals r (then we write r(a)=r), if there exists a reversible determinant
of the order r formed from the elements of this matrix while all the determinants of
the order higher than r are not revercible (see [8] collorary on page 359). Let’s con-
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sider in particular the case where polynomial W (p, A) has non-zero roots with mul-
tiplication one: R,, R,. ..., R,, while condition (2.1.2) is of the form

(2.1.14) p;; Af,”xﬂ = ’z‘; B},ﬂx”; x,, = |,(q)-”(S’x), j = ], 2, T = 1, 2, ceey Ww.

Applying to the formula the first Heaviside’s theorem we get

(2.1.15) x= 3 [bit 3 dyet @] 8,
™ k=1
where ,
i w(0) B g Wi (Ry)
I FODY T aRBWR)

Because from the assumption we have that W (0, 1) is reversible (we write
W (0, A)€Inv), and for every i=0,1,...,n—1, W;(0)=0, hence b;=0.
Taking denotation

n=1
(2.1.16) = 3 dpi
=0
finaly we have formula
(2.1.17) x= 3 i@,
k=1

Substituting the obtained general solution to (2.1.14) we get system of homogeneous
equations

max(ry,ry) 0
(2.1.18) 2 S RIAP R —BP et =0, r=1,2,...,W,
p=0 k=1

with unknowns ¢, ¢,, ..., ¢,. Condition
(2.1.19) r(a) < n,
where
a= [“u]}g;;'.'.” a; = “‘:(z::.r,) RY(Af) R/ — By eRi)

is necessary and sufficient for equation (2.1.1) with conditions (2.1.14) to have eigen-
solutions defined with the formula (2.1.17) where constants satisfy system (2.1.18).

Example 1. Let L°=[L'=L*=C(N) be a space of sequences of real numbers.
Derivative S: C(N)—~C(N), integral T'(k,) and limit condition s(k,) are defined
with the formulas
S{x} = (Xer1—x}

O for k=k
T(ko) {xt} = x,,,+xh+1+...+x,‘-1 for ku <k
—Xkg=1"Xkg—2— +++ — X for kﬂ >k

s(ko) {xi} = {xi,}  (see [5]).
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Let’s consider equation
(%) S {x} = A {x}
with conditions

Ln) {xh_'xk,+1 =0
* x
3%, + 3%, — X 41— %41 = 0
which are conditions of the type (2.1.14) because they can be written in the form

{ o (ky) {xi} —0a (ko) {x,} —a(ky) S{x;} = 0
20 (ky) {xi} —a (ky) S{x}+20 (ko) {xi} —o(ky) S{x;} = 0
where operation o(k;) means substitution of natural number k; instead of variable k.

Polynomial W(p, ))=p*—4 has non-zero roots R,=})2 and R,=—}2.
Because in this model

(% % %)

eRt@e = (14 R)c
hence applying (2.1.17) we get general solution of the equation ()
X =(1+VA e +(1-VA) ey,
o (k) {x} = (1 +}/j-)t'€'1+(l '_Vz)l‘c;
o(k) S{x) = [(1+ VA e, —(1—VAe] VA, i=1,2.

Substituting previous formulas to conditions (% * %) we get the following system of
homogenenous equations with unknown ¢; and c¢,:

[(1+VAf =1+ VAt e+ 1=V 2 —(1 = V2] ¢y = 0
Q=YD +VAfa+(1+VA] e + 2+ V) [(1 =V2 ¥ +(1 = VA ey = 0.
Thys systems has non-zero solutions if
wus) |V —(1+V D)t (1= V2 —(1—Y2patr
[ ’ ] @—VD[O+VDa+(1+V2] R+VA[(1—VA+(1—ViYs] 5
Conditions ("‘ i *] defines how eith given 4 we must take values k; and k, so that

and hence

0

*
equation (*) with conditions (# * ) should have eigensolutions.
And so for example if A1=4, then we get connection

(B =3t [(-1+(-1)*] =0,
and hence we have

ke =kyi—1, ky=1,2,.., V ky=k+21+1



About eigensolutions of abstract differential equations with mixed conditions 225

In this case the eigensolutions of the equation (# ) with conditions
(k) {xi}—o(ky—1D) {xi}—o(k;—1)S{x,} = 0
20 (ky) {x,} —o (k) (i} +20(ky— D {x}—o(ky,—1) S {x,} = 0
are elements
{x} = {3*a}, a€R.
§ 2. Existence of eigensolutions of a system of differential equations of the first order

with moxed conditions.

