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By HANS G. FEICHTINGER (Wien)

Introduction

Atomic representations, i.e. the characterization of arbitrary elements in a given
Banach space as (absolutely) convergent sums of elements of a particulary simple
form, to be called the ‘atoms’, play an important role in the modern treatment of
Banach spaces of functions (distributions), in particular, in connection with the mod-
ern theory of real Hardy spaces (cf. [2]). In the present note it is to be shown that
one has for the Segal algebra S,(G), which is defined for arbitrary locally compact
abelian groups and which may be considered as a useful tool for harmonic analysis
(cf. [7], [8], [9]), the following kind of atomic representation: Given any f,€ S,(G),
fo#0 (e.g. fo€ L(G) with compactly supported Fourier transform fv ) one has:

So(G) ={fIf= ia..L,,.Mr,‘fm €6, 1,€G, a,cC, Zjla..l e

This characterization is a consequence of a minimality property of S,(G), and related
results for other Wiener-type spaces can be derived in a similar way. As a consequence
a characterization of the Schwartz space €(R™) through suitable atomic representa-
tions of a similar kind is obtained. At the end related characterizations for certain
homogenenous Besov spaces of order zero are mentioned, with an application in the
theory of Hardy spaces.

1. Notations and Preliminaries

In the sequel G denotes a locally compact abelian group, with character group
G. For x€G and t€G we write {x, t)=1(x). For (measurable) functions f on G
the translation operators and character multiplications are given by

Lf(x):=f(x—y) and M, f(x):=(x, 1)f(x)

respectively. These operators act isometrically on the Lebesgue spaces (LP(G), || 1],,)
For 1=p<< the space K(G) of continuous functions with compact support is
dense in L?(G), and C%G) is identified with the closure of K(G) in L=(G). More
generally, we shall consider BF-spaces on G, i.e. Banach spaces (B, | ||z) which are
continuously embedded in the topological vector space L},.(G) of locally integrable
functions on G. Such spaces are called [strongly ] translation or characier invariant if
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L,BC B for all y¢G or M,BC B for all t€G [and |L,fllz=|lfllz or M. flz=
=|flg for all feB]. Strongly translation invariant BF-spaces with continuous
translation (i.e. with |L,f—f|z—~0 for y—0, for all fcB) are called homogeneous
Banach spaces on G, and Segal algebras if furthermore B< L'(G) as a dense subspace.
For general invariant BF-spaces one only knows (by the closed graph theorem)
that L,(M,) defines a bounded operator and that y—|||L,l||s (|[|M/||s) (these symbols
are used for the operator norm on B) defines a submultiplicative function on G resp.
G. A submultiplicative measurable function w on G (i.e. with w(x+y)=w(x)w(y) for
all x, y€G) is called a weight function on G if one has also w(x)=1 for all x€G
(cf. [17], I1L. 7). For any weight function the space L. (G):={f|fweL'(G)} is a Ba-
nach algebra with respect to convolution, called Beurling algebra, with the norm
I fllw:=fw];. Consequently A, (G):={f|fcL.(G)}, its image under the Fourier
transform, is a homogenenous Banach space on G as well as a pointwise Banach
algebra (in C °(G)) with the norm || fl do =1 (denoted by #2(G) in [17]).
Since G=(G)~ according to Pontrjagin’s duality A4,(G) is well defined for any
weight v on G. Since A,,(G) is regular (as an algebra of continuous functions on G)
if and only if w satisfies the Beurling—Domar condition BD we shall be exclusively

interested in such weights (cf. [17]; VI. 3; BD): 5’ n=2log w(nx)<ee for all x€G).

n=1

Since A,,(G) is even a Wiener algebra (in the sense of [17], Chap. 1) any character
invariant ideal in L, (G) is dense in L. (G). As a consequence of the Wiener—Lévy
theorem any dense ideal B in L (G) (in particular, any Segal algebra, being a dense
ideal in L'(G)) contains AX(G):={f]f€ L,(G), supp fcompact in G}. If, furthermore,
B is a BF-space with respect to some norm, then one can show that AX(G) is dense in
(B, | |I)gif and only if B is an essential Banach ideal in LY, (G) (i.e. L.*B is densein B)
or — more conveniently to check — if and only if translation is continuous in B
(cf. [12], § 1 for assertion in this direction). Furthermore, the norms || || and | |,
are equivalent on {f|f€LL(G), supp f< Q) for any relatively compact set QS G.
(cf. [17], VI, 2.2. iv)).

