Extensions of cuspidal characters of GL,_(q)

By WALTER, FEIT! (Nev Haven, Con.)

§ 1. Introduction

Let g be a power of an odd prime r. Let m=3 be an integer. If xcGL,(q) let
x” denote the transpose of x. If g=gi for an integer g, let * denote the automorphism
of order 2 of F,. Define the following groups

Hi(gd) =GL.(¢gdD(x) where *=1, x*=x*"1 for x€GL.(qd.
HX(q) = GL,(q){r) where *=1, x*=x""1! for x€GL,(¢d.

Let i=1 or 2. Let x be a cuspidal character of GL,,(gq) such that x(x%)=yx(x)
for all xéGL,,(q). Then y extends to an irreducible character j of H!,(g). It is known
(see Section 7) that if such a y exists then m is odd for i=1 and m is even for i=2.
The main object of this paper is to evaluate 7. The precise results are stated in Theo-
rems 9B and 10J.

The same question can be asked for an arbitrary character and an arbitrary auto-
morphism of GL,(g). If x is the Steinberg character the questions can be answered
in a much more general context, the details will appear elsewhere. However for other
characters it seems to be quite difficult.

The question studied here is related to [9], [10]. Our results are much more spe-
cial but also much more explicit. In case i=1 Theorem 9B verifies the suggestions
in the last paragraph of [9] for the cuspidal character y.

If g is even the question remains open, even for cuspidal characters. The argu-
ments used here don’t apply.

The methods used here depend on Brauer’s work in the theory of modular repre-
sentations of finite groups, especially the second main theorem on blocks. The rele-
vant material is summarized in Section 4. The case i=1 (Section 9) is considerably
simpler than the case i=2 (Section 10). One reason for this is that in case i=1 itis
essentially sufficient to study 2-blocks of GL,,(q) of defect 0, while in case i=2 itis
necessary to consider 2-blocks of GL,,(¢g) with a cyclic defect group. In [4] p-blocks
for p{q of GL,(g) have been investigated. However the deeper results of that paper
are not needed here as from this point of view the cuspidal characters are the simplest
characters of GL,,(q).

Theorem 5C is a strengthening of a classical result of Zsigmondy which may be
of independent interest. It is very convenient for parts of the argument.

1 This work was partly supported by NSF Grant MCS—8201333.
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The question discussed above is natural in its own right but the work in this paper
was motivated by some questions of A. Moy and R. Howe which arose in their study
of Hecke algebras [7]. Some of these can be a answered as consequences of Theorems
9B and 10J. For instance the following is proved in Corollaries 9D and 10L.

Theorem 1A. Let i=1 or 2. Let y be a cuspidal character of GL,,(q) with y(x)=
=y(x*) for all xcGL,(q). Let A be a complex representation which affords y.

(i) Let i=1. Then m is odd, q=gq3 and
{ "%' A} = g™V (gr-1)1.

(i) Let i=2. Then m=2n and
{ 2 AW} = ¢"" ("L

(iii) Let i=2. Then m=2n. Define S={x+cv'v|x=—x’, c€Fy, v is a column
vector of size 2n}= GL,,(q). Then

{340} = g =g -1}

All the work in this paper depends very essentially on [2], [6]. The relevant
results are summarized in Section 6. However the proof of Theorem 1A (iii) goes
even deeper and requires the evaluation of an appropriate Green function which is
done in [11].

I wish to thank ALAN Moy and RoGer HOWE for many interesting and illuminat-
ing discussions on the topics in this paper. I also wish to acknowledge a great debt to
PauL FonNG who answered many of my questions concerning irreducible characters of
various classical groups. My first proof of Theorem 10J was considerably more com-
plicated as I did not fully appreciate the power of the available explicit formulas such
as (6.6) and (6.7). Consequently many of the original questions I asked are not rele-
vant to the present proof. However Fong’s responses provided an education on the
subject without which is would have been much more difficult for me to prove Theo-
rem 10J.

Circulation of a preprint of this paper elicited the information that N. Kawanaka
had independently proved Theorem 9B in unpublished work by using different
methods. His result also holds for even g. I was also informed that Theorem 10B could
be proved by using the methods of [2] directly although this had apparently not been
done previously.

Added Later. 1 have just realized that the proof of Theorem 10J is not complete
in that it does not cover the group GLg(5). The problem occurs in Lemma 10H and
is due to the fact that there is no large Zsigmondy prime for (5, 6). The proof can be
completed (if the result is true) by an inspection of the character tables of Og (5)
and Spe(5) once these character tables become available. By inspection Us(5) has
the required properties.
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§ 2. Notation

In general the notation used in this paper is standard. Here we list a few items to
avoid confusion.

If x is a matrix then x” denotes its transpose.

Let a be natural number and let P be a collection of primes.

P’ denotes the set of all primes not in P.

ap is the largest divisor of a which is a product of primes in P.

If pis a prime and P={p} then a,=ap, a,=ap

aisa P-numberif ap=a. If {p}=P "then a ffnumber, P’-number is a p-number,
p’-number respectively.

Let G be a finite group and let x€G. Then x=xpxp-=xp Xp, where |(xp),
|{xp:)] is a P-number, P’-number respectively. Furthermore xp, xp. are umquely
determined by x and are called the P-part, P’-part of x respectively. If |(1)| is a
P-number then x is a P-element.

As above we will identify p with {p} and p’ with {p}’. If x is not a p’-element then
x is said to be p-singular.

If S is a nonempty subset of G then N(S)=N;(S) denotes the normalizer of
S and Z(S)=2Z;(S) denotes the centralizer of S. This latter is the notation used in
the theory of algebraic groups rather than in the theory of finite groups.

If SCG let S= > x in the group algebra of G over any domain.

xES
Let 4 be an absolutely irreducible representation of G over a field F of charac-
teristic 0. Let x be the character afforded by A. If C is a conjugacy class of G then
2' A(x)=A(C)=w(C)I is a scalar by Schur’s lemma. By taking traces it follows

that for xeC

_IClxx 161 [x(x)
@) =0V == = Z@ M
We will also write o(x)=w(C)=w(C). If o is extended to the center of F[G] by
linearity then it is easily seen to be a homomorphism of the center of F[G] into F.
It is called the central character of F[G] corresponding to x or to A.

§ 3. 7-conjugacy

If a, b are in the finite group H let a®=b"'ab.

Let t€H. The elements x and y are t-conjugate in H if x=a *ya for some
acH.

It is easily seen that t-conjugacy is an equivalence relation. Clearly 1-conjugacy
is the same as conjugacy.

A similar definition can be made if the inner automorphism corresponding to t
is replaced by an arbitrary automorphism. However we won’t need this more general
comcept.

Lemma 3A. Let x,y,acH and let SCH.
(1) tx=atya if and only if x=a "ya.
(ii) a commutes with tx if and only if a *xa=x.
(iii) S is a conjugacy class in H if and only if t7'S is a t-conjugacy class in H.
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ProOOF. (i) is clear. This implies (ii) and (iii). [J
Lemma 3B. Suppose that t*=1. Let x,zcH. Then

(txy=2 {aondonlyif x=*=xz"2
PrOOF. (tx)*=x*x. The result follows. [J

Lemma 3C. Suppose that 1*=1. Let A be a complex irreducible representation
of . let y be the character afforded by A and let w be the central character correspond-

k
ing to y. Let C,, ..., C, be pairwise distinct conjugacy classes of H and let S=|) C;
i=1
Then

A@Sy ={ 3 AP = w(S)I={ j‘ w(CHL.

xES
PROOF.
A(S)P = A(x$)?) = A(SH = A8 =w(S)L O

Lemma 3D. Suppose that t*=1, |H:G|=2 and H=G(t). Then G acts transiti-
vely by conjugation on any conjugacy class of H which lies in the coset Gt. Furthermore
if x,y€G then the following are equivalent.

