On generalized pseudo symmetric manifolds

By M. C. CHAKI (Calcutta) and S. P. MONDAL (Calcutta)

Abstract

In this paper it is shown that out of four 1-forms in terms of which a generalized pseudo symmetric manifold $G(P S)_{n}$ is defined, only two are independent. Further, introducing a new notion of hyper quasi-constant curvature of a Riemannian manifold it is proved that a conformally flat $G(P S)_{n}(n>3)$ of non-zero constant scalar curvature is a manifold of hyper quasi-constant curvature.

1. Introduction

The notion of a generalized pseudo symmetric manifold was introduced by one of the authors (CHAKI) in a recent paper [1]. A non-flat Riemannian manifold $\left(M^{n}, g\right)(n>2)$ was called by him a generalized pseudo symmetric manifold if its curvature tensor R satisfies the condition:

$$
\begin{gather*}
\left(\nabla_{X} R\right)(Y, Z, W)=2 A(X) R(Y, Z, W)+B(Y) R(X, Z, W) \\
+C(Z) R(Y, X, W)+D(W) R(Y, Z, X)+g(R(Y, Z, W), X) P \tag{1}\\
X, Y, Z, W, P \in \mathfrak{X}(M)
\end{gather*}
$$

where A, B, C, D are 1 -forms, ∇ denotes the operator of covariant differentiation with respect to the metric tensor g and P is defined by

$$
\begin{equation*}
g(X, P)=A(X) \quad \forall X \tag{2}
\end{equation*}
$$

The 1-forms A, B, C, D are called the associated 1-forms of the manifold and an n-dimensional manifold of this kind is denoted by $G(P S)_{n}$. It may be mentioned in this connection that although the definition of a $G(P S)_{n}$ is similar to that of a weakly symmetric Riemannian manifold studied by TAMÁSSY and Binn [2], the defining condition of the latter is
a little weaker than that of a $G(P S)_{n}$. Let

$$
\begin{align*}
& g(X, Q)=B(X), \quad g(X, T)=C(X) \tag{3}\\
& g(X, U)=D(X) \quad \forall X
\end{align*}
$$

Then P, Q, T, U are called the basic vector fields corresponding to the associated 1-forms A, B, C, D respectively.

Let L be the symmetric endomorphism of the tangent space corresponding at each point to the Ricci tensor S of type (0,2). Then

$$
\begin{equation*}
g(L X, Y)=S(X, Y) \quad \forall X, Y \tag{4}
\end{equation*}
$$

We write

$$
\begin{array}{ll}
A(L X)=\bar{A}(X), & B(L X)=\bar{B}(X) \\
C(L X)=\bar{C}(X), & D(L X)=\bar{D}(X) \tag{5}
\end{array}
$$

Then $\bar{A}, \bar{B}, \bar{C}, \bar{D}$ are called the auxiliary 1 -forms corresponding to the associated 1-forms A, B, C, D respectively.

In this paper it is shown that the defining condition of a $G(P S)_{n}$ can always be expressed in the following form:

$$
\begin{align*}
& \left(\nabla_{X} R\right)(Y, Z, W)=2 A(X) R(Y, Z, W)+B(Y) R(X, Z, W) \\
+ & B(Z) R(Y, X, W)+A(W) R(Y, Z, X)+g(R(Y, Z, W), X) P . \tag{6}
\end{align*}
$$

Thus out of the four 1-forms A, B, C, D only two are different, namely A and B and out of the four basic vector fields P, Q, T, U only two, namely P and Q are different. For a conformally flat $G(P S)_{n}(n>3)$, it is proved that if it is of non-zero constant scalar curvature then the Ricci tensor S has the following form:

$$
\begin{gathered}
S(X, Y)=a_{1} g(X, Y)+b_{1} A(X) B(Y)+b_{2} A(X) \bar{B}(Y) \\
+b_{3} B(X) B(Y)+b_{4} B(X) \bar{B}(Y)+b_{5} \bar{A}(X) B(Y)+b_{6} \bar{B}(X) B(Y)
\end{gathered}
$$

where $a_{1}, b_{1}, b_{2}, \ldots, b_{6}$ are suitable scalars.
Finally, introducing the notion of hyper quasi-constant curvature in a Riemannian manifold, it is shown that a conformally flat $G(P S)_{n}(n>3)$ of non-zero constant scalar curvature is a manifold of hyper quasi-constant curvature.