2. An atomic decomposition for S,(G)

Let us recall some facts concerning the Segal algebra S,(G) as introduced for
arbitrary locally compact abelian groups in [7]. There it has been shown that S,(G)
is the smallest among all strongly character invariant Segal algebras, or equivalently,
the smallest (nontrivial) homogenenous Banach space on G which is at the same time
a Banach module over the Fourier algebra 4(G) (cf. [6]). Among others the following
characterization of S,(G) is derived thereform (see [7], Theorem 2).

Su(G) = {f1f = g‘: gu* M, fo, 1,€C, 8.€L(G), ;‘” Igall <=,

for any non-zero f,€S5,(G) (e.g. fo€ L'(G), suppf, compact), and the following
norm is equivalent to the original norm:

1flsy = inf{g: lgalss -},



Minimal Banach spaces and atomic representations 233

the infimum being taken over all admissible representations as above. From this
representation we shall obtain the atomic representation announced in the introduc-
tion.

Theorem 1. Let G be a Ica group, and let fi€ Sy(G), f,7=0 be given. Then one
has

SUG) = {11/ = 3 aLp, M, for 1s€G, 1,€C, 3 lay] <)
and the expression
T inf{é': Gl e é‘: L)
the infimum being taken over all representations of f of the above form, defines an

equivalent norm on Sy(G).

Proor. Write S, for the space of all fhaving an ‘atomic’ representation (involving
fo) of the above kind. The sum being (automatically) absolutely convergent in Sy(G)
(hence uniformly and in LY(G)) it is no problem to verify that (S, || | ;,) is a Banach
space which is continuously embedded in S,(G).

In order to show the converse inclusion we shall derive — starting with the above
representation — the existence of a ‘discrete atomic representation’ for any given
f€S,(G). For fi:=f we choose a representation

h=Zygu* M, fo with Z, g, =2|fis,

It is clear that one may even suppose g,€ R(G) for n=1 because g€ L'(G) may be
written as absolutely convergent series of elements in K(G). It follows

n(l) l
|l Ai- g; ga* M, folls, = 5 I/ils, for some n(1) = 1.

Since the convolution product g,* M, f, can now be interpreted as a vector-valued
Riemann integral (with values in S,(G)) with bounded, continuous integrand, one
finds for each n, 1=n=n(1), sequences (z{™)f) in G and (b{ )i} such that

lg0s Mofom 5 b2 Lo )M, A5, =< Lfl/8m D)

and

k(n)
S 6™ =g, for 1= n= n(l).
k=1

Combining these estimates one obtains for
n(1)

fimfi-3 P, mm s,

n=1 k=1

1 O N
Ufilso = 5 1Ails, and 3 31601 5 3 gy = 21fils.
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Relabelling this finite sum we may write

. > 1, .
filsy = = 2 Ly Myfills, =5 Iflls,s
and

k
2 el = 2| fills,.

We then proceed by induction. Given fi, ..., f,, we repeat the above procedure by
choosing suitable sequences (y")k=, in G, (£)=, in G and (c¢f)k=, in C such that
one has for

ko
f;+13==f;‘—£2;ffiarfuhpl%
RN P RO
|,fm+1|is., - I |ifm]s., =—2 ||f1Js.,;
and

k’" "
kz; le&| = 2| fuls, = 27" Alls, -
It follows that

o~ k,
f=Hh= 2 ZC?L,:;;'M:;‘".%,

m=1k=1

the sum being absolutely convergent in S,(G), since

IIA

o -
mgl g;lfi"l = m§l2 1 fallso = 3]f 15,

This implies that f€S, ., and the last estimate shows that the norms | |, and
| Is, are equivalent on S,(G).

Remark 1. In view of the identity L,M,=(y, t)M,L, for all yeG, 1€G it is
clear that one may change the order of M, and L, in the atomic representation given
above.

Remark 2. It is tempting to try to derive the inclusion S, 2§, from the mini-
mality of S, mentioned at the beginning. Although it is clear that S, is strongly
translation invariant as well as strongly character invariant (and therefore dense in
L}G)) it turns out to be a non-trivial problem to show that translation is continuous
in S, , at least for general f,€S,(G)).