(i) Tx is conjugate to ty in H.

(i) x=a~*ya for some acH.

(ili) x=a""ya for some acQG.

Proor. Let C be a conjugacy class of H with CS Gr. Let xtc¢C with x€G.
Thus xt€Zy(xt) and so |Zy(xt): Zg(xt)|=2. Thus G acts transitively on C.

(i) is equivalent to (ii) by Lemma 3A. By the first part of the Lemma, (ii) is equ-
ivalent to (iii). O

Let H! (q) for i=1,2 and 7 be defined as in the introduction. In the rest of this
section the results above will be applied to these two groups.

Let x,y€GL,(g). Lemma 3D implies the following
(3.1) (i) tx is conjugate to Ty in H} (¢) if and only if x=a""ya for some a€GL,(q).
(3.1) (i1) zx is conjugate to 7y in H} (¢) if and only if x=a’ya for some ac€GL,(q).

Let ¢=+1€GL,(¢). Lemma 3B implies the following

(3.2) (i) (xx)*=¢ in HL(q) if and onlyif x* = ex.
(3.2) (ii) (zx)*=¢ in HZi(g) ifand onlyif x"=e&x.
Lemma 3E (i) Define
C* = {tx|x€GL,(q), x* = x} S H(q),
C~ = {tx|x€GL,(q), x* = —x} S HL(9).

Then C* and C — are conjugacy classes of HL(q). Furthermore C* is the set of all

involutions in the coset GL,,(q)t, and C ~ is the set of all elements of order 4 in GL,,(q)<.
(i1) Define

C**+= {tx|x€GL,,(q), x=x", x has maximum Witt index}< H3,(q),

&t X|x€GL,,(q), x=x’, x does not have maximum Witt index}< H3,(q),

c- {tx|x€G Ly, (), x=—x"}S H3,(q).
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Then C**, C*, C~ are conjugacy classes of Hj,(q). Furthermore C*+*+UC™ is
the set of all involutions in the coset GL,,(q)t, and C ~ is the set of all elements of order
4 in GL,,(g)T.

Proor. Thereis one congruence class of hermitian and skew-hermitian matrices
in GL,(q) for g=q3. There are two congruence classes of symmetric matrices and
one congruence class of skew matrices in GL,,(¢). The results follow from (3.1) (i),
(3.1) (i), (3.2) (1), (3.2) (). O

Lemma 3F. Define S by

S={x+cv'vlx=—x"€GL,,(q), c€F}, v is a column vector of size 2n}.
Then SSGL,,(q) and 1S is a conjugacy class of H3,(q). An element in S is of the
form txu=utx where x€GL,,(q), tx has order 4 and u is a unipotent element in
GL,,(q) such that u—1 has a null space of dimension 2n— 1.

PrOOF. Let J= [—(l] (])] and let J, denote the 2k by 2k matrix which is the direct

sum of k copies of J. Every element in S is congruent in GL,,(q) to Jyu+cv'v for
some v. The group Sp,,(g) acts transitively on the underlying vector space. Thus if

1
=I0] there exists Y€ Spu(q) With »'v'ty=tiv,. As yJyy=1Js, it follows that
0

c 1
every element of S is congruent to x,,=[—1 0 ] Thus SSGL,(9). By
Jon-2

Lemma 3.A (i) and (3.1) (if) =S is a conjugacy class of H3,(q). Also x;~'=
01 -1
=[-—-1 ¢ ] Hence (‘rxo)2=x5x,,=[——c -1 . The result follows. [
Jon-2 e

Lemma 3G. Let i=1 or 2. Let A be a complex irreducible representation of
H}.(q), let x be the character afforded by A and let ® be the corresponding central char-
acter.

(i) Let i=1. Then

{ = A} = o(C )L

x*'=—x€GL,(a)
(ii) Let i=2 and m=2n. Then
{ 3 A®@)={oC*H+o(CHEL

x'=x€GL,(q)

(i) Let i=2 and m=2n. Let S be defined as in Lemma 3F. Then
{3 A} = 0(xS)L
xES

Proor. These formulas follow directly from Lemmas 3C, 3E and 3F. [0
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§ 4. Results from modular representation theory

We will assume familiarity with the basic concepts and results in the theory of
modular representations, See [3] for a general reference. However as a matter of
convenience we will here state some results from that theory which are pertinent to
this paper. These results will be used as a tool for getting information about ordinary
characters of finite groups. Almost all the results in this section are due to R. BRAUER.
The only exceptions are the results about blocks with a cyclic defect group whic are
due to E. C. DApE and J. G. THomPsON and generalize earlier results of Brauer on
blocks of defect 1.

The following notation will be used.

G is a finite group and p is a prime.

F is a finite extension of the p-adic numbers Q, which is a splitting field for G
and all its subgroups.

R is the ring of integers in F and =« is a prime in R. If «a€R then a denotes its
image in R=R/znR.

If x is a character of G then as usual we may consider y(x)éR for x€G by
choosing monomorphism from the algebraic numbers in F to the complex numbers.

If x is a p’-element in G then a S,-groups P of Z;(x) is a defect group of x. 1If
| P|=p** then d(x) is the defect of x.

Let {7} be the set of all irreducible characters of G and let w, be the central
character corresponding to y,.

For the next four results see [3] Chapter 1V, Section 4.

(4A) 7, and y, are in the same p-block if and only if ®,=®,.

For the next three statements let B be a p-block of G with defect group D and
defect d.

(4B) If y.,€B then y1,(x)=0 unless the p-part of x is conjugate to an element of
D. If P is a p-groups with P<G then PZ D.

(4C) If x.,£B and x is a p'-element with d(x)<d then w,(x)=0

(4D) Let y,£B. There exists a p™-element x€G with d(x)=d and w,(x)+0.
In that case D is conjugate to a defect group of x.

(4C) and (4D) could be used to define a defect group of a block. In fact this was
essentially Brauers’ original definition.

Let K be a subgroup of G. Let b be a p-block of K and let A be the central charac-
ter of R[K] corresponding to b. If C is a conjugate class of G define

29(C) = AANT).

Extend A9 to R[G] by linearity. If A9 is a central character of R[G] then it determinesa
p-block b of G. In this case we say that b€ is defined. The map from b to b€ is called
the Brauer correspondence. Much of the theory of modular representations is con-
cerned with studying this correspondence.

(4E) ([3] 1IL. 9.2). Let K AS G for groups K, A. Let b be a p-block of K. If
b* is defined and either one of b® or (b*)¥ is defined then so is the other and b%=(b")C.

(4F) ([3] 111. 94.). Let P be a p-subgroup of G and let K be a subgroup with
PZ;(P)YS K< Ng(P). If b is a block of K then bC is defined.
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(4G) ([3] I11. 9.6). Let K be a subgroup of G and let b be a p-block of K such that
b® is defined. Then a defect group of b is contained in a defect group of bC.

Suppose that G < G. A p-block B of G covers the p-block B of G if there exist
irreducible characters 7€ B, z€B such that y is a constituent of 7.

(4H) ([3] V.3.7 and V.3.9). Suppose that G </ G. Let B be a p-block of G with
defect group D. Suppose that Z;(D)S G. Let B be a p-block of G. Then B covers B
if and only if B®=B.

If y is a p-element in G let {p}} be the set of all irreducible Brauer characters of
Zg(y). Let (c};) be the Cartan matrix of Z;(y). For the next three results see [3]
Chapter IV Section 6.