2. Preliminaries

From (1) we get

$$
\begin{align*}
& \left(\nabla_{X}{ }^{\prime} R\right)(Y, Z, W, V)=2 A(X)^{\prime} R(Y, Z, W, V) \\
& +B(Y)^{\prime} R(X, Z, W, V)+C(Z)^{\prime} R(Y, X, W, V) \tag{2.1}\\
& +D(W)^{\prime} R(Y, Z, X, V)+A(V)^{\prime} R(Y, Z, W, X)
\end{align*}
$$

where

$$
\begin{equation*}
{ }^{\prime} R(Y, Z, W, V)=g(R(Y, Z, W), V) . \tag{2.2}
\end{equation*}
$$

Now, contracting (2.1) over Z and W we get

$$
\begin{gather*}
\quad\left(\nabla_{X} S\right)(Y, V)=2 A(X) S(Y, V)+B(Y) S(X, V) \\
+C(R(X, Y, V))+D(R(X, V, Y))+A(V) S(X, Y) \tag{2.3}
\end{gather*}
$$

Next, contracting (2.3) over Y and V, by (3)-(5) we obtain

$$
\begin{align*}
d r(X) & =2 A(X) r+S(X, Q)+S(X, T)+S(X, U)+S(X, P) \\
& =2 A(X) r+\bar{B}(X)+\bar{C}(X)+\bar{D}(X)+\bar{A}(X) \tag{2.4}
\end{align*}
$$

where r is the scalar curvature. These formulas will be used in the sequel.

3. Associated 1-forms of a $G(P S)_{n}$

In this section it will be shown that the four associated 1-forms A, B, C, D of a $G(P S)_{n}$ cannot be all different.

Interchanging Y and Z in (2.1) we get

$$
\begin{align*}
& \left(\nabla_{X}{ }^{\prime} R\right)(Z, Y, W, V)=2 A(X)^{\prime} R(Z, Y, W, V) \\
& +B(Z)^{\prime} R(X, Y, W, V)+C(Y)^{\prime} R(Z, X, W, V) \tag{3.1}\\
& +D(W)^{\prime} R(Z, Y, X, V)+A(V)^{\prime} R(Z, Y, W, X)
\end{align*}
$$

Now, adding (2.1) and (3.1) we obtain,

$$
\begin{aligned}
0= & B(Y)^{\prime} R(X, Z, W, V)+B(Z)^{\prime} R(X, Y, W, V) \\
& +C(Z)^{\prime} R(Y, X, W, V)+C(Y)^{\prime} R(Z, X, W, V)
\end{aligned}
$$

or,

$$
\begin{equation*}
[B(Y)-C(Y)]^{\prime} R(X, Z, W, V)+[B(Z)-C(Z)]^{\prime} R(X, Y, W, V)=0 \tag{3.2}
\end{equation*}
$$

Now, contracting (3.2) over Y and Z we get

$$
\begin{equation*}
' R(W, V, X, Q)-' R(W, V, X, T)=0 . \tag{3.3}
\end{equation*}
$$

From (3.3) it follows that $Q=T$. Hence

$$
\begin{equation*}
B(X)=C(X) \quad \forall X \tag{3.4}
\end{equation*}
$$

Similarly, interchanging W and V in (2.1) and proceeding as before we get

$$
\begin{equation*}
D(X)=A(X) \quad \forall X \tag{3.5}
\end{equation*}
$$

From (3.4) and (3.5) we see that the associated 1 -forms A, B, C, D are not all different, because $A=D$ and $B=C$. In virtue of this we can state the following

Theorem 1. The defining equation of a $G(P S)_{n}$ can always be expressed in the following form:

$$
\begin{aligned}
& \left(\nabla_{X}{ }^{\prime} R\right)(Y, Z, W, V)=2 A(X)^{\prime} R(Y, Z, W, V) \\
& +B(Y)^{\prime} R(X, Z, W, V)+B(Z)^{\prime} R(Y, X, W, V) \\
& +A(W)^{\prime} R(Y, Z, X, V)+A(V)^{\prime} R(Y, Z, W, X)
\end{aligned}
$$

In virtue of this theorem the formula (2.4) takes the following form:

$$
\begin{equation*}
d r(X)=2[A(X) r+\bar{A}(X)+\bar{B}(X)] . \tag{3.6}
\end{equation*}
$$

If a $G(P S)_{n}$ is of non-zero constant scalar curvature, then from (3.6) it follows that $A(X) r+\bar{A}(X)+\bar{B}(X)=0$.

