Invariants of special semi-symmetric Finsler connection transformations

By PETRE STAVRE and FRANCISC C. KLEPP (Timisoara)

§ 1. Introduction

Let M be an n-dimensional differentiable manifold of class C^{∞} and let (x^i, y^i) be the canonical coordinates of a point $y \in T(M)$, where T(M) is the tangent bundle of M [3] and let π be the canonical projection. The natural basis of T(M) with respect to canonical coordinates is $\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial y^i}\right)$ and the mapping $N: y \in T(M) \rightarrow N_y \in T(M)_y$ is a regular distribution on T(M), such that: $T(M)_y = N_y \oplus T(M)_y^v$. Let $\frac{\partial}{\partial x^i} = \frac{\partial}{\partial x^i} - N_i^k \frac{\partial}{\partial y^k}$ be a local basis of the n dimensional local distribution N, where $N_k^i(x, y)$ are called the coefficients of the non-linear connection defined by N. The notions and notations of M. MATSUMOTO [2] and R. MIRON [3] are used.

Let $F\Gamma = (N, F, C)$ be a Finsler connection with the coefficients (N_j^i, F_k^i, C_{jk}^i) . \mathcal{T} the group of general Finsler connection transformations $t: (N, F, C) \rightarrow (\overline{N}, \overline{F}, \overline{C})$, and $\mathcal{T}_N = \{t | t \in \mathcal{T}; t = t(0, B, D)\}$ the subgroup of \mathcal{T} , formed by the transformations $t: (N, F, C) \rightarrow (\overline{N} = N, \overline{F}, \overline{C})$, which preserve the non-linear connection N. The transformations from \mathcal{T}_N have the form:

$$(1.1) \overline{N}_{i}^{i} = N_{i}^{i}; \ \overline{F}_{ik}^{i} = F_{ik}^{i} - B_{ik}^{i}; \ \overline{C}_{ik}^{i} = C_{ik}^{i} - D_{ik}^{i}$$

where $B, D \in \mathbb{Z}_2^1(M)$ are arbitrary Finsler tensor fields [3]. In the following we denote by $|\cdot|$ and $|\cdot|$, the h- and v-covariant derivatives relative to (N, F, C) and to $(\overline{N}, \overline{F}, \overline{C})$ respectively.

For a Finsler connection $F\Gamma = (N, F, C)$ we can define the notion of semi-symmetric Finsler connection, analogously with the definition of semi-symmetric linear-connection. We consider the h- and v-Finsler torsion tensors:

$$(1.2) T_{jk}^i = F_{jk}^i - F_{kj}^i; S_{jk}^i = C_{jk}^i - C_{kj}^i$$

and the associated tensors:

$$(1.3) I_{1jk}^{i} = T_{1jk}^{i} - \frac{1}{(n-1)} (\delta_{j}^{i} T_{k} - \delta_{k}^{i} T_{j}); I_{2jk}^{i} = S_{jk}^{i} - \frac{1}{(n-1)} (\delta_{j}^{i} S_{k} - \delta_{k}^{i} S_{j})$$

where: $T_k = T_{ik}^i$ and $S_k = S_{ik}^i$ are the h- and v-torsion Finsler covectors respectively. A study of these tensors relative to its projective transformations are given in [6].

A Finsler connection $F\Gamma = (N, F, C)$ is called a semi-symmetric Finsler connection, if $I_{jk}^i = 0$ and $I_{jk}^i = 0$.

This condition is equivalent with the existence of an 1-form on T(M):

(1.4)
$$\tau = \tau_i \, dx^j + \omega_k \delta y^k$$

such that:

(1.5)
$$T_{k} = (1-n)\tau_{k}; \quad S_{k} = (1-n)\omega_{k}$$

For a fixed semi-symmetric Finsler connection $F\Gamma = (N, F, C)$ the h-torsion tensor and the v-torsion tensor have the form:

$$(1.6) T_{jk}^i = \tau_j \delta_k^i - \tau_k \delta_j^i; S_{jk}^i = \omega_j \delta_k^i - \omega_k \delta_j^i$$

In general, for a Finsler connection $F\Gamma = (N, F, C)$ we have the following three curvature tensors:

(1.7)
$$S_{jkh}^{i} = \frac{\partial C_{jk}^{i}}{\partial y^{h}} - \frac{\partial C_{jh}^{i}}{\partial y^{k}} + C_{jk}^{r} C_{rh}^{i} - C_{jh}^{r} C_{rk}^{i}$$

$$R_{jkh}^{i} = \frac{\delta F_{jk}^{i}}{\delta x^{h}} - \frac{\delta F_{jh}^{i}}{\delta x^{k}} + F_{jk}^{r} F_{rh}^{i} - F_{jh}^{r} F_{rk}^{i} + C_{jr}^{i} R_{kh}^{r}$$

$$P_{jkh}^{i} = \frac{\partial F_{jk}^{i}}{\partial y^{h}} - C_{jh|k}^{i} + C_{jr}^{i} P_{kh}^{r}$$

where:

(1.8)
$$R_{jk}^{i} = \frac{\delta N_{j}^{i}}{\delta x^{k}} - \frac{\delta N_{k}^{i}}{\delta x^{j}}; \quad P_{jk}^{i} = \frac{\partial N_{j}^{i}}{\partial y^{k}} - F_{kj}^{i}$$

We define also the Finsler tensor:

$$K_{jkh}^{i} \stackrel{\text{def}}{=} R_{jkh}^{i} - C_{jr}^{i} R_{kh}^{r}$$

where R_{kh}^r is the curvature tensor of the non-linear connection N_j^i , given by the first relation of (1.8).