(41) Let y be a p-element in G. There exist algebraic integers d’; such that if x is
a p’-element in Z;(y) then for all u

%(x) = ;’ dyi o} (x).

The algebraic integers dJ; are the higher decomposition numbers. We will also
write d*(z, @*)=dy; if 1=y, ¢’=0¢3.
(4]) Let y, )y’ be p-elements in G. Let * denote complex conjugation. Then

0 if y is not conjugate y’,

d’i dz" * = { - ’
; “(@) ey U =y

(4K) (Second Main Theorem on Blocks) Let y be a p-element in G. Suppose that
d2;#0 for some u,i. Let b be the p-block of Z;(y) which contains @%. Then y,€b°.

If B is a p-block of G and y is a p-element let /(y, B) denote the number of irre-
ducible Brauer characters of Zg;(y) which lie in blocks b with b®=B. As an imme-
diate consequence of (4B) and (4G) we get.

(4L) If y is a p-element which is not conjugate to an element of a defect group of
the p-block B then [(y, B)=0.

(4M) ([3]1V.6.5) Let B be a p-block. Let {y;} be a complete set of representations
of all conjugacy classes of G consisting of p-elements. Then 2 I(y;, B) is the number of

irreducible characters in B.

In case B has a cyclic defect group a great deal is known. See [3] Chapter VII.
We will here only state one special result.

(4N) Let B be a 2-block with a cyclic defect group of order 2°. Then B contains
exactly 24 irreducible characters y,, u=1, ...,2% and B contains a unique irreducible
Brauer chfiracter @. Furthermore if x is a 2’-element in G then y,(x)=¢(x) for
fiesl. 20

(40) ([3] 1V.4.16 (i)) Let B be a p-block of defect d with contains a unique irre-
ducible Brauer character. The corresponding Cartan invariant is p°.

We will also quote some technical results occasionally as in the proof of
Lemm 6A.
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§ 5. Zsigmondy primes

Let a, m be integers with a=1, m=2. There exists a prime / such that /|a™— 1
but 4a'—1 for 1=i=m—1 unless (a, m)=(2,6). See [1] Corollary 2. At Paul
Fong’s suggestion we will call such a prime a Zsigmondy prime for (a, m). In this
section a refinement of this result is proved.

If 7is a Zsigmondy prime then /=1 (mod m) and so /I=m+1. A prime/is a
large Zsigmondy prime for (a, m) if I is a Zsigmondy prime for (a, m) and (a"—1),>
=m+ 1.

Let @,,(x) denote the m™ cyclotomic polynomial. Let P(m) denote the product
of all the distinct primes dividing m.

Lemma 5A. Suppose that m=3 is an integer such that m=2n with n odd.
Let a be complex number with |a|=3. Then

(5.1 |®,,(a)] = 4(m+1)P(m)
unless one of the following occurs.

m=1 lal<m=5 a4 m=4lal<T7 m=3 ld<=h

k
Proor. Let m= [[ pb for primes p,<...<p,. The proof is by induction on k.
i=1
Suppose that k=1. Then m=p®. If (5.1) does not hold then

(5.2)

e | ] 1 P'—] 1 1
4(p*+1)p z}a‘;-l_ll 5 Ial

e e, S PP—ptt = _3pb_pb-|.
|a|pb—1+l 2 I | —

2 |a|?*"'—1 2

]

Assume first that b=1. Then (5.2) implies that 4p(p+ 1)2}2—3"1. Hence
la®—1
la]+1 °

3
and so |a|<4. If p=3 then (5.2) implies that 48= ||2:+11

p=<7. If p=5 then (5.2) implies that 120= Thus |a|*=120 |a|+ 121

. Thus |a|*=48|a|=49.

Hence |a|<8.
Suppose that b>1. Let 2x=pP®. Then (5.2) implies that 8x*=4(p®+1)p>

1
::-33‘. Hence 16x%*>3* and so x<35. Thus p’<12 and so p*=4 or 9. If p*=9

then (5.2) yields that 1202% |a|® and so |a|<3 contrary to assumption. If p*=4

lal*—1
then 40§W=Ia|2- 1. Thus |a|<7.

Let m=pPn for a prime p with p{n, b=>0, n>1. For a suitable p*-th root &
of 1 we get

(5.3) [P (@) = |®,(ea)l?* """,
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Suppose that n=¢°>1 for a prime ¢ and (5.1) does not hold. Then (5.2) and
(5.3) imply that

at-1 Yy
(5.4) 4(pbg*+1) pg = lal l] "

|alpb—-l+
Assume that p=2, b=2. By (5.4)
(5.5) 8¢(2Pgc+1) = (la]?* = )r—et = (3P~ —[)ee—a=-t,

If ¢°=35 this yields that 40(5-2"+1)=(3*"""—1)* which is impossible for b=2.
If ¢°=3 then 24(3-2°+1)=(3**"'—1)* and so b<3. Thus b=2 and m=12.
In this case (5.5) implies that 24-13=(|a|*—1)* and so |a|<S5.

laP—1)2_ (3*—1)* . g
Suppose that m=15. By (5.4) 960= a1 = 7 ) wihch is not the
case.

Now proceed by induction on m. It may be assumed that (5.1) holds for n and n
is not a power of 2. Thus P(n)=3. If (5.1) does not hold for m then by (5.3)

4(np®+1) pP(n) = |9,,(a)| = |P,(ea)|?"~?""" > {4(n+1)}2"~ """ P(n) - 32" ~p*~'-1,
Hence
(5.6) 12(np®+1) p > {12(n+ 1)}p* -2,
Let 2x=pb. Thus
24x(2xn+1) > {12(n+ D}~

This implies that x<2 and so pb<4. Thus p*=3. Hence (5.6) implies that
36(3n+ 1)=144(n+1)* which is not the case. [

Lemma 5B. Suppose that m=3 and a=3 are integers. Then
|®p(@) = (m+1)P(m)

unless one of the following cases occurs. m=12, a<5; m=35 or 10, a<4; m=4;
a<7; m=3 or 6, a<8.

Proor. If m#2n with n odd the result follows from Lemma SA. If m=2n
with n odd then @,,(a)=®,(—a) and P(m)=2P(n). Thus the result follows from
Lemma 5A. [0

Theorem 5C. Let a=3, m=3 be integers. Then there exists a large Zsigmondy
prime for (a, m) unless (a, m)=(3,4), (3,6) or (5,6).

Proor. Ifthere are at least two Zsigmondy primes />, for (a, m) then I=m+1.
If I?|la"—1 for some Zsigmondy prime then /*>m-+1. Thus if there is no large
Zsigmondy prime for (a, m) then /=m+1 is the unique Zsigmondy prime for (a, m)
and /*{a™—1. Thus mis even and [P(m)=®,(a). See [1] Section 1. Hence the ine-
quality in Lemma 5B does not hold and so m=12, a<5; m=10, a<4; m=4,
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a<T7; or m=6, a<8. In each of the following cases we list a large Zsigmondy
prime.
m=12 a4 4

I 73, 241.
m=10, a=3, 1=61
m==6 a4 6 7

I 13 31 43
m=4 a3 6

i 13 3%

This leaves the cases listed in the Theorem. [

§ 6. Cuspidal characters

Throughout this section ¢ is a power of an odd prime r and G is a classical group
over F,.

T'is a Coxeter torus of G in the sense of [11). Thus T and Ng(T)/T are cyclic
groups. Let N=Ng(T)=(T, w).

We will only be concerned with the four cases listed in table I.

TABLE I
G IT|
(A) GL,(q), m =2 qm—1
(B) Un(90), 9= q5,m isodd, m=2 q5+1
© Spa(q), m =2n>2 q"+1
(D) 0:(q),m=2n=>2 g+1.

