On additive arithmetical functions with values in the circle group

By Z. DARÓCZY and I. KÁTAI

1. We shall use the following standard notations: N=natural numbers; Z=rational integers; Q_x =multiplicative group of positive rationals; R_x =multiplicative group of positive reals; Q=additive group of rationals; R=additive group of reals; T=one-dimensional circle group (torus), each of them in the usual topology.

Let G be an Abelian group, metrically compact in addition. A function $\varphi: \mathbb{N} \to G$ is called an additive number theoretical function if $\varphi(nm) = \varphi(n) + \varphi(m)$ holds for every coprime pairs of m and n, m, $n \in \mathbb{N}$. We shall say that φ is completely additive

if $\varphi(mn) = \varphi(m) + \varphi(n)$ for any $m, n \in \mathbb{N}$.

Let x_{ν} ($\nu=1,2,...$) be an infinite sequence in G. We shall say that it is of property D, if for any convergent subsequence x_{ν_i} (l=1,2,...) the shifted subsequence x_{ν_i+1} (l=1,2,...) is convergent too. We shall say that x_{ν} is of property K if $x_{\nu+1}-x_{\nu}\to 0$ ($\nu\to\infty$). It is obvious that the sequences having property K all have property D and that the second set is much wider in general than the first one. In our paper [1] we proved that if $x_{\nu}=\varphi(\nu)$, φ is completely additive, then the fulfilment of D implies the fulfilment of K. This, by a recent result due to E. Wirsing allowed us to give a complete characterization of the completely additive functions having property D.

Our purpose in this paper is to solve this problem for the additive functions if

2. Theorem 1. Let $\varphi: \mathbb{N} \to T$ be an additive function satisfying property D, i.e. the existence of $\lim \varphi(n_k) = g$ $(n_1 < n_2 < ...)$ implies the existence of $\lim \varphi(n_k + 1) = g'$. Then

$$\varphi(n) = u(n) + \tau \log n \pmod{1}$$

with a suitable $\tau \in \mathbb{R}$, u is an additive function, u(m)=0 for every odd m, $u(2^{\alpha})=u(2)$ for every $\alpha \ge 1$.

Furthermore, if $\tau \neq 0$, then $u(2^{\alpha})=0$ or 1/2.

PROOF. Let $\varphi \in D$ be fixed in the sequel. Let S denote the set of accumulation points of the sequence $a_n := \varphi(n)$ $(n \in \mathbb{N})$, i.e. let $g \in S$ if there exists a subsequence $n_1 < n_2 < \ldots$ of natural numbers such that $g = \lim_k \varphi(n_k) = g$, then let

$$F(g) := g' = \lim_{k} \varphi(n_k + 1).$$

Lemma 1. The correspondence $F: S \rightarrow S$ is a function and F(S) = S.

The proof of it was given in [1].

Let p(n) and P(n) denote the smallest and the largest prime factor of $n \in \mathbb{N}$. We shall say that a sequence $M := \{M_1 < M_2 < ...\}$ $(M_v \in \mathbb{N})$ belongs to \mathcal{M}_0 if for every $d \in \mathbb{N}$ $M_v - 1 \equiv 0 \pmod{d}$ whenever v is sufficiently large, $v > v_0(d, M)$. We shall say that a sequence $L := \{L_1 < L_2 < ...\}$ belongs to \mathcal{M}_k $(k \in \mathbb{Z})$ if $M(=L_{-k}) = \{L_1 - k < L_2 - k < ...\}$ belongs to \mathcal{M}_0 . Let $L := \{L_1 < L_2 < ...\} \in \mathcal{M}_k$. We shall say that $L \in \widetilde{M}_k$ $(\subseteq \mathcal{M}_k)$ if there exists $\lim \varphi(L_v) := a(L)$.

Let H_k denote the set of the limit points a(L) while L runs over \tilde{M}_k .

First we consider H_0 . Let $M \in \widetilde{M}_0$, $R = \{R_1 < R_2 < ...\} \in \widetilde{M}_0$. For a given v let j_v be so large that $p(R_{j_v}) > P(M_v)$, $j_v > j_{v-1}$; $j_0 = 0$. Then $(R_{j_v}, M_v) = 1$, consequently $\varphi(R_{j_v}M_v) = \varphi(R_{j_v}) + \varphi(M_v)$, and the sequence $\{S_v = R_{j_v}M_v \ (v = 1, 2, ...)\}$ belongs to \widetilde{M}_0 . Hence it follows immediately that $\lim \varphi(M_v) = g_1$, $\lim \varphi(R_v) = g_2$ implies $\lim \varphi(S) = g_1 + g_2 \in H_0$. Then H_0 is a semigroup in T. It is clear that H_0 is closed. The closedness of H_0 implies that H_0 is a compact semigroup in T, and so by [4] (9.16) it must be a group. Consequently H_0 is a discrete group or $H_0 = T$.