Let’s consider a system of differential equations of the form

(2.2.1)
Sx;+anX+aXet...+a,x, = L1 x
Sxotay Xy + g Xa+ ... +Agp X, = Ay Xy
Sx,+a, X+ aeXet ...+ A Xy = Ay X,
2el}, 1=12 ..,5,
where coefficients of this system and 4,, 4, ..., 4, are endomorphisms commutative

with each other.
To obtain eigensolutions on the system (2.2.1) we will impose conditions of the
mixed type

N n Cpi
(22.2) > > D apke(t) S x, =0, W=1,2,....m,
k=1 p=1 p=1
where operation ¢ (t,) is defined by formula (2.1.3). As
(2.2.3) Sx; = px;— pXy,s
where
(2.2.4) xl‘o -_ S(Q)I;GKCF S,

hence from the system (2.2.1) we get

2.2.5)
(P+an—A) X +ae X+ ... +a1, X, = PXyo

Agy Xy +(P+Aos —Ag) Xa+ ... + s, X, = PXay
aulxl+aunxs+"-+(p+alu_’1n)xu = PXpo-
Solution of this system are elements

Aj(p! A)

(2.2-6) xj = m’

F=Ld v
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where
ptan—riy ...y
(2.2.7) A(p, A):= as P+as—As...aq,
Am anﬂ'"p“'am_’ln
P+ayn—ry Aya... Q151 PXyg Ay, j4+1::81y
(2.2.8) AJ(P, A) = Gy p+azs";'~z «Qg,j—1 PXyg Qg j41-- as.u
Ay Qua...Qnj-1 PXpo Qpji1+--PF 0y _'ln

We can apply formula (2.2.6) if the roots of the equation 4(p, A)=0 Ry, R,, ..., R,,
are logarithms.
Applying to 4;(p, 4) theorem of Laplace we obtain

“ pAU(pl A) oo 1, 2’

2.2.9 x; = 2 —mj—xm, ¥

Soey

where 4;; is a respective co-factor.
Elements x; defined by the formula (2.2.9) are of the form (2.1.7).
Applying formula (2.1.10) we have

!t:sibl—r i = t?q,)+1—r
2.2.10 - T ) Sl aon_@ a,:m] .
( ) & ;..Z; fg‘; A (n+l—r)!+,‘§,§ Asr (o:,+1—r)!e %ios
where
P11 PER O S 2 prtt4,(p, A)
votrtdp U 4G, 4
(2.2.11)

! [(p— R)*=4,;(p, A) S
AGD = |p-n l)' 7T [ Ao A) ] 2 a,=n.

Hence and from (2.2.2) we finally get the system
Cje M ,:.—e—r+s

> 3 S K 4 +
2 2 Z[Z“"’i 4" T—e=11DI

(2.2.12)
] Iﬂ +1=—r
+s‘=z1l rg‘: o A Do (@S (2 f!‘i’l -r)! eR,'(q)]] Xp=0 w=12 .., 0.

It is a system of homogeneous @ equations with n unknowns X4, Xg, ..., Xy and if
only order of the matrix of this system is smaller than n then the system of equations
(2.2.1) with conditions (2.2.2) has eigensolutions (2.2.10), where constants x4, Xa, .-
..es Xy are solutions of the system (2.2.12).
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ExampLE 2. Let

d 1]
S =—r:C'(R) ~ C°(®)

T(9)f = [f@dz, fcC'(R), 1¢(a,b)

s(q)x(1) = x(1)) = xo.

Let’s consider system of equations
(%) x1(0) = x1 (1) = x2(1) =2, x, (1)

x3(1)+ 5x, (1) + x5 (1) =29 x5 (1)
with conditions

4x, (1) +x1(r) —x2(12) = 0
x1 (1) +2x7 (1) — x3(t2) — x5 (1) = 0
x3 (1) +x2(1) —2x, (1) +2x3(1) —x7 (1) = 0.

To simplify the calculations we will make analysis in case A,=24,=0.
Applying (2.2.3) we get the system

(p=1)x;—=x3 = pxyo
5%+ (p+1) X3 = pxao,
for which
A(p,0) = p*+4.
Hence we have
R, =2i, R,= -2i.