In each of the cases (A)—(D) of table 1, T is determined up to conjugacy by |T'|
and the following hold.

(6.1 IN:T| =
(6.2) x¥=x% forall xe¢T.

If K is the group of F,-rational points of an lagebraic group, let K° denote the
group of F,-rational pomtq of the connected component of the identity.
Observethat G=G"° in cases (A)—(C) of table I but in case (D) G°—S02,,(q)
We will freely use basic facts about algebraic groups. For instance if H is a
torus of G then Z;(H) and Ng(H) are Fé-rational points of an algebraic group.
Let / be a Zsigmondy prime for (g, m) is cases (A), (C), (D). Let / be a Zsigmondy
prime for (g,, 2m) in case (B). Thus /|| 7| in cases (A)—(D) in table I. Every /-singular
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element in T is regular, i.e., if x is /-singular then Z;(x)=7. Thus Sylow’s theorem
implies

(6.3) T =2Z(T) = Zo(T) = Ze(T) = Z°(T).

(6.4) If TS KS G with Kalgebraicand x€ K, then there exists x°¢ K° with T*=T*",
Hence also

(6.5) |Ng(T):Ng=(T)| = |K:K®|.

A character 0 of T is regular if 0 is irreducible and 6" is an irreducible character
of N. There is a bijection 0-+y%, between the set of all regular characters of 7T and
the set of all cuspidal characters (corresponding to T') of G. See [2] for the following
formulas.

Let y=ye for the regular character 0 of T.

Let su=usc¢G with s semi-simple and u unipotent.

(6.6) If s¢T7 for any g€G then x(su)=0.
Suppose that s€7. Let Q% be the Green function. Then

= ——-—1—-—- ' g Z°(s) = (OZ°(s) 1 N
el 1= gy 5 O OGN = R o 10
It is known that
(6.8) 059 (1) = |Z°(s):T|,..
Thus by (6.7) and (6.8)
_ _lZ°@)l,
(6.9) z1(s) = m 9”(3)-

Hence by (6.9)
[ T IG°|, IN:NNG®||N:T| |G|, IN:NNG°|
6.10 1) = —07—— 0%(1) = = :

In cases (A)—(D) of table I |G:G°|=2. As r is odd (6.5) implies that
|Gl,» = |G°/|G:G°| = |G°|, |N:NNG®|.
Therefore (6.10) becomes

Gl
(6.11) x() =12k
Also (6.9) implies that
(6.12) If s is regular in T then x(s) = 0%(s).

Now (6.5), (6.9) and (6.11) yield that if @ is the central character corresponding to y
then

(6.13) w(s) = IGI  z(s) _ 1Gl,  1Z°(9)l,

1Z(s)| z(1) ~ 1Z(s)| INNZ®(s):T|

__lgl, 1 1 Gl, I
= ZO), 1Z6:Z2°G) INNZo@):T] IZG), INNZ():T]

0%(s) =

OV(s) = 0% (s).
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Lemma 6A. Let y be an irreducible character of G in case (A)—(D) of table 1
which is not cuspidal with respect to T. Assume that (g, m)+(3, 4) or (3, 6). Then there
exists a large Zsigmondy prime I for (q, m). Furthermore y is constant on the set of
l-elements in T.

Proor. By Theorem 5C such an / exists. Let L be a S;,-group of T. Then
LNL*=(1) for g¢ N. Thus the number of irreducible characters of G which are not
constant on L— {1} (the exceptional characters for some /-block) is equal to the
number of regular characters 0 of T such that 6" is not constant on L— {1}. See [3]
Chapter VII. Thus the cuspidal characters include all these. [

Let p=2 and let F, R, n etc. be defined as in section 4.

Lemma 6B. Suppose that G is a group in one of the cases (B)—(D) of table 1.
Assume that (g, m)#(3, 4), (3, 6) or (5, 6). There exists a large Zsigmondy prime [ for
(g, m). Let L be a S-group of T. If 0 is a regular character of T then there exists a
regular character 0, of T such that the following hold.

(i) 6y is not constant on L— {1}.

(ii) If s€T but s is not I-singular then 0% (s)=0)(s).

Proor. The existence of / follgws from Theorem 5C. If " is not constant
L—{1} let 6=6,. Suppose that 0" is constant on L— {1}.

Let T=LXM and let « be a character of T with M in its kernel such that «,
is faithful. Define 60,=0x. Then (ii) holds.

Let B be a character of T with M in its kernel such that B, is faithful. Thus
(B"), is multiplicity free. If (8¥), is constant on L— {1} then B=a,1+a,(0—1),
where g is afforded by the regular representation of L as |L| is odd. Since |L|>m+1,
a,=0 contrary to the fact that g, is faithful. Therefore 6, is not faithful and so (0,),

is faithful. Hence 0} is not constant on L— {1} and (i) holds. [J

Lemma 6C. Suppose that G is the group in one of the cases (A)—(D) of table 1.
Let T=XXY where X is a Sy-group of T and Y is a Sy-group of T. Let o be a regular
character of T which has Y in its kernel. Let {f;|1=i=|Y|} be the set of all irreducible
characters of T/X=Y. Let B, be the 2-block which contains y,.
(i) Y is a defect group of B,.
(i1) {xpall=i=|Y|} is the set of all irreducible characters in B,.
(i) If 0B, and scT then

1

TNAZE I © (mod ).

we(s) =

Proor. (iii) follows from (6.13).

As ypa(x)=p,(x) for every element of odd order in G by (6.6) and (6.7) it
follows that y,,€B, for all i. Hence by (4N), (ii) will follow once (i) is proved.

We next show that

(6.14) aN(s) = 0 for some regular element s in 7.

Let / be a Zsigmondy prime for (g, m) and let L be a S;-subgroup of X. Suppose
first that L is in the kernel of a.
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If 2¥(s)=0 for all s¢ X then every constituent of («")y occurs with even multi-
plicity as |X| is odd. Since « is regular this is not the case and so there exists s€T
with o¥(s5)7#0. If s is regular (6.14) is proved. If s is not regular then s is an /’-
element. Thus if z¢ L— {1} then zs is /-singular and hence regular. This implies
(6.14) since a¥(sz)=aM(s).

Assume next L is not in the kernel of «. Choose z€ L such that z is not in the
kernel of « but z' is in the kernel of «. Then o™(z) is a Gaussian sum of /*® roots of 1.
If Tr denotes the trace from Q(x¥(z)) to Q, then Tr(x¥(z)) =—1. Hence there
exists an i with 1=i=/—1 such that a¥(z')#0. As z' is regular (6.14) is proved in
all cases.

By (iii) and (6.14) w,(x)#0. Let Y={(y). By (6.12) and (6.14) x,(ys)=0.
Since Y is a S,-group of Zg;(s), (i) follows from (4B) and (4C). O

Corollary 6D. Let G be a group in one of the cases (A)—(D) of table 1. Let
a, o' be regular characters of T of odd order with a¥=a’N. Then there exists sc€T

with s of odd order such that w,(s)#w,.(s).

ProoF. Suppose the result is false. By Lemma 6C (iii) «™(s)=(a")V(s) for all
s€ X, where X is a S,, group of 7. As X has odd order and (xV)y, («’")y are multi-
plicity free it follows that (aV)y=(2'")y and so a¥=a'" as =«, 2" have odd order,
contrary to assumption. [J

§ 7. Cuspidal characters of GL,,(q)

The results in this section are known but are included for convenience. They
were first brought to my attention by A. Moy.

It will be helpful to use the next result which was proved by the author and
D. PassmaN, [8] Proposition 4.3.

Lemma 7A. Let G=GL,(q). Then it is possible to replace T by a conjugate
such that every element of T is a symmetric matrix.