If the non-linear connection N is integrable, then: $K_{ikh}^i = R_{ikh}^i$. We denote by:

$$(1.10) s_{kh} = S_{ikh}^i; r_{kh} = R_{ikh}^i; B_{kh} = K_{ikh}^i$$

the tensors of Bianchi type and by:

$$(1.11) S_{jk} = S_{jki}^i; R_{jk} = R_{jki}^i; K_{jk} = K_{jki}^i$$

the tensors of Ricci type, and use also the notations:

$$(1.12) (h \operatorname{div} T)_{ij} \stackrel{\text{def}}{=} T^k_{ij|k}; (v \operatorname{div} S)_{ij} \stackrel{\text{def}}{=} S^k_{ij|k}$$

If $F\Gamma = (N, F, C)$ is a semi-symmetric Finsler connection, then between the Finsler tensors of Ricci type and of Bianchi type we have the relations [1]:

$$(1.13) K_{ik} - K_{ki} = B_{ki} + (n-2)(h \operatorname{div} T)_{ki}$$

(1.14)
$$S_{jk} - S_{kj} = s_{kj} + (n-2)(v \operatorname{div} S)_{kj}$$

In the present paper we study invariants of those Finsler connection transformations, which transform semi-symmetric Finsler connections in semi-symmetric Finsler connections again. First we study invariants obtained by the use of S and R curvature tensors, and afterwords invariants obtained using the third curvature tensor P. Finally the properties of the Finsler 1-form $\omega \in \Lambda$ (T(M)) associate to the Finsler connection transformation are given.

\S 2. Invariants of S and R type

In this section the invariants obtained by the use of the curvature tensors S and R (or K) are established.

The most general Finsler connection transformation $t \in \mathcal{F}_N$, which has the invariants I and I, has been studied in [8] obtaining the following result:

Lemma 2.1. The set \mathcal{T}_{NI} of all Finsler connections, which preserves the linear connection N and has the invariants I_1 and I_2 , is given by:

$$(2.1) \quad \overline{N}_{i}^{i} = N_{i}^{i}; \quad \overline{F}_{ik}^{i} = F_{ik}^{i} + \delta_{i}^{i}\beta_{k} - \delta_{k}^{i}\beta_{j} - U_{ik}^{i}; \quad \overline{C}_{ik}^{i} = C_{ik}^{i} + \delta_{i}^{i}\alpha_{k} - \delta_{k}^{i}\alpha_{j} - V_{ik}^{i}$$

where $F\Gamma = (N, F, C)$ is a fixed Finsler connection; α_k and β_k are arbitrary Finsler covectors, and $U, V \in Z_2^1(M)$ are arbitrary Finsler tensor fields of type (1, 2), with the properties $U_{ik}^i = U_{kj}^i$; $V_{ik}^i = V_{kj}^i$.

The most general case of the Finsler connection transformations $t \in \mathcal{T} = \{t | t : (N, F, C) \rightarrow (\overline{N}, \overline{F}, \overline{C})\}$ with the invariant tensors I and I has been studied in [7].

If we have I=0 and I=0, then from (2.1) it follows I=0, I=0, and reciprocally. Thus \mathcal{T}_{NI} contains also the set of the general semi-symmetric connection transformations.

Afterwards we consider the special case of the Finsler connection transformations (2.1) with U=0 and V=0. In this case we obtain:

$$(2.2) \overline{N}_j^i = N_j^i; \overline{F}_{jk}^i = F_{jk}^i + \delta_j^i \beta_k - \delta_k^i \beta_j; \overline{C}_{jk}^i = C_{jk}^i + \delta_j^i \alpha_k - \delta_k^i \alpha_j$$

where $F\Gamma = (N, F, C)$ is a semi-symmetric Finsler connection. Then also $F\bar{\Gamma} = (\bar{N}, \bar{F}, \bar{C})$ is a semi-symmetric Finsler connection.

Between the curvature tensor K_{jkh}^i , S_{jkh}^i and \overline{K}_{jkh}^i , \overline{S}_{jkh}^i respectively we obtain the relations:

$$\overline{K}_{jkh}^{i} = K_{jkh}^{i} + \delta_{j}^{i} (\varphi_{kh} - \varphi_{hk}) - \delta_{k}^{i} \varphi_{jh} + \delta_{h}^{i} \varphi_{jk}$$

$$\bar{S}^i_{jkh} = S^i_{jkh} + \delta^i_j (\Phi_{kh} - \Phi_{hk}) - \delta^i_k \Phi_{jh} + \delta^i_h \Phi_{jk}$$

where we have:

(2.5)
$$\Phi_{kh} = \alpha_k|_h + \alpha_k \alpha_h - \alpha_k \omega_h; \quad \varphi_{kh} = \beta_{k|h} + \beta_k \beta_h - \beta_k \tau_h$$

From (2.3) and (2.4) follows the relations:

(2.6)
$$\overline{K}_{jk} = K_{jk} + (n-2) \varphi_{jk} + \varphi_{kj}; \quad B_{kh} = \overline{B}_{kh} + (n-1)(\varphi_{kh} - \varphi_{hk})$$

(2.7)
$$\bar{S}_{jk} = S_{jk} + (n-2)\Phi_{jk} + \Phi_{kj}; \quad s_{kh} = \bar{s}_{kh} + (n-1)(\Phi_{kh} - \Phi_{hk})$$

From (2.6) and (2.7) we have:

(2.8)
$$\overline{K}_{jk} - \overline{K}_{kj} = K_{jk} - K_{kj} + (n-3)(\varphi_{jk} - \varphi_{kj}); \quad \overline{B}_{kh} + \overline{B}_{hk} = B_{kh} + B_{hk}$$

$$(2.9) \bar{S}_{jk} - \bar{S}_{kj} = S_{jk} - S_{kj} + (n-3)(\Phi_{jk} - \Phi_{kj}); \bar{s}_{kh} - \bar{s}_{hk} = s_{kh} - s_{hk}$$

