Integrability conditions of an F(K, K- 2)-structure
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Summary: YANo, HouH and CHen [1] have studied the structures defined by a tensor field
@ of the type (1, 1) satisfying @*+ @*=0. GADEA and CorDERO [2] have obtained the integrability
conditions of these structures. The generalised F(K, K —2)-structure has been defined and studied by
GuPTA [3]. The purpose of the present paper is to obtain the integrability conditions of a generalised
F(K, K—2) structure satisfying F*+ F¥-2=0, where F is a non-null tensor field of the type (1, 1)
and K is odd. Here we have also obtained the conditions of partial integrability (introducing sx-
partial integrability and 7x-partial integrability) and integrability of the generalised F(K, K—2)-
structure in terms of its Nijenhuis tensor for K odd.

1. The operators s and ¢ for an F(K, K— 2)-structure

Let M" be an n-dimensional differentiable manifold of class C* equipped with a
(1, 1) tensor field F(F#0) and of class C* satisfying [3]

(1.1 n=2m, FK+FX-2 =0, (2rank F—rank FX-) = dim M",

when K is odd.
The operators s and ¢ have been defined as follows [3]:

(1.2) § = (_ l)l{!(K—l)};‘K—l, [ = 1_( e 1)1;:(1(-—1) Fx—l’
I denoting the identity operator. Then we have

Theorem (1.1). For a tensor field F(F#0) satisfying (1.1), the operators s and t
defined by (1.2) and applied to the tangent space at a point of the manifold are comple-
mentary projection operators.

PRrROOF. By virtue of (1.1) and (1.2), we have
(1.3) s+t=1,
(s2 = (_ ])K—lFax—a — FK. FK-2
=~FK'S.FK_3=-FK.FK_‘ -
— (_l)zFK—s_FK—4 — (_l)nFK,FK-s =
(1.4) 1

— (_ l)lfS(K—l) FK—2 . FK—(K—])’ =

S (_ l)uz(x_l)Fx-: = §;
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(1.5) £ = I+(— 1)K FK-2_ (/2K FK-1 —
= I_(_l)lfz(K-l)FK—l =1
(1.6) st = ts = (= 1)2&=-1 FK=1_ (_)K-1 p2K—2 = (,

This proves the theorem.

Let S and T be the complementary distributions corresponding to the projec-
tion operators s and ¢ respectively. Let the rank of F be constant and be equal to r,
then dim S=2r—n and dim 7=2n-2r. Here the dimensions of S and T are both
even. Obviously, n=2r=2n. Such a structure has been called a generalised
‘F(K, K—2)-structure of rank r’ and the manifold M" with this structure an
‘F(K, K—2)-manifold’ [3].

Theorem (1.2). For a tensor field F(F=0) satisfying (1.1) and the operators s
and t defined by (1.2), we have

(1.7 FK-25 — gFKk-2 — k-2 pK-% — ypK-2 _ (;
(1.8) FE<lg o FK-1 FE=1t = (),
Proor. The proof follows by virtue of the equations (1.1) and (1.2).

Theorem (1.3). For a tensor field F(F#0) satisfying (1.1) and the operators s
and t defined by (1.2), we have

(1.9) Fs = sF = —(—1)\/A&-YFk-2 [t = tF = F4+(-1)\2K-DFk-2,
(1.10) F2s =—s, F2 = F24(—1)2K-)pK-1
Proor. The proof is obvious.

Corollary (1.1). An F(K, K—2)-structure of maximal rank is an almost complex
structure.

Proor. If the rank of F is maximal, r=n. Then dim S=n and dim T=0.
In this case =0 and s=1. Thus F satisfies

(1.11) I—-(—1)\RE-Y) Fk=1 =z,
Applying F twice to (1.11) and using (1.1), we obtain

F*+(— 1)1f2(K—1)FK~1 =0,
which in view of (1.11) yields

F:4+1=0.
Hence the result.

Corollary (1.2). An F(K, K—2)-structure of minimal rank is an F(K—2)-
Structure.

Proor. Ifthe rank of Fis minimal, 2r=n. Then s=0. Thus F satisfies F¥-1=0
and therefore F*=0. Hence in view of (1.1), F*¥2=0. Following the general
nomenclature, we call such a structure an F(K— 2)-structure.
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2. The Nijenhuis tensor of an F(K, K — 2)-structure

Let F be an F(K, K—2)-structure of rank r when K is odd. Then the Nijenhuis
tensor N(X, Y) of F is

(2.1) N(X,Y) = [FX, FY]|—-F[FX,Y]-F[X, FY]+FYX,Y].