Throughout the rest of this section G=GL,(q) with m=2, ¢ odd and T is
chosen so that it consists of symmetric matrices.

Lemma 7B. Let q=gq; and let * denote the automorphism of order 2 of F,.
Let x*=x"""1 for x€G=GL,(q) with m=2. Let y=y, be a cuspidal character of

G. Then y=y* if and only if m is odd and 6% **=1.

PrOOF. Let T'={(t). The characteristic values of 7 are {x¥|0=i=m— 1}, where
o is some generator of the cyclic group F;. Hence the characteristic values of
rr=1"1 are {x~%'|0=i=m—1}. Thus r* is conjugate to 7~%¢ for some i with
O=i=m—1. As tis conjugate to 1" in G for all 7, there exists x€G such that
*=x"1"%x. Hence by (6.6) and (6.7) each of the following statements is equivalent
to the next.
x=x
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x(1) = 7 (17%)
0(17) = 0(1-%) for some i with 0 =i=m—1.
(7.1) 0% '+1 = 1 for some i with 0 =i=m—1.
Suppose that m=2i+1 is odd and 8% *'=1. Then (7.1) holds and so y=x".

Suppose that y=yx*. Then (7.1) holds. Raising both sides of (7.1) to the
(qog'—1)"® power yields that 09**'=0=0¢". As 0 is regular and 0<2i+1<2m it

follows that m=2i+1 is odd. Hence (7.1) becomes 0% *'=1, O

Lemma 7C. Let m=2 and et x*=x""1 for xcG=GL,(q). Let y=y, be acus-
pida character of G. Then y=y* if and only if m=2n is even and 0"+'=1,

Proor. Let T=(t). Thus *=¢"'. By (6.6) and (6.7) each of the following
statements is equivalent to the next.

x=x-
2(0) = 2 (@™).
0(1%") = 0(t~") for some i with 0 =i=m-—1.
(7.2) 09+1 =1 for some i with 0=i=m—1.

Suppose that m=2n and 0¢"*'=1. Then (7.2) holds and so y=p"

Suppose that y=yx*. Then (7.2) holds. Thus i#0 and 0"=0=0". As 0 is
regular and 0=<2i<2m it follows that 2i=m. Hence m=2n is even and (7.2)
becomes 04" +1=1. ]

§ 8. A property of 2-groups

In this section we state a result about 2-groups without proof. See [5] Theorem
5.44.

Theorem 8A. Let D be a 2-group of order 2**' which contains a cyc ic subgroup
(y) of index 2. Then y**'=—1€Z(D). Assume that k=3. Then D={o,y) and
o can be chosen so that one of the following occurs.

(1) D is abelian.

(i1) y*=y~Y, D is a quaternion group and — 1 is the only involution in D.

(i) y*=y~Y, D is dihedral. Every element in D—(y) is an involution. D— (y)
contains exactly 2 conjugate classes: ¢ and oy are representatives of these.

(iv) y*=—y~1, D is quasi-dihedral. ¢ is an involution, oy has order 4 and every
element in D—(y) is conjugate to one of these.

(v) y°=—y, D is semi-dihedral. Every element in D—(y) is conjugate to exactly
one of oy' with 1=i=2*"1. Furthermore if k=2°a with a odd then cy' has order
= 7

Itemma SB. Le.l' _D= <O', y) H‘here <},‘> fs a z-group and 026 <y>. Then
(6y*)€Z(D) for all k.

PROOF. (a3%)%€(y). Thus D={(y, *)S Zp((ey*)}). O
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9. The group H}, (¢5)
Let g=g; where g, is a power of the odd prime r. Let m>2. Let x*=x""!
for x€G=GL,,(q), where * denotes the automorphism of order 2 of F,. Thus
H=H} (q)=G (1). Let y, be a cuspidal character of G with yj=y,. By Lemma 7B m
is odd and 6% *'=1. Then g, extends in two ways to a character of H. Let 7, denote
one of these extensions. Then the other is g7y, where ¢ is the character of order 2 of
H|G. By definition

Zy(1) = (1) XZg(7) = (1) X U,

where U=U,(q,)- If K is a subgroup of G let Ky;=KNU.

Let / be a Zsigmondy prime for (gy, 2m). Let L be a S;-group of G. By Sylow’s
theorem L can be chosen so that L*=L and hence Z;(L)'=Z;(L). Let T=Z;(L).
Then T'is a torus of G with |T|=¢™~'. Hence Ty=Zg(L)NU is a torus of U with
|Tol=q+ 1.

Let Y be a Sy-group of T and let X be a S,-group of 7. Then T=YXX. Asm
is odd IYHq— 1. Hence Y consists of scalar matrices and so YS Z(G). Let Y={(p).
Then y*=y-%. Hence Yy={(yy) with yy=p%-1! and |Yy|=g,+1. Thus the
element w in N may be chosen of odd order. Then N=YX(X,w) and x*=x1
for xe€X. Furthermore 0 is a regular character of 7 if and only if 60, is irre-
ducible.

Lemma 9A. Let 0 be a regular character of T which has odd order such that
09%'+1=1. Then 0 restricted to Ty is a regular character of Ty of odd order. Conversely

if 0 is a regular character of Ty, of odd order then 0 extends uniquely to a regular charac-
ter of odd order of T such that 0% *'=1.

Proor. Clear by the remarks above. [J

If 0 is a regular character of Ty, let {; denote the corresponding cuspidal character
of U.

The object of this section is to prove the next result.

Theorem 9B. Let y, be a cuspidal character of G with yj=ys. Let j, denote an
extension of y, to H. Then Zg(ty*)=U (1y*).

If 6c H—G and the 2-part of ¢ is not conjugate to any ty* then 7y(c)=0.

Suppose that ¢€¢ H—G and the 2-part of o is ©y*. Thus o=1y*x with x of odd
order in U. Then

To(ty*x) = 200" p(x).

The sign only depends on the choice of extension of y, to H.
Before proving this we note some consequences.

Corollary 9C. Let yq be a cuspidal character of G with yj=yx,. Let jq denote an
extension of yo to H. Then

R D) = [ TT (~a0'=1).
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If @ is the central character corresponding to j then
i‘ﬁﬂ(t(i l))l = q"'("'lifﬁ(qm_ l).

Proor. By Theorem 9B ‘x,(t(:tl))kﬁg(l) By (6.11) this has the required
value. By Theorem 9B and (6.11)

|H| 1T| |Ul- |Gl,

IECED) = 3107 16 Tl D,

m(m—1) m(m—1)

As |G|l,=q * and |U|,=q, 3 the result follows.
Corollary 9D. Let y, be a cuspidal character of G with y5=7ys. Let A be a
complex representation which affords j,. Then

{ 2  A®@P=g"V(-D

x*'=—xeGL,(9)

where q=gqj.

Proor. By Lemma 3E (i) every element of order 4 in H—G is conjugate to
t(—1). Thus 7(—1)eC~, where C ~ is defined in Lemma 3E. The result now follows
from Lemma 3G and Corollary 9C. [

Theorem 9B will be proved in a series of Lemmas.

Define

Go = {x|x€G, det x has odd order in FJ}, U, = G,NU.
Since m is odd.
9.1) G=YXG,, U=YyXU,

Lemma 9E (i) Let y be an irreducible character of G. Then yg, is of 2-defect 0
if and only if y is cuspidal.

(i) Let { be an irreducible character of U. Then {y, is of 2-defect 0 if and only if
{ is cuspidal with respect to Ty.