Thus it follows the:

Proposition 2.1. If $F\Gamma = (N, F, C)$ is a semi-symmetric Finsler connection, then the transformation (2.2) has the invariants:

$$(2.10) \quad \overline{K}_{jk} - \overline{K}_{kj} - \frac{n-3}{n-1} \overline{B}_{jk} = K_{jk} - K_{kj} - \frac{n-3}{n-1} B_{jk}; \quad \overline{B}_{kh} + \overline{B}_{hk} = B_{kh} + B_{hk}$$

$$(2.11) \bar{S}_{jk} - \bar{S}_{kj} - \frac{n-3}{n-1} \bar{s}_{jk} = S_{jk} - S_{kj} - \frac{n-3}{n-1} s_{jk}; \quad \bar{s}_{kh} + \bar{s}_{hk} = s_{kh} + s_{hk}$$

From (2.6) and (2.7) we have:

(2.12)
$$\varphi_{jk} = \frac{1}{n-1} (\overline{K}_{jk} - K_{jk}) + \frac{1}{(n-1)^2} (\overline{B}_{jk} - B_{jk})$$

(2.13)
$$\Phi_{jk} = \frac{1}{n-1} (\bar{S}_{jk} - S_{jk}) + \frac{1}{(n-1)^2} (\bar{s}_{jk} - s_{jk})$$

From (2.1), (2.2), (2.4), (2.5), (2.8) and (2.9) follow the relations:

$$(2.14) \qquad \overline{A}_{jkh}^{i} \stackrel{\text{def}}{=} \overline{K}_{jkh}^{i} + \frac{1}{n-1} \delta_{j}^{i} \overline{B}_{hk} + \delta_{k}^{i} \left(\frac{\overline{K}_{jh}}{n-1} + \frac{\overline{B}_{jh}}{(n-1)^{2}} \right) - \delta_{h}^{i} \left(\frac{\overline{K}_{jk}}{n-1} + \frac{\overline{B}_{jk}}{(n-1)^{2}} \right) =$$

$$= K_{jkh}^{i} + \frac{1}{n-1} \delta_{j}^{i} B_{hk} + \delta_{k}^{i} \left(\frac{K_{jh}}{n-1} + \frac{B_{jh}}{(n-1)^{2}} \right) - \delta_{h}^{i} \left(\frac{K_{jk}}{n-1} + \frac{B_{jk}}{(n-1)^{2}} \right) \stackrel{\text{def}}{=} A_{jkh}^{i}$$

$$(2.15) \qquad \overline{A}_{jkh}^{i} \stackrel{\text{def}}{=} \overline{S}_{jkh}^{i} + \frac{1}{n-1} \delta_{j}^{i} \overline{s}_{hk} + \delta_{k}^{i} \left(\frac{\overline{S}_{jh}}{n-1} - \frac{\overline{s}_{jh}}{(n-1)^{2}} \right) - \delta_{h}^{i} \left(\frac{\overline{S}_{jk}}{n-1} + \frac{\overline{s}_{jk}}{(n-1)^{2}} \right) =$$

$$= S_{jkh}^{i} + \frac{1}{n-1} \delta_{j}^{i} s_{hk} + \delta_{k}^{i} \left(\frac{S_{jh}}{n-1} + \frac{s_{jh}}{(n-1)^{2}} \right) - \delta_{h}^{i} \left(\frac{S_{jk}}{n-1} + \frac{s_{jk}}{(n-1)^{2}} \right) \stackrel{\text{def}}{=} A_{jkh}^{i}$$

Thus we have the following:

Theorem 2.1. If $F\Gamma = (N, F, C)$ is a semi-symmetric Finsler connection, then the transformation (2.2) has the invariants A and A given by (2.14) and (2.15) respectively.

From (2.5) it follows:

(2.16)
$$\Phi_{kh} - \Phi_{hk} = \frac{\partial \alpha_k}{\partial y^h} - \frac{\partial \alpha_h}{\partial y^k}; \quad \varphi_{kh} - \varphi_{hk} = \frac{\delta \beta_k}{\delta x^h} - \frac{\delta \beta_h}{\delta x^k}$$

Thus we have the:

Lemma 2.1. If $F\Gamma = (N, F, C)$ is a semi-symmetric Finsler connection, then:

(2.17)
$$\Phi_{kh} - \Phi_{hk} = 0 \quad \text{iff} \quad \frac{\partial \alpha_k}{\partial v^h} = \frac{\partial \alpha_h}{\partial v^k}; \quad \varphi_{kh} - \varphi_{hk} = 0 \quad \text{iff} \quad \frac{\delta \beta_k}{\delta x^h} - \frac{\delta \beta_h}{\delta x^k} = 0,$$

From this Lemma and the relations (2.6), (2.7), (2.8), (2.9) it follows the:

Proposition 2.2. If $F\Gamma = (N, F, C)$ is a semi-symmetric Finsler connection, then (a) the Finsler—Bianchi tensors B_{kh} and s_{kh} are invariants of the transformation (2.2) if and only if:

(2.18)
$$\frac{\partial \alpha_h}{\partial y^k} = \frac{\partial \alpha_k}{\partial y^h}; \quad \frac{\partial \beta_h}{\partial x^k} = \frac{\delta \beta_k}{\delta x^h}$$

(b) the Finsler tensors $K_{jk} - K_{kj}$ and $S_{jk} - S_{kj}$ are invariants of the transformation (2.2) if and only if the relations (2.18) hold.