227

On the bases of formula (2.2.10) and passing from expotential functions to trigono-

metric functions finely we get general solution of a given system in the form

Xy = {[cos 2t +-;— sin 2:] X100+ [—21- sin 21] x,,]

T = {[ - % sin 21] X0+ [cos 2t —% sin ZI]x,,} :

Substituting the obtained solution to (* *) we get the system

(5 cos 21, + 5 cos 2ty) X190+ (2 sin 21, +cos 2¢, +2 sin 21,4 cos 21;) Xg9 = 0

—6 sin 21, —7 cos 2t;+ 5 cos 2ty — 10 sin 215) X390+
+(cos 21, —4 sin 21,45 cos 215) x99 = 0
(cos 2t —2 sin 21, —8 cos 2ty +sin 2t3) X490+

+(cos 21, —3 sin 2t3—2 €0s 243) X9 = 0,
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which has non-zero solution if all the determinants of the second order created from
the matrix of this system vanish, i.e. if

5cos 2t;+5cos 21, 2 sin 2¢; +cos 21, + 2 sin 21,4+ cos 21,
—6sin 2t; —7 cos 2t,+ 5 cos 21, — 10 sin 21, cos 2t,—4 sin 2t,+ 5 cos 211,’ &
5 cos 2t; + 5 cos 2t 2 sin 2t; +cos 2t,+2 sin 2t,+cos 2t, -
cos 21, —2 sin 2t, —8 cos 24, +sin 2t cos 2t —3 sin 2t,—2 cos 21,
and
—6 sin 2, —7 cos 2t,+ 5 cos 21, — 10 sin 21, cos 2t; —4 sin 2t,+ 5 cos 2t
cos 2t; —2 sin 2t; — 8 cos 2t,+sin 21, cos 2t; — 3 sin 21, —2 cos 24, =

Hence after conversions we get equations
4cos 2(ts—1))+3sin 2(t,—1,)+4 =0
2cos 2(ty3—1,)—18sin 2(t,—1,)+2 =0
11 cos 2(t,—1,)+ 5 sin 2(t,— 1)+ 11 = 0,
which the common solution is
ty—t = -’2’-+kn, k€Z,.

It means that the system (%) with conditions

ax,(0) + 55— (1 + 2 k) = 0

x1(ty) +2x7 () — x3 [rl +;+kn]—x;’ (r, +§+ kn] =0

Xy (1) + x9(1,) — 2x3 [rl +; + kn]+ 2x; [r, +% + krr] —xy (:1 +;+ kn] =0
has eigensolutions for arbitrary #,€ R and k€Z, which are functions of the form
x; = {(cos 2¢t—sin 2f)c}
xy = {(—3cos2r—sin 2f)¢c}, c€R.

References

[1] W. J. ArNoLD, ROwnania rozinczkowe zwyczajne. PWN, Warszawa, 1975. Tlumaczenie z rosyjs-
kiego.

[2] R. BirTNERr, Operational calculus in linear spaces. Studia Math. 20 (1961), 1—18.

[3] R. BirTnER, Rachunek operatorow w przestrzeniach liniowych. PWN, Warszawa, 1974,

[4] R. BrrTer and Z. Kosus — Taylor’s jets. Manifolds of solutions of differential equations in the
operational calculus. Preprint No 35, May 1980. University of Gdarisk.



About eigensolutions of abstract differential equations with mixed conditions 229

[5] R. Brrrner, E. MieLoszyk, About eigenvalues of differential equations in the operational
calculus. Zeszyty Naukowe Politechniki Gdariskiej. Matematyka X1 Nr. 285 s. 87—99.
Gdarisk, 1978 r.

[6] R. BirNer and Z. SMENTEK, Taylor’s formula for many derivatives. Integrals. Demonstratio
Mathematica 12. Technical University Warsaw, 1—16.

[71 Z. Kosus, H. Wysockr — Pochodna Frecheta odwzorowan kietkow Taylora. Odwracalnosc
kielkow Taylora. Zeszyty Naukowe WSMW Gdynia 1983, 95—113.

[8] S. LanGg — Algebra. PWN Warszawa 1973 r.

RYSZARD BITTNER
GDANSK UNIVERSITY
80—952 GDANSK
POLAND

ZBIGNIEW KOBUS
GDANSK TECHNICAL UNIVERSITY

80—952 GDANSK
POLAND

( Received February 12, 1984. )

5.