Proor. By (6.10) lﬁl) |T\a, clﬁl)-l?'ula for a,a’ odd. As |T: Y| and

|Ty: Yyl are odd it follows that xg, and (g, are of 2-defect 0.
Let ¢(x)=]J] (xX*—1). Let x be an irreducible character of G and let { be an
1

irreducible character of U. There exists a polynomial g(x) of degree m which is a
product of terms of the form x'— 1, depending on y, { respectively, such that

(D, = o(q)/g(q), {(1), = |le(—q)/g(—q)l

See [6], [4] p. 115.
As m is odd |(6q) —1|,=|dg— 1|, where 6=+1. Hence

G = [29] 12, = [0

2
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For 6=%1 (6g—1)|(6g)'—1 for all i. Thus |g(dg)|,>|dg—1|, unless there is
only one term in g(x), ie. g(x)=x"—1.

Thus if g, { is of 2-defect 0 for G,, U, respectively. Then x(1),.= q‘fff}l
and {(1),= (‘:&:_ql) . This implies that y, { respectively is cuspidal. See [6], [4],
p. 115. O

Corollary 9F (i) Let B be a 2-block of G with defect group contained in Y. Then B
contains a cuspidal character.

(i) Let b be a 2-block of U with defect group contained in Y. Then b contains a
cuspidal character for Ty.

PrOOF. As Y <G and Y, <G this follows from (4B) and Lemma 9E. [

Let {fi1=i=|Y|} be the set of all irreducible characters of 7/X=Y. Then
pi=p; if and only if pfe+1=1. An irreducible character 0 of T is of the form f;a
for some i, where « is an irreducible character of 7/Y = X. Since m is odd 0 is regular
if and only if o is regular.

Suppose that « is regular with «*=o. Let B, denote the 2-block of G with
1:€B,. Then Lemma 6C applies to B,. Let B, be the 2-block of H which contains an
extension of y, to H.

Let p=2 and let F, R, n etc. be defined as in Section 4.

Lemma 9G. Let a be a regular character of T with o% *'=1 and « of odd order.

(i) (Y, 1) is a defect group of B, .

(i) Let & be the character of order 2 of H|G. If y4 extends to H let j, denote one of
the extensions. Then B;y,=yxp. on T for all i and

(p,el B+ = 1)U (e, ol B+ = 1JU g al B+t = 1)

is the set of all irreducible characters in B,.
(iii) Suppose scX with s%*'=1, Let 0=Px, y=ye. If PI°**#1 then
W, u(5)=0. If P*'=1 and @, is the central character corresponding to j, then

1 1

WOZeoT @ = W Zgwer * @ med

Dy (s) =

Proor. (ii) and (iii) are direct consequences of Lemma 6C.

(i) Let (¥, tx) be a defect group of B,. Then y*=y—%z=y~'. Hence (Y, 1x)
is not a quaternion group and so the coset Y, contains an involution tx,. By Lemma
3E 1x, is conjugate to tin H. [J

If « is a regular character of odd order of 7 and «% *'=1 then by Lemma 9A

o« may be identified with a regular character of T, also denoted by «.
Let 7y*¢(Y, 7). Then (1p*)*¢Y, by Lemma 8B. Hence

(9.2) Zy(ty*) = Ulry*) and (rp)eY, S U

Thus every irreducible character of U extends to one of Z,(ty*).
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Let b, be the 2-block of U which contains {,. Let b,=5,, denote the extension
of b, to Zy(ty").

Lemma 9H. Let o be a regular character of T of odd order with a% *'=1.
Choose k. -

(i) (Yy, ©*) is a defect group of b,.

(ii) If{ is a character of U let  denote an extension of { to Zy(ty*). Let ¢ denote
the character of order 2 of Zy(ty*)/U. Let {y|1=i=|Yy|} be the set of all irreduc-
ible characters of Ty/Xy=Yy. Then y,{,=(,. on Ty for all i and

U L)

is the set of all irreducible characters in b,.
(iii) Let scXy. If O0=y,a and &g is the central character corresponding to &
then

1 1

%) = TNz T O O = Nz e T E @ =
1
= m-z—(}):—ﬂ' GN(S) (m(}d TL').

Proor. Since [NNZ(s): T|=|NNZy(s): Ty| the result follows directly from
Lemma 6C. [

Lemma 91. Let o be a regular character of T which has Y in its kernel and satis-

fies a%'*'=1. Fix k and let b be a 2-block of Zy(ty*). Then b"=B, if and only if
b5=5,.

Proor. If "= B, then the defect group of b is contained in (¥, ) by (4G).
Thus by Corollary 9F b=5, for some regular character o’ of Ty of odd order. By
Corollary 6D («')=«" andso b, =5,. It remains to show that B,=5" for some
block b of Z,(ty").

% 1S in a block of H/Y with defect group (z, Y)/Y. Thus the second main theo-
rem on blocks (4K) implies that B,=b# for some block b of Zy(1y*). O

PROOF OF THEOREM 9B. Let 7,6 B,. By (4N) b,, and hence b,, has a unique
irreducible Brauer character, call it ¢,=¢@,. Furthermore if x is an element of odd
order in U then {(x)=¢,(x) for any CGz«.

Y is in the kernel of 7,. Thus 7, lies in a block of H/Y of defect 1. As (1)*)*¢ Y,
7.(ty%) is rational. Hence the corresponding higher decomposition number is +1
by (4J). Now Lemma 91 and (4K) imply

(9.3) Ta(ty*x) = £{,(x)

for x of odd order in U.
Let 0=pa for f=p; for some i with pé%ti=1. Then

Ho(@y*x) = Fo(xx) 00" = Z,(x) 00" = 7, (13 %) 0(»")
and {43(x)={,(x). Substituting these equations in (9.3) completes the proof. [
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§ 10. The group H2(q)

Let m=2. Let x*=x""! for x€G=GL,(q) and g a power of the odd prime r.
Thus H=H}(q)=G (t). Let y, be a cuspidal character of G with xj=y,. By Lemma
7C m=2n is even and 0¢"+*=1. Then y, extends in two ways to a character of H.
Let 7, denote one of these extensions. Then the other is &jy, where ¢ is the character
of order 2 of H/G.

Let X be a S,.-group of T and let Y be a S,-group of 7. Then T=YXX. Let
Y=(y), let T=(r). It may be assumed that ¢'=¢. Thus =77 and so
y'=y~e. Let N=(T,w) where =79 Let M=¢". It may be assumed that w,
is a 2-element. Hence (y, 7, w,) is a 2-group.

Let {f|]1=i=|Y|} be the set of all irreducible characters of T/X=:Y.

Lemma 10A. Let 0=pa where B=p,; for some i and o is an irreducible character
of T|Y=X. Suppose that 0°=0. Then 0 is regular if and only if o. is regular.

ProoF. If o is regular then so is 6. Suppose that 0 is regular but « is not. Aut (Y)
is a 2-group. Thus a®"=a"=a. Hence of"~'=1=0"*+', Thus o«?*=1 and so
o=1. Therefore B is regular. Hence n is a power of 2 and n>1. Thus ¢"+1=2
(mod 4). Therefore p%*=1 and so cannot be regular. O

Let 0 be a regular character of 7 with 0+'=1, By Lemma 10A 0=p;«x for
some i, where « is a regular character of 7" of odd order. Let B, be the 2-block of G
which contains y. By Lemma 6C Y is a defect group of B,. Let B, denote the exten-
sion of B, to H.

Lemma 10B. Ler m=2*c with ¢ odd. Let q*—1=2/**c" with ¢’ odd.

() If O=i<k then Zg(y*)~GLy(q*).

(ii) If g=1(mod4) and k=i then Zgz(»*)=G.

(iii) If g=—1(mod4) and k=i=k+j then Zg(y*)=GLy-1c(q®) and
Zg(£1)=0G.