From (2.12) and (2.18) it follows:

(2.19)
$$\varphi_{jk} = \frac{1}{n-1} (\overline{K}_{jk} - K_{jk}); \quad \Phi_{jk} = \frac{1}{n-1} (\overline{S}_{jk} - S_{jk})$$

From (2.3), (2.4) and (2.19) we have the relations:

(2.20)
$$\bar{B}^{i}_{jkh} \stackrel{\text{def}}{=} \bar{K}^{i}_{jkh} - \frac{1}{n-1} \left(\delta^{i}_{h} \bar{K}_{jk} - \delta^{i}_{k} \bar{K}_{jh} \right) = \\
= K^{i}_{jkh} - \frac{1}{n-1} \left(\delta^{i}_{h} K_{jk} - \delta^{i}_{k} K_{jh} \right) \stackrel{\text{def}}{=} B^{i}_{jkh} \\
\bar{B}^{i}_{jkh} \stackrel{\text{def}}{=} \bar{S}^{i}_{jkh} - \frac{1}{n-1} \left(\delta^{i}_{h} \bar{S}_{jk} - \delta^{i}_{k} \bar{S}_{jh} \right) = \\
= S^{i}_{jkh} - \frac{1}{n-1} \left(\delta^{i}_{h} S_{jk} - \delta^{i}_{k} S_{jh} \right) \stackrel{\text{def}}{=} B^{i}_{jkh}$$

Reciprocally: From (2.20) and (2.21), using (2.3)—(2.4) and (2.6)—(2.7) we have:

$$(2.22) \varphi_{kh} - \varphi_{hk} = 0; \Phi_{kh} - \Phi_{hk} = 0$$

Theorem 2.2. If $F\Gamma = (N, F, C)$ is a semi-symmetric Finsler connection, then the necessary and sufficient condition that the transformation (2.2) has the invariants of Weyl-type (2.20)—(2.21) is given by (2.18).

We associate to the connection $F\Gamma = (N, F, C)$ the Finsler tensors of projective Weyl-type:

$$(2.23) W_{1}^{i} = K_{jkh}^{i} + \frac{1}{n+1} \delta_{j}^{i} B_{hk} + \delta_{k}^{i} \left(\frac{K_{jh}}{n-1} + \frac{B_{jh}}{n^{2}-1} \right) - \delta_{h}^{i} \left(\frac{K_{jk}}{n-1} + \frac{B_{j}}{n^{2}-1} \right)$$

$$(2.24) W_{jkh}^{i} = S_{jkh}^{i} + \frac{1}{n+1} \delta_{j}^{i} s_{hk} + \delta_{k}^{i} \left(\frac{S_{jh}}{n-1} + \frac{s_{jh}}{n^{2}-1} \right) - \delta_{h}^{i} \left(\frac{S_{jk}}{n-1} + \frac{s_{jk}}{n^{2}-1} \right)$$

analogously with the projective tensors of Weyl from the linear connection theory.

The projective transformations of the semi-symmetric connections, characterized by the invariants $\frac{W}{1}$ and $\frac{W}{2}$ are studied in [4] and [5]. In the case of the transformations (2.2) we have:

(2.25)

$$\overline{W}_{jkh}^{i} = W_{jkh}^{i} + \frac{2}{n+1} \delta_{j}^{i} (\varphi_{hk} - \varphi_{kh}) + \frac{2}{n^{2}-1} \delta_{k}^{i} (\varphi_{jh} - \varphi_{hj}) - \frac{2}{n^{2}-1} \delta_{h}^{i} (\varphi_{jk} - \varphi_{kj})$$

(2.26)

$$\overline{W}_{2jkh}^{i} = W_{2jkh}^{i} + \frac{2}{n+1} \delta_{j}^{i} (\Phi_{hk} - \Phi_{kh}) + \frac{2}{n^{2}-1} \delta_{k}^{i} (\Phi_{jh} - \Phi_{hj}) - \frac{2}{n^{2}-1} \delta_{h}^{i} (\Phi_{jk} - \Phi_{kj})$$

From Lemma 2.1 and the relations (2.23)—(2.24) it follows the:

Theorem 2.3. If $F\Gamma = (N, F, C)$ is a semi-symmetric Finsler connection, then the necessary and sufficient condition that the transformation (2.2) has the invariants W and W is given by the relations (2.18).

Corollary 2.1. If $\overline{B} = B$, $\overline{B} = B$ then and only then we have:

$$\overline{W} = W$$
 and $\overline{W} = W$.

From (1.13)-(1.14) and (2.23)-(2.24) we have:

(2.27)
$$W_{1kh}^{i} = \frac{n-2}{n-1} (h \operatorname{div} T)_{kh}; \quad W_{2kh}^{i} = \frac{n-2}{n-1} (v \operatorname{div} S)_{kh}$$

Thus it follows the:

Proposition 2.3. The necessary and sufficient condition that for a semi-symmetric Finsler connection $F\Gamma = (N, F, C)$ the Finsler tensors W_{1kh}^i, W_{2kh}^i wanish, is that the torsional divergence of $F\Gamma = (N, F, C)$ wanishes.

From (2.25)—(2.26) it follows:

$$(2.28) \overline{W}_{ikh}^{i} = W_{ikh}^{i} + 2(n-2)(\varphi_{kh} - \varphi_{hk}); \overline{W}_{ikh}^{i} = W_{ikh}^{i} + 2(n-2)(\varphi_{kh} - \varphi_{hk})$$

From the Proposition 2.3 and the relation (2.22), (2.28) it follows the:

Proposition 2.4. The necessary and sufficient condition that a semi-symmetric Finsler connection $F\Gamma = (N, F, C)$ with null torsional divergence be transformed by the transformation (2.2) in a semi-symmetric Finsler connection $F\bar{\Gamma} = (N, \bar{F}, \bar{C})$ with the same property, is that the transformation has the property (2.18).