This leads to the following
Theorem 2. If in a $G(P S)_{n}$ the scalar curvature r is a non-zero constant, then

$$
A(X) r+\bar{A}(X)+\bar{B}(X)=0 \quad \forall X
$$

4. Conformally flat $G(P S)_{n}(n \geq 3)$

It is known [(4), p. 41 Theorem 4.1] that in a conformally flat $\left(M^{n}, g\right)$ ($n \geq 3$)

$$
\begin{gather*}
\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Z} S\right)(Y, X) \\
=\frac{1}{2(n-1)}[d r(X) g(Y, Z)-d r(Z) g(X, Y)] . \tag{4.1}
\end{gather*}
$$

In virtue of (3.6) and Theorem 1 the formula (2.3) takes the following form:

$$
\begin{gather*}
\left(\nabla_{X} S\right)(Y, V)=2 A(X) S(Y, V)+B(Y) S(X, V) \\
+B[R(X, Y, V)]+A[R(X, V, Y)]+A(V) S(X, Y) \tag{4.2}
\end{gather*}
$$

Hence, with the help of the Ricci identity we obtain

$$
\begin{align*}
\left(\nabla_{X} S\right)(Y, Z) & -\left(\nabla_{Z} S\right)(Y, X)=A(X) S(Y, Z)-A(Z) S(Y, X) \\
& -{ }^{\prime} R(Z, X, Y, Q)-2^{\prime} R(Z, X, Y, P) . \tag{4.3}
\end{align*}
$$

Using (4.3) and (3.6) we can express (4.1) as follows:

$$
\begin{gather*}
(n-1) A(X) S(Y, Z)-(n-1) A(Z) S(X, Y) \\
4.4) \quad+(n-1)^{\prime} R(X, Z, Y, Q)+2(n-1)^{\prime} R(X, Z, Y, P) \tag{4.4}\\
=g(Y, Z)(A(X) r+\bar{A}(X)+\bar{B}(X))-g(Y, X)(A(Z) r+\bar{A}(Z)+\bar{B}(Z))
\end{gather*}
$$

Putting $Z=Q$ in (4.4) we get

$$
\begin{gather*}
(n-1) A(X) \bar{B}(Y)-(n-1) A(Q) S(X, Y) \\
4.5) \quad+(n-1)^{\prime} R(X, Q, Y, Q)+2(n-1)^{\prime} R(X, Q, Y, P) \tag{4.5}\\
=g(Y, Q)(A(X) r+\bar{A}(X)+\bar{B}(X))-g(X, Y)(A(Q) r+\bar{A}(Q)+\bar{B}(Q)) .
\end{gather*}
$$

If the scalar curvature r is a non-zero constant, then in virtue of Theorem 2 the right-hand side of (4.5) vanishes and (4.5) takes the following form:

$$
\begin{gathered}
(n-1) A(X) \bar{B}(Y)-(n-1) A(Q) S(X, Y) \\
+(n-1)^{\prime} R(X, Q, Y, Q)+2(n-1)^{\prime} R(X, Q, Y, P)=0
\end{gathered}
$$

or

$$
\begin{equation*}
A(Q) S(X, Y)=A(X) \bar{B}(Y)+{ }^{\prime} R(X, Q, Y, Q)+2^{\prime} R(X, Q, Y, P) . \tag{4.6}
\end{equation*}
$$

In a conformally flat $\left(M^{n}, g\right)(n \geq 3)$ we have

$$
\begin{align*}
& \prime R(X, Y, Z, W)=\frac{1}{n-2}[S(Y, Z) g(X, W)-S(X, Z) g(Y, W) \\
& \quad+S(X, W) g(Y, Z)-S(Y, W) g(X, Z)] \tag{4.7}\\
& \quad+\frac{r}{(n-1)(n-2)}[g(X, Z) g(Y, W)-g(Y, Z) g(X, W)] .
\end{align*}
$$