Corollary 2. Let G be a lca. group. Then S,(G) is the minimal strongly translation
and strongly character invariant BF-space (B, || | g) satisfying B(S,(G)# {0}.

Remark 3. Since S,(G) contains the spaces {f|f¢ LY(G), suppj compact},
K(G)* K(G) or the Schwartz—Bruhat space &(G) (cf. [7]) it follows that Sy(G) is
contained in any such invariant space BF-space B having non-trivial intersection
with one of these three spaces. That the additional condition B S,(G)# {0} cannot
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be avoided can be shown by way of an example. In fact, H. C. WANG (cf. [20], p.
36—39) has included an (over-) detailed description of a ‘“‘semihomogenenous”
solid BF-space on R (discovered by the present author) which does not contain any
nonzero continuous function.

Theorem 1 allows to derive a convenient characterization of S;(G) as a subspace
of the space Q(G) of quasimeasures on G.

Corollary 3. A quasimeasure o< Q(G) defines an element of Sy(G) if and only if
one has
supsup |6 (L, M, fo)| <<=

YEG teG

for some (any) f,€8,(G), fo7#0.

PROOF. One has Q(G)=(A4(G)NK(G))’, the space 4(G)NK(G) being endow-
ed with its natural inductive limit topology (cf. [14], [3]). Since this space is densely and
continuously embedded in S,(G) it is clear that S;(G) may be considered as a subspace
of Q(G). Since S,(G) is strongly translation and character invariant it is clear that the
above condition is necessary for ¢€Q(G) to act continuously on (A4(G)NK(G),
| lls,)- Conversely, one has

(N = 3 ladlo@, M, f) =21fls, sup lo(L,M.f)
n=1 YEG,tEG

for any f£A(G)NRKR(G)E S,(G), and therefore ¢ extends to a bounded linear func-
tional on S,(G), if the supremum is finite.
Another useful consequence is the following one:

Corollary 4. Let B', B* be a pair of strongly character invariant BF-spaces,
with B* strongly translation invariant. Then the following conditions are equivalent:

i) There exists fy€ R(G)*K(G), f,#0, such that fyxB'SB* (for G=R"
one may assume fo€ K(R") as well).
i) Any fS,(G) defines a (bounded) multiplier from B* to B>,

Proor. By the closed graph theorem g-—f;*g defines a bounded linear map
from B! to B2 The result thus immediately from the f estimate:

(LyM fo)*fpe = |L,M(fox M_,f)pe = [ fox M_ f|p =
= C(f)) IM_f|m = C(f)|f|s for feB', y€G, t€G.
Remark 4. For G=R" there is a particulary natural choice for f,¢S,(R") is

the GauB function, given by f;(x):=exp (—=n|x|*) for x€R", which allows to check
immediately (i.e. by direct calculation, without abstract theory) certain functorial
properties of S, with respect to products or subgroups H=R* for k<n (cf. [7],
Theorem 7). In fact, £; coincides not only with a multiple of its own Fourier transform,
but the restriction Ry f, of fto H coincides with the GauB} function on H, and the
product of two GauB functions on R* and R" is just the GauB function on R**". One
easily derives therefrom the next result which has several important implications
concerning the dual space S;(R*) (cf. [8], [9]), among them a kernel theorem for
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bounded linear operators from S,(R") to Sg(R*) (e.g. for operators from L?(R")
to LI(RY)):

Corollary 5.
1) F[S,(R")] = Sp(R");
1)) RySo(R") = So(H);
iii) Sy(R*)® Sp(R") = Sy(R*+").