Next it follows the:

Proposition 2.5. If $F\Gamma = (N, F, C)$ and $F\overline{\Gamma} = (\overline{N}, \overline{F}, \overline{C})$ are semi-symmetric Finsler connections with a null torsional divergence, then we have:

(2.29)
$$K_{jk}-K_{kj}=B_{kj}; S_{jk}-S_{kj}=s_{kj}; \overline{K}_{jk}-\overline{K}_{jk}=\overline{B}_{kj}; \overline{S}_{jk}-\overline{S}_{kj}=\overline{s}_{kj}$$
 and it follows that B, B, A, A, W, W are invariants for the transformation (2.2).

Definition 2.1. The semi-symmetric Finsler connection $F\Gamma = (N, F, C)$ is equiaffine, if $B_{ki} = 0$, $s_{ki} = 0$.

Proposition 2.6. If $F\Gamma = (N, F, C)$ is an equiaffine, semi-symmetric Finsler connection, with null torsional divergence, then the Finsler connection $F\bar{\Gamma} = (\overline{N}, \overline{F}, \overline{C})$ obtained by the transformation (2.2) has the same properties. In this case the invariants A, B, W coincide and the invariants A, B, W coincide also.

Proposition 2.7. If $F\Gamma = (N, F, C)$ is a semi-symmetric Finsler connection, $\overline{K}_{jkh}^i = 0$, $\overline{S}_{jkh}^i = 0$ and α_n , β_n satisfies the condition (2.18), then $F\Gamma$ is equiaffine Finsler connection with null torsional divergence.

In this case we have:

(2.30)
$$S_{jkh}^{i} = \frac{1}{n-1} (\delta_{h}^{i} S_{jk} - \delta_{k}^{i} S_{jh}); \quad K_{jkh}^{i} = \frac{1}{n-1} (\delta_{h}^{i} K_{jk} - \delta_{k}^{i} K_{jh})$$

$$(2.31) S_{jk} = S_{kj}; K_{jk} = K_{kj}$$

From (2.30) it follows:

$$(2.32) S_{jkh}^{i}|_{r} = \frac{1}{n-1} \left(\delta_{h}^{i} S_{jk}|_{r} - \delta_{k}^{i} S_{jh}|_{r} \right); S_{jkh}^{i}|_{i} = \frac{1}{n-1} \left(S_{jk}|_{h} - S_{jh}|_{k} \right)$$

$$(2.33) K_{jkh|r}^{i} = \frac{1}{n-1} \left(\delta_{h}^{i} K_{jk|r} - \delta_{i}^{k} K_{jh|r} \right); K_{jkh|i}^{i} = \frac{1}{n-1} \left(K_{jk|h} - K_{jh|k} \right)$$

and we obtain the Bianchi identities:

$$(2.34) S_{jkh}^{i} + S_{khj}^{i} + S_{hjk}^{i} = 0; K_{jkh}^{i} + K_{khj}^{i} + K_{hjk}^{i} = 0$$

Thus it follows the:

Proposition 2.8. For a semi-symmetric Finsler connection $F\Gamma = (N, F, C)$ the Bianchi identities (2.34) holds if and only if $F\Gamma$ is with null torsional divergence.

The second group of Bianchi identities for a semi-symmetric Finsler connection $F\Gamma = (N, F, C)$ is given in [5]:

$$(2.35) \qquad \sum_{(jkh)} K^r_{ijk|h} = 2 \sum_{(jkh)} K^r_{ijk} \tau_h - \frac{\partial F^r_{ij}}{\partial y^s} R^s_{kh}; \quad \sum_{(jkh)} S^r_{ijk}|_h = 2 \sum_{(jkh)} S^r_{ijk} \omega_h$$

From (2.32) and (2.35) it follows:

$$(2.36) S_{ij}|_k - S_{ik}|_j = 2S_{ir}S_{kj}^r$$

If N is integrable we obtain analogously:

$$(2.37) K_{ij|k} - K_{ik|j} = 2K_{ir}T_{kj}^{r}$$

Proposition 2.9. If $F\Gamma = (N, F, C)$ is an equiaffin semi-symmetric Finsler connection with null torsional divergence, then the relations (2.30)—(2.36) hold, and if moreover N is integrable, then the relations (2.30)—(2.35) and (2.37) hold however.

Consequently if the conditions of Propositions 2.7 and 2.9 are satisfied, then we have the following Propositions:

Proposition 2.10. If $F\Gamma = (N, F, C)$ is a symmetric Finsler connection and $F\Gamma = (\overline{N}, \overline{F}, \overline{C})$ is a projectively flate Finsler connection $(\underset{1}{W} = 0, \underset{2}{W} = 0)$, then $F\Gamma$ is an equiaffine and projectively flate Finsler connection.

Definition 2.1. A Finsler connection $F\Gamma = (N, F, C)$ is called a Finsler F-connection, if:

(2.38)
$$\frac{\partial F_{jk}^i}{\partial v^r} R_{hi}^r + \frac{\partial F_{jh}^i}{\partial v^r} R_{ik}^r + \frac{\partial F_{ji}^i}{\partial v^s} R_{kh}^s = 0$$

Proposition 2.11. If $F\Gamma = (N, F, C)$ is a symmetric Finsler connection and we have $\overline{K}_{jkh}^i = 0$, $\overline{S}_{jkh}^i = 0$, then $F\Gamma$ is equiaffine, projectively flate and the tensor $S_{ijk} \stackrel{\text{def}}{=} S_{ij|_k} - S_{ik|_j}$ is symmetric. The tensor $K_{ijk} \stackrel{\text{def}}{=} K_{j|k} - K_{k|j}$ is symmetric if and only if $F\Gamma$ is a Finsler F-connection.