Using this formula we can write (4.7) as follows:

$$
\begin{gather*}
\text { 'R(X,Q,Y,Q)+2'R(X,Q,Y,P)} \tag{4.8}\\
=\frac{1}{n-2}\{-S(X, Y)[2 A(Q)+B(Q)]-g(X, Y)[2 \bar{A}(Q)+\bar{B}(Q)] \\
+\bar{B}(X) B(Y)+B(X) \bar{B}(Y)+2[\bar{A}(X) B(Y)+A(X) \bar{B}(Y)]\} \\
+\frac{r}{(n-1)(n-2)}\{g(X, Y)[2 A(Q)+B(Q)]-B(Y)[2 A(X)+B(X)]\} .
\end{gather*}
$$

In virtue of (4.8) we can express (4.6) as follows:

$$
\begin{gathered}
S(X, Y)\left\{A(Q)+\frac{1}{n-2}[2 A(Q)+B(Q)]\right\} \\
=A(X) \bar{B}(Y)-\frac{1}{n-2} g(X, Y)[2 \bar{A}(Q)+\bar{B}(Q)] \\
\quad+\frac{1}{n-2}[\bar{B}(X) B(Y)+B(X) \bar{B}(Y)] \\
\quad+\frac{2}{n-2}[\bar{A}(X) B(Y)+A(X) \bar{B}(Y)] \\
+\frac{r}{(n-1)(n-2)}[2 A(Q)+B(Q) g(X, Y)] \\
\quad-\frac{r B(Y)}{(n-1)(n-2)}[2 A(X)+B(X)]
\end{gathered}
$$

or

$$
\begin{gather*}
S(X, Y)=a_{1} g(X, Y)+b_{1} A(X) B(Y)+b_{2} A(X) \bar{B}(Y) \\
+b_{3} B(X) B(Y)+b_{4} B(X) \bar{B}(Y)+b_{5} \bar{A}(X) B(Y)+b_{6} \bar{B}(X) B(Y), \tag{4.9}
\end{gather*}
$$

where $a_{1}, b_{1}, \ldots, b_{6}$ are scalars in terms of $r, A(Q)$ and $B(Q)$. This leads to the following

Theorem 3. In a conformally flat $G(P S)_{n}$ of non-zero constant scalar curvature, the Ricci tensor S has the form (4.9).

5. Hyper quasi-constant curvature

In this section we shall introduce in a Riemannian manifold the notion of hyper quasi-constant curvature as a generalization of the notion of quasiconstant curvature introduced by Chen and Yano [5]. According to these authors a Riemannian manifold $\left(M^{n}, g\right)(n>3)$ is said to be of quasiconstant curvature if it is conformally flat and its curvature tensor ' R of
type $(0,4)$ satisfies the condition

$$
\begin{align*}
& ' R(X, Y, Z, W)=a[g(X, Z) g(Y, W)-g(Y, Z) g(X, W)] \\
& \quad+b[g(X, W) A(Y) A(Z)-g(Y, W) A(X) A(Z) \tag{5.1}\\
& \quad+g(Y, Z) A(X) A(W)-g(X, Z) A(Y) A(W)]
\end{align*}
$$

where A is a 1 -form and a, b are scalars.
We shall generalize this notion as follows: A Riemannian manifold $\left(M^{n}, g\right)(n>3)$ will be said to be of hyper quasi-constant curvature if it is conformally flat and its curvature tensor ' R of type $(0,4)$ satisfies the condition

$$
\begin{align*}
& \prime R(X, Y, Z, W)=a[g(X, Z) g(Y, W)-g(Y, Z) g(X, W)] \\
& \quad+g(X, W)\{b A B\}(Y, Z)-g(Y, W)\{b A B\}(X, Z) \tag{5.2}\\
& \quad+g(Y, Z)\{b A B\}(X, W)-g(X, Z)\{b A B\}(Y, W),
\end{align*}
$$

where $\{b A B\} \equiv b_{1} A B+b_{2} A \bar{B}+b_{3} B B+b_{4} B \bar{B}+b_{5} \bar{A} B+b_{6} \bar{B} B$ and $b_{1}, b_{2}, \ldots, b_{6}$ are scalars.