3. Continuation of the proof, case $H_0 = T$

From Lemma 1 we get that $H_0 = H_1 = H_2 = ... = T$.

Lemma 2. Let $R := \{ \varphi(n) | n \in \mathbb{N} \}$. Then $R + T \subseteq T$. R is everywhere dense in T.

Let $g \in T(=H_0)$, and $M \in \widetilde{M}_0$ be such a sequence for which a(M) = g. Let $N \in \mathbb{N}$ be fixed. Then $(M_v, N) = 1$ for every large v, so $\varphi(M_v N) = \varphi(M_v) + \varphi(N) \rightarrow g + \varphi(N)$, i.e. $R + T \subseteq T$. Since $0 \in T$, therefore $R \subseteq T$. It is obvious that R is everywhere dense in T.

Lemma 3. F is continuous on T.

For the proof see Lemma 5 in [1]. Let $a, b \in \mathbb{N}$.

(3.1)
$$l(a,b) := \varphi(ab) - \varphi(a) - \varphi(b).$$

If the common prime factors of a and b are $p_1, p_2, ..., p_r, a = p_1^{\alpha_1} ... p_r^{\alpha_r} a_1, b = p_1^{\beta_1} ... p_r^{\beta_1} b_1, (a_1, b_1) = 1, p_j + a_1, p_j + b_1 (j = 1, ..., r), then$

(3.2)
$$l(a, b) = \sum_{j=1}^{r} l(p_{j}^{\alpha_{j}}, p_{j}^{\beta_{j}})$$

Let now a, b, c, d, f be nonnegative integers such that a+b=c+d, ab=cd+f. Then

$$(3.3) (x+a)(x+b) = (x+c)(x+d)+f$$

is an identity.

Let $g \in T$, $n_1 < n_2 < ...$ be a sequence in \mathcal{M}_k $(k \ge 0)$ such that $\varphi(n_v) \to g$.

Since $n_v - (k+1) \equiv 0 \pmod{d}$ if $v > v_0(d)$ for every d, and $(n_v + a, n_v + b)|b - a$, therefore $l(n_v + a, n_v + b) = l(a + k + 1, b + k + 1)$ for every large v, consequently

$$\varphi((n_v+a)(n_v+b)) \to l(a+k+1, b+k+1) + \varphi(n_v+a) + \varphi(n_v+b)$$

for every large v. Arguing similarly with c, d instead of a, b, we get that (3.4)

$$l(a+k+1, b+k+1)+F^{a}(g)+F^{b}(g) = F^{f}[l(c+k+1, d+k+1)+F^{c}(g)+F^{d}(g)].$$

Hence we get that $l(c+k_1+1, d+k_2+1) = l(c+k_2+1, d+k_2+1)$ implies $l(a+k_1+1, b+k_1+1) = l(a+k_2+1, b+k_2+1)$.

Let now q>2 be a prime, (a,q)=1, b-a=q, d=0, c=a+b=2a+q. Then (2a+q+1+k,1+k)=1 for at least one arithmetical progression $k \pmod{(2a+q)}$. Let us fix such an arithmetical progression $k\equiv k_0 \pmod{(2a+q)}$. Then l(c+1+k,d+1+k)=0 as $k\equiv k_0$. Let us consider now l(a+1+k,b+1+k) while $k\equiv k_0 \pmod{(2a+q)}$. Since b-a=q, (a+1+k,b+1+k)|b-a=q, therefore (a+1+k,b+1+k)=1 or q. Since (2a+q,q)=1, therefore the system $a+1+k\neq 0 \pmod{q}$, $k\equiv k_0 \pmod{(2a+q)}$ is solvable. Hence we get that l(a+1+k,b+1+k)=0 as $k\equiv k_0 \pmod{(2a+q)}$. Similarly, the congruences $a+1+k\equiv 0 \pmod{q^\alpha}$, $a+1+k\not\equiv 0 \pmod{q^\alpha+1}$, $b+1+k\not\equiv 0 \pmod{q^2}$, $k\equiv k_0 \pmod{q}$ are solvable for every $\alpha \ge 1$, we get that

$$l(q^{\alpha}, q) = 0 \quad (\alpha = 1, 2, ...).$$

This implies immediately that $\varphi(q^{\alpha}) = \alpha \varphi(q)$. So we have proved the following

Lemma 4. $\varphi(mn) = \varphi(m) + \varphi(n)$ for every pairs of odd integers m, n.