If $\overline{W}_{jkh|r}^i = 0$; $\overline{W}_{jkh|r}^i = 0$, it follows $\overline{W}_{ikh|r}^i = 0$, $\overline{W}_{jkh|r}^i = 0$ and from (2.28) we have:

$$(\varphi_{kh} - \varphi_{hk})_{|r} = 0; \quad (\Phi_{kh} - \Phi_{hk})_{|r} = 0$$

From (2.25), (2.26) and (2.39) we have:

(2.40)
$$W_{jkh|r}^i = 0; \quad W_{jkh|r}^i = 0$$

Thus it follows the:

Proposition 2.12. If $F\Gamma = (N, F, C)$ is a semi-symmetric Finsler connection and $\overline{W}_{jkh|r}^i = 0$, $\overline{W}_{jkh|r}^i = 0$, then also $W_{jkh|r}^i = 0$, $W_{jkh|r}^i = 0$.

Particularly we have the:

Proposition 2.13. If $F\Gamma = (N, F, C)$ is a symmetric Finsler connection and $F\bar{\Gamma} = (\overline{N}, \overline{F}, \overline{C})$ is a projective symmetric Finsler connection $(\overline{W}^i_{jkh|r} = 0, \overline{W}^i_{jkh|r} = 0)$, then also $F\Gamma$ is projective symmetric $(W^i_{jkh|r} = 0, W^i_{jkh|r} = 0)$.

§ 3. Invariants of P type

In this section the invariants of the transformations (2.2) obtained from the third curvature tensor P, or from the tensor \mathcal{P} are studied.

The third curvature tensor P_{jkh}^{i} and the tensor:

(3.1)
$$\mathscr{P}_{jkh}^{i} \stackrel{\text{def}}{=} \left(P_{jkh}^{i} - C_{jr}^{i} \frac{\partial N_{k}^{r}}{\partial y^{h}} \right) - \left(P_{jkh}^{i} - C_{jr}^{i} \frac{\partial N_{h}^{r}}{\partial y^{k}} \right)$$

are given in [3].

By a Finsler connection transformation (2.2) we obtain:

$$(3.2) \overline{\mathcal{P}}_{jkh}^{i} = \mathcal{P}_{jkh}^{i} + \delta_{j}^{i} (\Theta_{kh} - \Theta_{hk}) - \delta_{k}^{i} \Theta_{jh} + \delta_{h}^{i} \Theta_{jk}$$

where:

(3.3)
$$\Theta_{kh} = \beta_{k|h} + \alpha_k|_h + \beta_k \alpha_h + \alpha_k \beta_h - \beta_k \omega_h - \alpha_k \tau_h$$

From (3.2) it follows:

$$(3.4) \overline{\mathcal{P}}_{jk} = \mathcal{P}_{jk} + (n-1)\Theta_{jk} - (\Theta_{jk} - \Theta_{kj}); \overline{\pi}_{kh} = \pi_{kh} + (n-1)(\Theta_{kh} - \Theta_{hk})$$

where:

$$\mathscr{P}_{jk}=\mathscr{P}^{i}_{jki}; \quad \pi_{kh}=\mathscr{P}^{i}_{ikh}; \quad \overline{\mathscr{P}}_{jk}=\overline{\mathscr{P}}^{i}_{jki}; \quad \overline{\pi}_{kh}=\overline{\mathscr{P}}^{i}_{ikh}$$

and it follows also:

$$(3.5) \overline{\mathscr{P}}_{jk} - \overline{\mathscr{P}}_{kj} = \mathscr{P}_{jk} - \mathscr{P}_{kj} + (n-3)(\Theta_{jk} - \Theta_{kj}); \overline{\pi}_{kh} - \pi_{kh} = -(\overline{\pi}_{hk} - \pi_{hk})$$

From (3.2)—(3.5) we obtain the invariant $\bar{A}_{jkh}^i = A_{jkh}^i$, given by:

$$(3.6) \qquad \overline{A}_{jkh}^{i} \stackrel{\text{def}}{=} \overline{\mathcal{P}}_{jkh}^{i} + \frac{1}{n-1} \, \delta_{j}^{i} \, \overline{\pi}_{hk} + \delta_{k}^{i} \left(\frac{\overline{\mathcal{P}}_{jh}}{n-1} + \frac{\overline{\pi}_{jh}}{(n-1)^{2}} \right) - \delta_{h}^{i} \left(\frac{\overline{\mathcal{P}}_{jk}}{n-1} + \frac{\overline{\pi}_{jk}}{(n-1)^{2}} \right) =$$

$$= \mathcal{P}_{jkh}^{i} + \frac{1}{n-1} \, \delta_{j}^{i} \, \pi_{hk} + \delta_{k}^{i} \left(\frac{\mathcal{P}_{jh}}{n-1} + \frac{\pi_{jh}}{(n-1)^{2}} \right) - \delta_{h}^{i} \left(\frac{\mathcal{P}_{jk}}{n-1} + \frac{\pi_{jk}}{(n-1)^{2}} \right) \stackrel{\text{def}}{=} A_{jkh}^{i}$$

It follows the:

Theorem 3.1. The Finsler connection transformation (2.2) between the semi-symmetric Finsler connections $F\Gamma = (N, F, C)$ and $F\bar{\Gamma} = (\overline{N}, \overline{F}, \overline{C})$ has the invariant A^i_{jkh} .