If $B=A$, then the $G(P S)_{n}$ reduces to a pseudo-symmetric manifold $(P S)_{n}$ introduced by Chaki in [3]. In that paper it has been proved that in a conformally flat $(P S)_{n}$ the auxiliary 1-form \bar{A} is proportional to the associated 1-form $A[(3)$, p. 57 (6.7)]. Taking the factor of proportionality as k the relation (5.2) takes the form:

$$
\begin{align*}
& \prime R(X, Y, Z, W)=a[g(X, Z) g(Y, W)-g(Y, Z) g(X, W)] \\
& \quad+b_{1}[g(X, W) A(Y) A(Z)-g(Y, W) A(X) A(Z) \tag{5.3}\\
& \quad+g(Y, Z) A(X) A(W)-g(X, Z) A(Y) A(W)]
\end{align*}
$$

where a and b_{1} are appropriate scalars and b_{1} is related to k in a simple way. In view of (5.1) it follows from (5.3) that in this case the manifold $(P S)_{n}$ is of quasi-constant curvature. This is the reason why a conformally flat $G(P S)_{n}(n>3)$ satisfying the condition (5.2) has been called a manifold of hyper quasi-constant curvature. The word 'hyper' has been used because the name hypercomplex number has been given to a quaternion as a generalization of a complex number.

The question now arises whether there exists a conformally flat Riemannian manifold whose curvature tensor ' R satisfies a condition of the form (5.2). The remaining part of this paper provides an answer to this question.

We consider a $G(P S)_{n}(n>3)$ which is conformally flat and of nonzero constant scalar curvature. We can therefore use the expression (4.9)
for $S(X, Y)$. Substituting this expression for $S(X, Y)$ in (4.7), it can be expressed, after simplification, in the following form:

$$
\begin{align*}
& \prime R(X, Y, Z, W)=a_{1}[g(X, Z) g(Y, W)-g(Y, Z) g(X, W)] \\
& \quad+g(X, W)\left\{b^{\prime} A B\right\}(Y, Z)-g(Y, W)\left\{b^{\prime} A B\right\}(X, Z) \tag{5.4}\\
& \quad+g(Y, Z)\left\{b^{\prime} A B\right\}(X, W)-g(X, Z)\left\{b^{\prime} A B\right\}(Y, W),
\end{align*}
$$

where $\left\{b^{\prime} A B\right\} \equiv b_{1}^{\prime} A B+b_{2}^{\prime} A \bar{B}+b_{3}^{\prime} B B+b_{4}^{\prime} B \bar{B}+b_{5}^{\prime} \bar{A} B+b_{6}^{\prime} \bar{B} B$ and $b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{6}^{\prime}$ are scalars. Comparing (5.4) and (5.2) we conclude that the manifold under consideration is of hyper quasi-constant curvature. We can therefore state the following theorem which provides an answer to the question raised above:

Theorem 4. A conformally flat $G(P S)_{n}(n>3)$ of non-zero constant scalar curvature is a manifold of hyper quasi-constant curvature.

In conclusion, we thank the Referee for offering some valuable suggestions for the improvement of the paper.

References

[1] M. C. Chaki, On generalized pseudo symmetric manifolds, Publ Math. Debrecen 45 (1994), 305-312.
[2] L. TAmÁSSy and T. Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Colloq. Math. János Bolyai 56 (1989), 663-670.
[3] M. C. Chakı, On pseudo symmetric manifolds, Analele Ştiinţ Univ. 'Al. I. Cuza' 33 (1987), 53-58.
[4] K. Yano and M. Kon, Structures on manifolds, World Scientific Publishing Co., 1984, p. 41.
[5] B. Chen and K. Yano, Hypersurfaces of a conformally flat space, Tensor N.S. 20 (1972), 318-322.

```
M. C. CHAKI
27, SASHI BHUSAN DE STREET
CALCUTTA 700 012
INDIA
S. P. MONDAL
C/O. PROF. M.C. CHAKI
27, SASHI BHUSAN DE STREET
CALCUTTA 700 012
INDIA
```

(Received January 30, 1996; revised December 17, 1996)