Therefore in consequence of (1.9) and (2.1), we have

(2.2) N(sX,sY) =[—-(-D)RAE-D K2y _(_])2K-1) pK-2y]—

—F[—(—=D2&-) pK-2 ¥ ¥ ]|—F[sX, —(—1)/3K-1) FK-2Y] 4+ F?[sX, sY],

(2.3) N(sX,tY) =[—(=1)2K-DFKk=2X FY +(—1)2K-H k=2 ]
—F[—=(=1)'RE-HFk-2x 1Y ]— F[sX, FY +(—=1)"2&-D Fk=2y] 4 F2[sX, 1Y ],

(2.4 N(@X,sY) = [FX+(—=1)2E-D k-2 _(—1)12&K-1) pKk=2y]_
—F[FX+ (=) E-D k=2 ¥ sY]—F[tX, —(=1)"2K-1) FK=2Y |4 F[1X, sY],

(2.5) N(X,tY) = [FX+(=1)'PE-DFKk=2x FY +(=1)2K-DFk-2y]_

— F[FX+(=D'2&-) pK=2x 1Y ]|— F[tX, FY +(—=1)'2&-) FKk=2Y |4 F[1X, 1Y ].

Equations (2.2), (2.3), (2.4) and (2.5), in consequence of (1.3) and (2.1), yield

(2.6) N(X,Y) = N(sX,sY)+ N(sX, tY)+ N(tX, sY )+ N(1X, tY).

If the distribution S is integrable, N(sX, sY) is exactly the Nijenhuis tensor of
F/S %L Fs. 1If the distribution 7 is integrable, N(zX, tY) is exactly the Nijenhuis
tensor of F/T 3 F,.

Let %, F be the Lie derivative of the tensor field F with respect to a vector field Y,
Then we have [2]

2.7 (LK F)X = FIX,Y]-[FX,Y],

where %y F is a tensor field of the same type as F.
Now in view of (2.1) and (2.7), we get

(2.8) NGX, tY) = F(ZLy F)sX ~(%ey F) sX
and
(2.9) N(tX, sY) = F(ZLy F)tX (% F)1X.

3. Integrability conditions

In this section we shall obtain the partial integrability conditions of the
F(K, K=2)-structure when K is odd.

Theorem (3.1). For any two vector fields X and Y, the following hold:

(i) the distribution S is integrable if and only if t- N(sX, sY)=0;
(ii) the distribution T is integrable if and only if s-N(tX, tY)=0.
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Proor. We know that for any two vector fields X and Y, the distributions S and
T are integrable if and only if 7[sX, s¥Y]=0 and s[tX, t¥Y]=0 respectively [2].
Thus in view of (1.6), (1.7), (1.9) and (2.1), the theorem follows.

Theorem (3.2). For any two vector fields X and Y, the distributions S and T are
both integrable if and only if

(3.1)  N(X,Y) = s-N(sX, sY)+ N(sX, tY) + N(tX, sY) + - Nt X, tY).
Proor. In consequence of (1.3), equation (2.6) can be expressed as
(3.2) N(X,Y) = s« N(sX,sY)+t- N(sX,sY)+ N(sX, 1Y) +
+N(X,sY)+s- NiX, tY)+1- N(tX, tY).
Now the result follows from equation (3.2) and theorem (3.1).

Theorem (3.3). If the distribution S is integrable, a necessary and sufficient
condition for the almost complex structure defined by F|/S=Fs on each integral
manifold of S to be integrable is that for any two vector fields X and Y

(3.3) N(sX, sY) = 0,
which is equivalent to
(3.4) s-N(sX,sY) = 0.

Proor. Suppose that the distribution § is integrable, then F induces on each
integral manifold of S an almost complex structure. The induced structure is inte-
grable if and only if its Nijenhuis tensor vanishes identically. Thus the theorem fol-
lows.

Definition (3.1). We say that an F(K, K— 2)-structure is *‘sg -partially integrable™
if the distribution § is integrable and the almost complex structure Fg induced by
F on each integral manifold of § is also integrable.

Theorem (3.4). A necessary and sufficient condition for an F(K, K—2)-structure
to be sg-partially integrable is that for any two vector fields X and Y,

(3.5) N(sX,sY) = 0.

Proor. Follows from theoresm (3.1) (i) and (3.3).

Theorem (3.5). If the distribution T is integrable, a necessary and sufficient condi-
tion for the F(K—2)-structure defined by F|T=Fy on each integral manifold of T
to be integrable is that, for any two vector fields X and Y

(3.6) N(@X, 1Y) =0,
which is equivalent to
(3.7) t-N@X, 1Y) = 0.

Proor. The proof follows from the pattern of the proof of theorem (3.3).
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Definition (3.2). We say that an F(K, K— 2)-structure is “‘t¢-partially integrable™
if the distribution T is integrable and the F(K— 2)-structure F induced by F on each
integral manifold of 7 is also integrable.

Theorem (3.6). A necessary and suffcient condition for the F(K, K— 2)-structure
to be tg-partially integrable is that for any two vector fields X and Y,

(3.8) N(X,tY) = 0.
Proor. Follows from theorems (3.1) (ii) and (3.5).