For $n \ge 3$ the relations are equivalents:

(a)
$$\Theta_{kh} = \Theta_{hk}$$
; (b) $\overline{\pi}_{jk} = \pi_{jk}$; (c) $\overline{\mathscr{P}}_{jk} - \overline{\mathscr{P}}_{kj} = \mathscr{P}_{jk} - \mathscr{P}_{kj}$.

It follows the:

Theorem 3.2. If $F\Gamma = (N, F, C)$ is a semi-symmetric Finsler connection, then a necessary and sufficient condition that the transformation (2.2) has the invariant:

$$(3.7) \qquad \overline{B}_{jkh}^{i} \stackrel{\text{def}}{=} \overline{\mathscr{P}}_{jkh}^{i} - \frac{1}{n-1} \left(\delta_{h}^{i} \overline{\mathscr{P}}_{jk} - \delta_{k}^{i} \overline{\mathscr{P}}_{jh} \right) = \mathscr{P}_{jkh}^{i} - \frac{1}{n-1} \left(\delta_{h}^{i} \mathscr{P}_{jk} - \delta_{k}^{i} \mathscr{P}_{jh} \right) \stackrel{\text{def}}{=} B_{jkh}^{i}$$

is given by: $\Theta_{kh} = \Theta_{kh}$.

We associate to \mathscr{P}^{i}_{jkh} a Finsler tensor W^{i}_{jkh} analogous with the Weyl projective curvature tensor where:

$$(3.8) \quad W_{jkh}^i \stackrel{\text{def}}{=} \mathscr{P}_{jkh}^i + \frac{1}{n+1} \delta_j^i \pi_{hk} + \delta_k^i \left(\frac{\mathscr{P}_{jh}}{n-1} + \frac{\pi_{jh}}{n^2-1} \right) - \delta_h^i \left(\frac{\mathscr{P}_{jk}}{n-1} + \frac{\pi_{jk}}{n^2-1} \right)$$

We obtain:

$$(3.9) \qquad \overline{W}_{jkh}^{i} = W_{jkh}^{i} + \frac{2}{n+1} \delta_{j}^{i} (\Theta_{kh} - \Theta_{hk}) - \frac{2}{n^{2}-1} \left[\delta_{k}^{i} (\Theta_{jh} - \Theta_{hj}) - \delta_{h}^{i} (\Theta_{jk} - \Theta_{kj}) \right]$$

and:

(3.10)
$$\overline{W}_{ikh}^{i} = W_{ikh}^{i} + 2 \frac{n-2}{n-1} (\Theta_{kh} - \Theta_{hk}); \quad \overline{W}_{jki}^{i} = W_{jki}^{i} - 0.$$

It follows the:

Theorem 3.3. The necessary and sufficient condition that the Finsler connection transformation (2.2) between the semi-symmetric Finsler connections $F\Gamma = (N, F, C)$ and $F\bar{\Gamma} = (\overline{N}, \overline{F}, \overline{C})$ has the invariant $\overline{W}_{jkh}^i = W_{jkh}^i$, is given by: $\Theta_{kh} = \Theta_{hk}$.

In this case theirvar iant $\bar{B}^i_{jkh} = B^i_{jkh}$ is an outcome of the invariant W^i_{jkh} .

§ 4. Properties of the Finsler 1-form $\omega \in \Lambda(T(M))$, associate to the Finsler connection transformation

Let $\omega \in \lambda$ (T(M)) be the Finsler 1-form

$$(4.1) \omega = \beta_k dx^k + \alpha_i \delta y^i$$

associate to the Finsler connection transformation (2.2). We denote:

$$\Theta_{k} = \beta_{k} + N_{k}^{i} \alpha_{i}$$

(4.3)
$$\alpha_{kh} = \frac{\delta \beta_k}{\delta x^h} - \frac{\delta \beta_h}{\delta x^k} + R_{kh}^i \alpha_i$$

$$\beta_{kh} = \frac{\partial \Theta_k}{\partial y^h} - \frac{\partial \Theta_h}{\partial y^k}$$

$$\gamma_{kh} = \frac{\partial \alpha_k}{\partial y^h} - \frac{\partial \alpha_h}{\partial y^k}$$

Thus it follows the:

Theorem 4.1. The necessary and sufficient condition that the Finsler 1-from ω be closed $(d\omega=0)$ is given by: $\alpha_{kh}=0$, $\beta_{kh}=0$, $\gamma_{kh}=0$.

PROOF. The exterior differential of ω is given by:

$$(4.6) d\omega = \frac{1}{2} \underset{1}{\alpha_{kh}} dx^h \wedge dx^k + \underset{2}{\alpha_{kh}} \delta y^h \wedge dx^k + \frac{1}{2} \underset{3}{\alpha_{kh}} \delta y^h \wedge \delta y^k$$

where:

$$\alpha_{kh} = \beta_{k|h} - \beta_{h|k} + T_{kh}^s \beta_s + R_{kh}^i \alpha_i$$

$$\alpha_{kh} = \beta_{k|h} - \alpha_h|_k + C_{kh}^s \beta_s + P_{kh}^s \alpha_s$$

$$\alpha_{kh} = \alpha_k|_h - \alpha_h|_k + S_{kh}^s \alpha_s$$

It follows:

$$\alpha_{kh} = \alpha_{kh}, \quad \alpha_{kh} = \beta_{kh} - N_k^s \gamma_{sh}; \quad \alpha_{kh} = \gamma_{kh}$$

Then $d\omega = 0$ if and only if $\alpha_{kh} = 0$, $\beta_{kh} = 0$, $\gamma_{kh} = 0$. We have also the:

Theorem 4.2. Let $F\Gamma = (N, F, C)$ be a semi-symmetric Finsler connection. The necessary and sufficient condition that B_{kh} and $K_{kh} - K_{hk}$ be invariants of the transformation (2.2), is given by:

(4.11)
$$d\omega = \frac{1}{2} R_{kh}^{s} dx^{h} \wedge dx^{k} + \alpha_{kh} \delta y^{h} \wedge dx^{k} + \frac{1}{2} \alpha_{kh} \delta y^{h} \wedge \delta y^{k}$$

or by:

(4.12)
$$d\omega = \underset{2}{\alpha_{kh}} \delta y^h \wedge dx^k + \frac{1}{2} \underset{3}{\alpha_{kh}} \delta y^h \wedge \delta y^k$$

in case if N is integrable.