Proor. Clear. [

Lemma 10C. Let o be a regular character of T of odd order. Then (1w, y) is
a defect group of B,.

Proor. Let D be a defect group of B, with YED. Then |D:Y|=2 and so
Y «qD.

By Lemma 10B Z=2Z4z(y)=GL.(¢*). Let * denote the automorphism of
Fgm of order 2. Then t™o=¢*~1. Thus there exists a€Z such that x™o=a"x*"1a
for all x€Z. Hence a€Z(t)=1T. Furthermore it may be assumed a is a 2-element
and so acY. Hence (twya, y)=(tw,,y). Thus if tw, is replaced by Tw,a it may
be assumed that x™e=x*"1 for all x€Z.

By (6.9) 2.(»)#0. Thus (4K) implies the existence of a 2-block b of Z with
b"=B,. By (4B) and (4G), Y is a defect group of b. Hence by Corollary 9F b=b,

for some regular character o of T with (t:r’)'!’:_l+l =(')"+*=1. Hence b extends
to a block b of Z{(xw,). If ¢=1 then Z=T and (y, Tw,) is a Se-group of Z{Tw,).
Hence it is a defect group of b. If ¢=3 then (y,w,) is a defect group of b by

Lemma 9G.

2D
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By (4H) b=b%™v. Hence (4E) implies that B,=b¥=0%. Thus by (4G)
(y, Twy) is in a defect group of B, and so is equal to a defect group of B,.

Lemma 10D. Let D=_y,tw,) and let q"=6(mod 4) with é==+1. Then
(10.1) y™e=—y=o,

Thus D is quasi-dihedral if d=1 and D is semi-dihedral if 6= —1. In any case D—Y
contains involutions and elements of order 4. Let o be an element in D—Y.
(i) If @ is an involution then ¢=1x with x=Xx" not of maximum Witt index
and Zy(0)=03,(q)(0).
(ii) If o has order 4 then Zy(c)=:Sp.,(q){c).
(iii) If o has order greater than 4 then 6= —1, n is odd and Zy(o)=U,(q) (o).

Proor. By definition
PO =y = yi-a" -3

As ¢*—1=(¢"—0)(¢"+0) and ¢g"+d6=2(mod4) it follows that °~¥"=—1.
This proves (10.1). The next statement follows directly from Theorem 8A.

(i) By Lemma 3E (ii) 6=1x with x’=x and ¢€C™* or C**. By (3.1) (ii)
Zg(0)={ala’xa=x}. Thus Zy(0)=0,,(q){c), where O,,(q) is one of the orthogonal
groups. It remains to determine which one. ¥

=t~ and so (¥/)’=¢ if and only if (¢)*+*=1. Thus |Z;(0)=4¢"+]1.
Let / be a Zsigmondy prime for (g, 2rn). Then /4|03, (q)|. Hence Zy (o) 04,(¢) (o)
and so Zy(0)=0;,(q){0).

(i1) This follows directly from (3.1) (ii) and Lemma 3E (ii).

(iii) By Theorem 8.1 D is semi-dihedral and 6= —1. Thus n is odd. By (10.1)

(two )2 =(—1)y*. Thus if g=1wp)y' then ¥ +1 and

Zy(o) S Zy(y*) = GL,(¢*) (o).
o acts as an outer automorphism on GL,(¢* and 7° =¢"—* where % denotes the auto-
2n
morphism of order 2 of F:. Since ‘;2 j ll is odd, |Y”q2 +landso YEZ (GL,,(qz)).

Thus o=0,)' for an involution ¢, and some i. By Lemma 3E (i) o, may be replaced
by a conjugate such that x%=x"-! for x€GL,(g%. Hence x°=x%=x"—1 for
x€GL,(g*. The result follows from Lemma 3A (i). O

Let 0c D—Y where D=(Y,tw,). Let Z=Z;(o) and let Z=Zy(c). Then Z
and Z are described in Lemma 10D. Furthermore |Z*Z|=2 and Z=2Z{o). The
notation may be chosen so that T,=T7T/\Z is a maximal torus of Z such that Z, T,
is one of the cases (B) (C) (D) of table I.

If o is a regular character of T of odd order with «®+'=1 then « defines a regu-
lar character of odd order of 77, and this yields a bijection between the two sets of
regular characters.

Let 0=p,a for some i. Let {, be the cuspidal character of Z corresponding to 0.
Let {, be an extension of {, to an irreducible character of Z. Let b, be the 2-block of Z
which contains {, and let b, be the 2-block of Z which contains {,.

1). I am indebted to Roger Howe for the following argument which is much simpler than the
original proof.
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Let p=2 and let F, R, « etc. be defined as in Section 4.

Lemma 10E. Let o be a regular character of T of odd order with «%"+1=1.

(1) D=(Y, tw,) is a defect group of B,.

(ii) Let € be the character of order 2 of H|G. If yq extends to H let j, denote one
of the extensions. Then

(.ol B+ = 1}U {eZp,a| BT +* = YU (] 1BF+2 5 1}

is the set of all irreducible characters in B,. Thus the number of irreducible characters
in B, equals the number of irreducible characters of D. There is a unique irreducible
Brauer character ¢, in B, and 7,(x)=¢,(x) for x of odd order in H.

(iii) Suppose s is an element of odd order in T with s7"t'=1. Let 0=p;u,

=20 If BT '#1 then wm(s5)=0. If B{' " =1 and &, is the central character
corresponding to j, then

s 1 . 1
5) = TN AZ- )T 0YG) m INNZg(s):T|

Proor. This is a direct consequence of Lemma 6C, (6.13) and Lemma 10C. O

Lemma 10F. Let a be a regular character of T of odd order with 2% **=1. Let
oc€D-Y. Let Z=Zg(0) and Z=Z;(0){o). _

(i) DNZ=(YNZ, o) is a defect group of b,.

(ii) Let ¢ be the character of order 2 of Z|Z. Let {y|1=i=|YNZ|} be the set
of all irreducible characters of TNZ/XNZ=YNZ. Then {{,.}U{el,s} is the set
of all irreducible characters in b,. There is a unmique irreducible Brauer character
@b, and T, (x)=@%(x) for every element x of odd order in Z.

(iii) Let s be an element of odd order in TNZ. If 0=y;a and &, is the central
character corresponding to {, then

i~ s l — l
) = INAZe@mnz TNz O © = NAZe@NZ T NZ]

1
= INNZg(s): T

Proor. Since INNU(s)NZ: TNZ|=|NNZ(s): T| the result follows directly
from Lemma 6C and (6.13). [

Lemma 10G. Let ccD—Y. Let 0 be a regular character of T with 07"+1=].
Then there exists an element x of odd order in Zy(c) such that 7a(6x)=0 and
@,(x) #0.

Proor. By Lemma 10A 0= p;u« for some i and some regular character « of odd
order of T with «®*+'=1. By Lemma 10E D is a defect group of B,. Thus by (4D)
there exists an element x of odd order such that @,(x)#0 and D is a S,-group of
Zy(x). Hence |H|y=|Zy(x)lsx(1)s and so 7,(x)#0. Therefore

a¥(s) (mod 7).

a¥(s) =

a™(s) (mod 7).

Zo(0x) = 7o(x) # O(modm). O
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Lemma 10H. Let ocD—Y. Le: a be a regular character of T of odd order with
a+1=1. Let b be a 2-block of Z=Zy(c). Then b¥=B, if and only if b=

Proor. Suppose that (g, m)#(3,4) or (3, 6). Let I, L be defined as in Lemma
6B. Then that Lemma implies the existence of a regular character «” of 7" of odd order
with (2’)™+?=1 such that ()" is not constant on L—{1} and ()"(s)=a"(s) for
SET but s not I-singular.