Definition (3.3). We say that an F(K, K—2)-structure is “partially integrable”
if and only if it is sg-partially integrable and 74 -partially integrable, simultaneously.

Theorem (3.7). A necessary and sufficient condition for the F(K, K—2)-structure
to be partially integrable is that for any two vector fields X and Y,

(3.9) N(X,Y) = N(sX, tY)+ N(tX, sY).
Proor. The theorem follows by virtue of the equations (2.6), (3.5) and (3.8).

4. Conditions N(sX,1Y)=0 and N(tX, sY)=0

In this section, we shall obtain the integrability conditions of an F(K, K—2)-
structure by means of the conditions N(sX, tY)=0 and N(tX,sY)=0 when K
is odd.

Theorem (4.1). The tensor field s(%,y F)s vanishes identically if and only if for
any vector fields X and Y,

4.1 N(sX, 1Y) = 0.

Proor. In consequence of (2.8), we have N(sX,1Y)=0 if and only if
F(%y F)sX=(%.y F)sX. Thus, if N(sX,tY)=0, we get

(= 1)2&=) FE=1(g, F)sX = (~1)**-D FX-2(&,,, F)sX,
= (=)D FX-3(Z,,, F)sX,

= (—1)V2&-2) pK-K( Py vy F)sX,

=0,
in consequence of (1.8).
That is, in view of (1.2), the tensor field s(Zy F)s vanishes identically for any
vector field Y.

Theorem (4.2). The tensor field t(Z,y F)t vanishes identically if and only if for
any vector fields X and Y,

4.2) N(tX, sY) = 0.
Proor. The proof follows from the pattern of the proof of theorem (4.1).
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When the distributions S and 7 are both integrable, we can choose a local coordi-
nate system such that all S are represented by putting (2n—2r) local coordinates
constant and all T by putting the other (2r—n) coordinates constant. Let us call
such a coordinate system an ‘“‘adapted coordinate system™.

It can be supposed that in an adapted coordinate system, the projection operators
s and ¢ have components of the form

lov<n 0] [0 0
(4.3) s=| o ol P= 0 Ih_”]

respectively, where /,,_, is a unit matrix of order (2r—n) and I,, _,, is that of order
(2n—2r).

Since the distributions S and T are integrable, FScS and FTcT. Therefore,
the tensor F has components of the form

(4.4) F= [F"" A 2’]

in an adapted coordinate system, where F,,_, and F,,_,, are square matrices of order
(2r—n)X(2r—n) and (2n—2r)X(2n—2r) respectively.
Thus, the Lie derivative %y F has components of the form

"0
(4-5) -g’ﬂ'F= [0 L” E]

for any vector field 7Y on T.

Theorem (4.3). Suppose that the two distributions S and T are both integrable
and that an adapted coordinate system has been chosen. A necessary and sufficient
condition for the local components F,,_, of the F(K, K—2)-structure to be functions
independent of the coordinates which are constant along the integral manifolds of S
is that

(4.6) N(X,tY)=0
for any two vector fields X and Y.

ProOF. Let us suppose that N(sX, tY)=0 for any two vector fields X and Y.
Therefore by theorem (4.1), the tensor field s(%,y F)s vanishes identically for any
vetor field Y. Hence L’=0. It follows that the components F,,_, of the F(K, K—2)-
structure are independent of the coordinates which are constant along the integral
manifolds of the distribution S in an adapted coordinate system.

Conversely, if the components F,,_, ofthe F(K, K—2)-structure are independ-
ent of these coordinates, then L’=0. Therefore the tensor field 5(Z,y F)s vanishes
identically for any vector field ¥. Hence N(sX,1Y)=0 for any two vector fields X
and Y.

Theorem (4.4). Under the assumptions of Theorem (4.3), a necessary and suffi-
cient condition for the local components F,,_., of the F(K, K— 2)-structure to be func-
tions independent of the coordinates which are constant along the integral manifolds of T
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is that
4.7) N(tX,sY) =0,
for any two vector fields X and Y.
Proor. The proof is similar to that of theorem (4.3).
Definition (4.1). We say that an F(K, K— 2)-structure is ‘integrable’ if

(i) the F(K, K—2)-structure is partially integrable;

(ii) the components F,,_, of the F(K, K—2)-structure are independent of the
coordinates which are constant along the integral manifolds of S in an
adapted coordinate system;

(iii) the components F,,_,, of the F(K, K—2)-structure are independent of the

coordinates which are constant along the integral manifolds of 7T in an adap-
ted coordinate system.

Theorem (4.5). In order that the F (K, K— 2)-structure be integrable, it is necessary
and sufficient that

(4.8) NX,Y)=0,
for any two vector fields X and Y.
Proor. The theorem follows from theorems (3.7), (4.3) and (4.4).
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