From Theorem 2.2 and 1.2 it follows:

Theorem 4.3. The necessary and sufficient condition that a Finsler connection transformation (2.2), where $F\Gamma = (N, F, C)$ is a semi-symmetric Finsler connection, has the invariant B_{jk}^i is given by (4.11) or by (4.12) if N is integrable.

From (4.5), (2.1) and (2.5) it follows the:

Theorem 4.4. If $F\Gamma = (N, F, C)$ is a semi-symmetric Finsler connection then the necessary and sufficient condition that B_{2jk}^i be an invariant of the transformation (2.2) is given by:

(4.13)
$$d\omega = \frac{1}{2} \alpha_{kh} dx^h \wedge dx^k + \alpha_{kh} \delta y^h \wedge dx^k$$

or by

$$(4.14) d\omega = \frac{1}{2} \alpha_{kh} dx^h \wedge dx^k + \beta_{kl} \delta y^l \wedge dx^k$$

if N is integrable.

From the two above Theorems it follows the:

Theorem 4.5. If $F\Gamma = (N, F, C)$ is a semi-symmetric Finsler connection, the necessary and sufficient condition that B and B are invariants by a transformation (2.2) is given by:

(4.15)
$$d\omega = \frac{1}{2} R_{kh}^s dx^h \wedge dx^k + \beta_{kh} \delta y^h \wedge dx^k$$

or by:

$$(4.16) d\omega = \beta_{kh} \delta y^h \wedge dx^k$$

if N is integrable.

From (3.3) and (4.4) it follows the relation:

$$(4.17) \beta_{kh} - \beta_{hk} - (N_k^s \gamma_{sh} - N_h^s \gamma_{sk}) - \left(\frac{\partial N_k^i}{\partial v^h} - \frac{\partial N_h^i}{\partial v^k}\right) \alpha_i = \Theta_{kh} - \Theta_{hk}$$

Thus we have the:

Theorem 4.6. If $F\Gamma = (N, F, C)$ is a semi-symmetric Finsler connection, the necessary and sufficient condition that B, B and B are invariants by a transformation (2.2), is that $d\omega$ is of the form (4.14) and β_{kh} satisfies the relation:

$$\beta_{kh} - \beta_{hk} = \left(\frac{\partial N_k^i}{\partial v^h} - \frac{\partial N_h^i}{\partial v^k}\right) \alpha_i$$

or that $d\omega$ be of the form (4.15), and β_{kh} satisfies the realtion (4.17), if N integrable.

If ω is closed $(d\omega=0)$, then the Finsler covectors α_k and β_k have the form $\alpha_k=\varrho|_k$, $\beta_k=\varrho|_k$, where ϱ is a Finsler function, while ω is locally exact $(\omega=d\varrho)$. In this case from the above theorems it follows:

Theorem 4.7. If ω is a closed Finsler 1-form, then the necessary and sufficient condition that $\overline{B} = B$, $\overline{B} = B$, $\overline{B} = B$ is that $\alpha_k = \varrho|_k$ satisfies the conditions:

$$R_{kh}^{s}\alpha_{s}=0$$
; $\left(\frac{\partial N_{k}^{i}}{\partial y^{h}}-\frac{\partial N_{h}^{i}}{\partial y^{k}}\right)\alpha_{i}=0.$

References

F. C. KLEPP, P. STAVRE, On semi-concircular and semi-coharmonic invariants of the Finsler geometry, Colloquia Mathematica Societatis J. Bolyai, (1984), (to appear).
 M. MATSUMOTO, The theory of Finsler connections. Publ. Study Group Geom. 5. Okayama Univ. (1970).

- [3] R. MIRON, Introduction to the theory of Finsler spaces. Proc. Nat. Sem. on Finsler spaces, 1, Braşov (1980), 131-183.
- [4] P. STAVRE, Asupra unor conexiuni speciale pe varietăți diferențiabile. Lucr. Conf. Naț. de Geom. și Topol. Bușteni (1981), 369—376.
 [5] P. STAVRE, The invariants of the transformations group of semi-symmetric Finsler connections. Proc. Nat. Sem. on Finsler spaces, 3. Braşov (1984), 153—160.
- [6] P. STAVRE, F. C. KLEPP, Algebraic and differential invariants of semi-symmetric Finsler connections. Proc. Nat. Sem. on Finsler Spaces, 3. Braşov (1984), 167-176.
- [7] P. STAVRE, F. C. KLEPP, General Finsler connection transformations with invariant I_{jk}^i tensors. Rom.-Japanese Colloq. on Finsler geometry Iași-Brașov (1984), 88—95. [8] P. STAVRE, On the transformations $t \in \mathcal{T}_{NI}$ and $t \in \mathcal{T}_{NJ}$. Proc. Nat. Sem. on Finsler Spaces, 3.
- Braşov (1984), 161-165.

(Received September 6, 1985.)