3. Towards an atomic decomposition of & (R")

The Segal algebra S, coincides with the Wiener-type space W (A4, L') (cf. [6],
[7], [11]; see [10] for the general definition of Wiener-type spaces and their character-
ization using uniform partitions of unity as constructed in [6]). In this setting the more
general spaces W (A,, L) can be described as follows: Given any open set Q with
compact closure one has

W (A, LL)(G) = {f1f = _2°:a.L,,.L. supp f, € O, f,€4,(G),

Ifla, =1 for n=1, Z:Irlnlw(yu) < oo},
n=
with the according definition of the corresponding norm. Parallel to Theorem 1. one
has then:

Proposition 6. Let w, v we weight functions on G and G respectively, both satis-
fying the Beurling—Domar condition. Then one has:

1) W(A,, L)) is the minimal (nontrivial) BF-space (B, | |g) which is a point-
wise A,(G)-module as well as translation invariant satisfying |||L,|||z=Cw(y) for all
y€G (or being a Banach-convolution module over L (G)).

ii) Given fo€W(A,, L), fo#0, e.g. fo€ L\(G) with supp f, compact in G, one
has

W(A,, LY) = {fIf = gf,.*M,,ﬂ;, 1€,

gneL}v(G)" W”h Z:. :| gnEl.wv(fn) o oo},
n=
the norm being again equivalent to the infinum over all such expressions.

i) For any f,cW(A,, L)), f,#0, one also has the following ‘disrete atomic
representations’: :

W (A,, L) = {fIf = g’: b M, fo; 0606, 166,

3l W) o) <=,
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Proor. 1) First of all we mention that our definition of W(A4,, L) is consistent
with the general definition of Wiener-type spaces (cf. [10], and [6], Theorem for related
questions). Consequently (or by direct inspection) it is a BF-space with A, -module
structure and satisfying [||L,|/|=w(y). Since one has for any translation invariant
BF-space (B, | ||z) with A,-module structure {f|f€A4,(G), suppfSQ}SB and
[fll4,=Colflls it is not difficult to verify the inclusion W(A4,, L,)SB (cf. [6]
Theorem 3).

ii) Since one has for W(A4,, L) the estimate ||M,||w=v(r) and an L. (G)-
module structure (by vector-valued integration or by [10], Theorem 3) it is clear that
the space W, described in ii) is continuously embedded in W (A4,, L},), for any f,.

In order to show the converse one observes that W, is an essential Banach ideal
in L),(G). The formula M,(g,* M, f,)=M,g,*M,,, f, and the submultiplica-
tivity of v imply that W  is character invariant (and therefore dense in LL(G) by
Wiener’s theorem, cf. [17], VI. 3.1 and II. 2.4), and satisfies IMllw, =v(). Tt
follows that AX(G) is dense in W . Since the mapping #—~M,f from G to LL(G) is
continuous for f€ A¥< L},(G) one derives therefrom that one has | M, f—M,,fllw,
0 for =1, in G, for any feW 1o+ (cf. [5], Lemma 3.7 for a special case of this argu:
ment). By means of vector-valued integration one obtains an (essential) A4,-module
structure on W, . In view of i) W, must now coincide with W (4,, L},).

iii) The discrete representation for W (4,, L) follows from ii) by means of suit-
able modifications of the proof of Theorem 1. Since the operators M, and L, only
change their roles under the Fourier transform (and since their order is not relevant,
as mentioned in remark 1) the following result follows immediately from Proposition
4 (cf. [11], Proposition 3.3, for a different).

Corollary 7. The Fourier transformation F:LNG)—~A(G) defines an isomor-
phism between W (A,, L\)(G) and W (A4,,, L})(G).

ProOF. In view of the ‘discrete’ representation and the preceeding remarks it is
sufficient to observe that Zf,cA4,NK(G)SW (A4, L})(G) for some (even any)
fo#0, fEAL(G)SW(A,, L))(G).

Remark 5. By transposition the Fourier transform extends to an isomorphism
between the dual spaces which are (rather large) Banach spaces of (ultra-) distribu-
tions (cf. [11] for further details).

We shall now turn to a characterization of the Schwartz space by atomic represen-
tations of the above kind.

Theorem 8. Given f,cS(R™), f,#0 (e.g. any indifinitely differentiable function
with compact support) one has S(R™)={f| for all r, sc¢N there exists a L'-represen-

tation f= 3 a,L, M, fo. with 3 la,|(1+ ]3Iy (1+ 5]y <c).
Proor. In view of Proposition 6 it will be sufficient to verify that

S(R™) = DNW(AW,,LL,)(=ﬂW(Aw.,LL,)), where  w,(x):(1+|x])’

is a weight function on R™ (satisfying of course the BD-condition).
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The inclusion “2" follows from the fact that A4, (R™)SC"(R™) for any
réN (since p(1)f(r) belongs to L,(R") for any polynomial of degree less than r),

implying
W, LLYSW(CY, L) € {fIf®(x)(1+|x])" bounded for |« = r}.