Let @,, @, be the central character corresponding to 7,,{, respectively.

By (6.13) @, and @&, are not constant on L— {g Thus by Lemma 6A 5,%
contains a cuspidal character. By Corollary 6D A%

If x is not a regular element of odd order in T then

Dy (X) = By (X) = Bz, 4 (x) = Cr’z,u(x)-

By Lemmas 10E (115) and 10F (iii) @,(s)=adz(s) for s aregular element of odd or-
der in 7. Hence bH=25,.

The number of irreducible characters in B, is equal to the number of conjugate
classes in D by Lemma 10E (ii). By Lemmas 10E (ii) and 10F (ii), every block b,
or B, contains a unique irreducible Brauer character. Thus (4M) implies that
I(c. B)=1. The result is proved in this case.

Suppose that g=3 and m=4 or 6. Let s€¢T with s of order 5if m=4 and s
of order 7if m=6. In each case there is a unique «, and x,(s)=1. Inspection of the
character tables of O7(3) Sp4(3), Og(3), Sps(3), U3(3) shows that for each of these
groups Z, b, is the unique 2-block whose defect group is in ¥ which contains an irre-
ducible character not vanishing on s. By (6.13) and Lemma 10F (iii) @z, @7, .(5)#0.
Thus if B,=b" then b=5h,. By Lemma 10G and (4K) B,=5" for some b. The
result is proved also in thls case.

Lemma 10I. Let ocD—Y. Let 0 be a regular character of T with 07"*1=1.
Then 0=pa for some p=p; and some regular character o of T of odd order such that
atl=1 =40+ F.c B, and there is a unigue irreducible Brauer character 0,€b,.
Furthermore

(10.2) d°(%o» 2) = 0(0),

where 0 is a suitably chosen extension of 0 to (TNZg(0))(o), the choice depending
on the choice of the extension ¥,.

ProoF. The first two statements follow from Lemmas 10A and 10F (ii). It
remains to prove (10.2).

Let Z=2Z;(0), Z=2Zx(0)=Z(0){o), Yz=YNZ. Let S={B|pr+'=1)}.
Then |S|=|Yl. By Lemma 10G d°(%;,, 9,)#0 for p;£S and if ¢ is the character
of order 2 of Z/Z then

(10‘3) d‘(axmm 0y) = _d"(fﬂn! (Pz)-

As each higher decomposition number is an algebraic integer in a cyclotomic field
and the set for each o is closed under conjugation, the arithmetic-geometric inequality,
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(4J) and (10.3) imply that
1 1
10.4 1= JT1d°Ggas NS = —+ 3 1d°(ig, a5 PP = 5rer Coa-

By (40) c¢i;,=2|Y,|=2|S|. Hence equality holds in (10.4). Thus

(10.5) 1d° (p,> @I = 1.

Let / be a Zsigmondy prime for (g, m). Let L be a S;-group of 7 and let M be a
S;.-group of T. Define an irreducible character A of T/M=L as follows.

).L:ai:l if KL;'élL

Ay is a faithful character of L if oy=1,.
Let o’=ai. Then o’ has odd order, (¢')"*'=1 and

(10.6) (@) # ((@)")e,
(10.7) (x—a)(s) =0 if s€T, s is not l-singular.

Let T,=TNZ,X;=XNZ, T;=T;{c). Then DNZ=Y,{c) and
(10.8) o = Yz(ﬂ')XXz = (YzXXz)<0>

Thus o, «’ extend to characters of Ty, also denoted by a, «’ respectively, with Y (o)
in their kernel. Let d°=d’(%,, ¢,). Define the function n on T, by

(10.9) n(s) = 0%(s),
n(os) = d°0%(s),
Lemma 10F (ii) and (6.12) applied to G and Z imply that
(10.10) 1(s) = n(s),
i(0s) = n(os),

If B;€S let B; denote an extension of f; to a character of D. Since every /-sin-
gular element in T is regular (10.7) and (10.10) imply that

10.11) (fi‘z’ﬂl“_ﬂial) = (n, Bia— i),

where (,) denotes the inner product over 7.
Define the function f; on DNZ by

(10.12) Bi(s) = Bi(s),
Bi(as) = d°By(s),

seT.

s a regular element in 7.

seT.

Hence by (10.9)
m—1
(10.13) n=3 BPav.

Furthermore

(ﬁﬂ aijs ﬂi (“_m’)) = (ﬁ." Bi)DﬂZ(“qu “"'d)}-ﬁ;'
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By the definition of o', (a¥, @’)xnz=0. Since « is regular («¥, #)xnz=4;,,. Hence
(10.13) implies that

(10'14) (’b B;(G—d')) =~ (B: Bf)DnZ-
Let B=ZXb;f;. By (10.11) and (10.14) each b; is a rational integer. By (10.5)
B, B)pnz=1. Thus B=p, for some k. Hence B=pB, and so 0=p2. Therefore
by a suitable choice of extension §=p,2. Hence (10.13) implies that
n(0) = mpy (o) = ml(o).
Thus (10.2) follows from (10.9). O
We can now summarize the results proved in this section so far as follows.

Theorem 10J. Let y, be a cuspidal character of G with y5=y,. Let j, denote an
extension of yp to H. Let wo€G with t"o=1"". Let D=(tw,,y) where (y) is a
Sa-group of T. Let oxé H—G where o is the 2-part and x the 2’-part of ox.

If ¢ is not conjugate to an element of D—Y then %4(c)=0.

Suppose that ccD—Y. Then Zy(o) is discribed in Lemma 10C. Let {, be the
cuspidal character of Zg(o) corresponding to 0. Then

Fo(ox) = 0(0) (),

where the choice of extension 0 of 0 to (TN Zg(0))(c) depends only on the choice of
the extension 7, of yp to H.

Corollary 10K. Let the notation be as in Theorem 10J. Let &, be the central cha-
racter corresponding (0 ¥,.
(i) If o is an involution then

1@ =% T (4%~ D).
@y(0) =+q"(¢"—1).
(i) If o has order 4 then
70) = +(g"~1) TT (4%~

@y(0) =+ q""(g"—1).
(iii) If o has order 2*=4 then n is odd and

W@ =2 IT (—4)-1)
B0(o) = eq®™* -2 (g" 1),

where & is a (2")™ root of 1.

b# (iv) Suppose that o has order 4 and u is a unipotent element in Zg(c) which has
an m—1 dimensional invariant subspace. Then Zg(ou) is a parabolic subgroup of
Zg(0) with |Zg(0): Zg(ou)|=¢*—1 and

Bolow =+ TT (¢~ 1).
@y(ou) =+ g""(g*—1).
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ProoF. (i) (ii) (iii). By Theorem 10J j,(0)=¢{,(1). Thus j,(c) has the required
value in each case by Lemma 10C. By (6.11)

- |H| IT| |Z], |G|r
B = e TN s
The result follows.
(iv) By Theorem 10J j%,(¢)= 1{o(x) where Z==Sp,,(q). By [11] (38.4) Ze(0)
has the required value. Since Zg, () is parabolic in Z, |Zg(0): Z(ou)| has the
required value. Thus

L HT it SoE o 2
Bul) =+ gt i AT (@1 =7 @ -1 =£q" (" ~1) O

Corollary 10L. Let the notation be as in Theorem 10J. Let A be a complex repre-
sentation which aﬁords %o-

@ { AXP = ¢**(¢"—1)*L

x'= xCGL m(@)

(ii) Let S be defined as in Lemma 3F. Then
{3 A@) = g*-"(g*—1)L
xES

Proor. Immediate from Lemmas 3F, 3G and Corollary 10K. [
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