In order to show the converse inclusion one has to verify that S(R")S W (4, , L},)
forany ré N. As the proof of this inclusion requires only more or less technical modi-
fications of the proof for the inclusion &(R™)S W (4, L},) given explicitely elsewhere
(cf. [11], Lemma 6.2, the case r=0 has been discussed in [16]) it is left to the interested
reader.

Remark 6. The above result also suggest a convenient method of verifying that
a given BF-space on R" contains ©(R") as a subspace. In fact, if there exists
foEBNE, f,#=0, and for some pair (r, 5s) of positive integers the estimates |||L,|||z=
=C(1+|y1) and [[|M/|g=C" (1+]t])* hold true the inclusion follows. Another
application (to be discussed elsewhere) concerns the equivalence of various moduli of
smoothness obtained by means of different Schwartz functions.

4. Further related spaces

Without discussing details we mention that similar arguments can be used to
show that the homogeneous Besov space BY,(R™) (cf. [1], §6.3 [15] or [19]) is the
smallest among all strongly translation invariant BF-space in L§(R™)= {f|fc L'(R™),

f f(x)dx=0}, which are additionally isometrically invariant under the group of

RM

normalized dilations, given by M, f(x)=0""f(x/g), ¢=0, and contain S,(R")=

={f]fe S(R"™), f f(x)dx=0} as a dense subspace. One can show in analogy to
Rm

Theorem 1:

Theorem 9. Given f,¢ S(R™) with f Jo(x)dx=0 one has:
Rnt

B, (R") := {1 = za,, M, o, _2:|a,|-m},

if and only if f, satisfies the following ‘Tauberian condition’: for tcR", t+#0, there
exists />0 such that fy(it)#0. Furthermore, the expression inf{> |a,, ...}
n=1

defines an equivalent norm on B}, in that case.

Remark 7. Among other applications this characterizations can be used in
order to show that the expression

[ fm | Mk, g2 dee]
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defines an equivalent norm on B), for 1=p, g=<, for any ke B},(R™), k=0
(cf. e.g. [18]). Detailed results in this direction as well as sufficient conditions for
fELY(R™) to belong to BY,(R™) are to be given elsewhere (cf. [13] for connections to
the space 4;(R™) of ‘good vectors’ as treated in [4], which therefore has also an
atomic representation).

Remark 8. Again for f¢ S(R™), with vanishing integral, better informations
concerning the summability of a suitable sequence of coefficients (with weights) can
be obtained.

Remark 9. It is worth being mentioned here that the well known atomic char-
acterization of the Hardy space HY(R™) (cf. [2], p. 591) can be described by the
equality

H'(R™) = {flf‘_' ”g a,L, M, f,, ug |a,| {m}

where f, has to be taken from the set of ‘atoms’ Ar={f|fcL™(R™), |fil-=1,
supp f< 0, ff(x) dx=0}, which is bounded in L}(R™). In contrast to the spaces
RJII

considered above it cannot be expected that it might be possible to replace the set
At above by some finite set of atoms (since BY,(R™)< H'(R™) as a proper subspace
it is certainly impossible to replace At by some finite subset of 47 S(R™)).

As another consequence of Theorem one obtains a result concerning the (modi-
fied) Hardy-spaces H(R) (cf. [21]), which may be considered as an improvement of
the main results of [22]):

COROLLARY 10: If H(R) contains any nonzero, real-valued f,#0, then the
Besov space B‘l"l(R) is continuously embedded into H,(R). In particular, H(R)
contains any step function with vanishing integral, as well as any Schwartz function
with this property. Consequently H'(\H), is dense in H" if and only if H), contains
any nonzero real-valued L'-function.

Proor. H}(R) is always isometrically invariant under (normalized) dilations
(M,), >, as well as isometrically invariant under translations (cf. [22]). The minimality
of B, among BF-spaces with this property (observe that any real-valued L'-
function on R satisfies the “Tauberian condition’!) implies the required embedding.

That any Schwartz function with vanishing integral as well as any simple func-
tion (i.e. any linear combination of indicator functions of intervals) with this property,
and in particular the function a(x) treated in [22], belongs to the Besov space BY,
can be verified separately (cf. [13], see also [1], §6.3). In fact, it is a simple special
case of the results to be given in the expanded version of [13] that any function on R
with vanishing integral belongs to B, (R) if it is Lipschitz-continuous with the excep-
tion of a finite number of jumps and satisfies | f(x)|=C(1+|x|)* for some a>1. The
density of {f]f€S(R), f(0)=0} in H'(R) implies the last assertion.



240 Hans G. Feichtinger: Minimal Banach spaces and atomic representations

References

[1] J. BergH and J. LOFSTROM, Interpolation Spaces, Grundl. math. Wiss. 223 (1976), Springer-
Verlag.
[2] R. R. CorrMaN and G. L. Weiss, Extensions of Hardy spaces and their use in analysis, Bull.
Amer. Math. Soc. 83 (1977), 569—645.
[3] M. CowLING, Some applications of Grothendieck’s theory of topological tensor products in
harmonic analysis, Math. Ann. 232 (1978), 273—285.
[4] P. EymarD and M. Terp, La transformation de Fourier at son inverse sur le groupe des ax-+b
d’un corps local. In: Analyse Harmonique sur les Groupes de Lie II. pp. 207—248,
Lecture Notes Math. 739, Springer-Veriag, 1979.
[5] H. G. FEICHTINGER, Multipliers from L'(G) to a homogenenous Banach apace. J. Math. Anal.
Appl. 61, 341—356 (1977).
[6] H. G. FEICHTINGER, A characterization of minimal homogeneous Banach spaces. Proc. Amer.
Math. Soc. 81, 55—61 (1981).
[7]1 H. G. FEICHTINGER, On a new Segal algebra, Monh. f. Math. 92 (1981), 269—289.
[8] H. G. FeicnTINGER, Un espace de Banach de distributions tempérées sur les groupes localement
compacts abélians. C. R. Acad. Sci. Paris. Sér. A 290 (1980), 791—794.
[9] H. G. FEICHTINGER, Translation bounded quasimeasures and some of their applications in har-
monic analysis, in preparation.
[10] H. G. FEICHTINGER, Banach convolution algebras of Wiener’s type. In: Proc. Conf. Functions,
Series, Operators, Budapest 1980. Soc. Bolyai Jdnos, Vol. 35, 509—524.
[11] H. G. FeicHTINGER, Modulation spaces on locally compact abelian groups, Techn. Repart,
Vienna 1983.
[12] H. G. FEICHTINGER, Compactness in translation invariant Banach spaces of distributions and
compact multipliers, J. Math. Anal. Appl. 100 (1984), 289—327.
[13] H. G. FeicHTINGER, Good vector and Besov spaces of order zero, Abstracts AMS, 2 (1981)
408.
[14] R. Larsen, Introduction to the Theory of Multipliers. Berlin— Heidelberg—Nwe York: Springer.
1971 (Grundlehren, Bd. 175).
[15] J. PEeTRE, New thoughts on Besov spaces, Duke Univ. Press, Durham 1976.
[16] D. PoGUNTKE, Gewisse Segalsche Algebren auf lokalkompakten Gruppen. Arch. Math. 33,
454—460 (1980).
[17] H. REITER, Classicsal Harmonic Analysis and Locally Compact Groups. Oxford: University
Press 1968,
[18] N. Rivierg, Classes of Smoothness, the Fourier Method, unpublished manuscript.
[19] H. TrieBeL, Theory of Function Spaces, Akad. Verlagsges. Geest & Portig K.—G. Leipzig/
Birkhauser Verlag, Boston, 1983,
[20] H. C. WaNG, Homogeneous Banach Algebras, Lect. Notes in Pure and Appl. Math., Vol. 29,
Marcel Dekker, 1977.
[21] G. WEiss, Some problems in the theory of Hardy spaces, Proc. Symp. Pure Math., Vol. 35,
Amer. Math. Soc., Prov. R. 1., 1979, 189—200.
[22] A. UCHIY?M% and J. MhWILSON, Approximate identities and H'(R), Proc. Amer. Math. Soc. 88
1983), 53—58.
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