Lemma 5. We have

(3.5)
$$F[g] + F^{2}[g] = F^{2}[g + F^{3}[g]].$$

Let n_v be so chosen that $\varphi(n_v) \rightarrow g$. Starting from the identity (x+1)(x+2) = x(x+3)+2, taking into account Lemma 4, we get that

$$\varphi((n_v+1)(n_v+2)) \to F(g)+F^2(g),$$

 $\varphi(n_v(n_v+3)) \to g+F^3[g], \quad \varphi(n_v(n_v+3)+2) \to F^2[g+F^3[g]].$

Let now η be such an element in T for which $F^3(\eta)=0$. The existence of such an η is almost obvious (see [1]). Then, if we put $g=\eta$ into (3.5), we get $F(\eta)=0$, which implies

Lemma 6.

$$(3.6) F^2[0] = 0.$$

Let now k be an odd integer, $M = \{M_1 < M_2 < ...\} \in \tilde{\mathcal{M}}_0$ such that $\varphi(M_v) \rightarrow -\varphi(k)$. Then

$$\varphi(kM_{\nu}) = \varphi(k) + \varphi(M_{\nu}) \to 0,$$

$$\varphi(kM_{\nu} + k) \to F^{k}[0] = F[0],$$

$$\varphi(kM_{\nu} + k) = \varphi(k) + \varphi(M_{\nu} + 1) \to \varphi(k) + F[-\varphi(k)].$$

This implies that

(3.7)
$$F[-\varphi(k)] = -\varphi(k) + F[0].$$

In [1] we proved that F is continuous. Since $H_0=T$, therefore $\varphi(k)$ (k=1, 3, 5, ...) is everywhere dense in T. Since T is a group therefore $\{-\varphi(k)\}$ is everywhere dense as well. Consequently we have

Lemma 7.

(3.8)
$$F(g) = g + F[0].$$

Hence it follows immediately that

$$F^{2}[g] = F[F(g)+F[0]] = F^{2}[g]+2F[0],$$

i.e. that

$$(3.9) 2F[0] = 0.$$

So $F[0]=\gamma$, $\gamma=0$ or 1/2.

Lemma 8. We have

$$\lim_{n\to\infty} \{\varphi(n+1) - \varphi(n)\} = \gamma$$

Assuming the contrary, there exists a subsequence $n_1 < n_2 < ...$ of positive integers such that $\Delta \varphi(n_j) = \varphi(n_j + 1) - \varphi(n_j) \rightarrow h$, $h \neq \gamma$. We can choose a suitable convergent subsequence of $\varphi(n_{j_l})$, $\varphi(n_{j_l}) \rightarrow g$. Then $\varphi(n_{j_l} + 1) \rightarrow g + h$, F[g] = g + h, h = F[0]. This contradicts to $F[0] = \gamma$.

Lemma 9. If $\psi: \mathbb{N} \to T$ is additive, and $\Delta \psi(n) := \psi(n+1) - \psi(n) \to 0$ $(n \to \infty)$, then ψ is completely additive.

For the proof see e.g. [5].

We shall need the following theorem due to E. WIRSING [3] which we quote now as

Lemma 10. If $\psi \colon \mathbb{N} \to T$ is completely additive and $\Delta \psi(n) \to 0$, then $\psi(n) \equiv \exists \tau \log n \pmod{1}$ with a suitable $\tau \in R$.

Now we finish the proof of the theorem. If $\gamma = 0$, then F[0] = 0, Lemma 9 and 10 implies that (2.1) holds with u(n) = 0 (n = 1, 2, ...). Let us assume that $\gamma = 1/2$. Then $\psi(n) := 2\varphi(n)$ satisfies the conditions of Lemma 10, consequently $\psi(n) = 1/2$.

= $K \log n \pmod{1}$. Consequently $\varphi(n) = \tau \log n + u(n) \pmod{1}$, $\tau = \frac{K}{2}$, where 2u(n) = 0 for every n. Since $\Delta \varphi(n) = o(1) + \Delta u(n)$, $\Delta \varphi(n) \to 1/2$, therefore $\Delta u(n) \to 1/2$, which by u(n) = 0 or 1/2 gives that u(n+2) - u(n) = 0 for every large n. Then u(n) is ultimately periodic mod 2, completely additive on the set of odd numbers, consequently $u(n^2) = u(n)$ (n, 2) = 1, i.e. u(n) = 0 if (n, 2) = 1. Furthermore

u(n+1)-u(n)=1/2 for every large n, consequently $u(2)=u(2^2)=...=1/2$.

The proof is finished in the case $H_0 = T$.

4. Continuation of the proof, case $H_0 \neq T$

In this case H_0 is a discrete subgroup, the case $H_0 = \{0\}$ may be occur.

Let A be the set of those sequences $x = \{x_1, x_2, ...\}$, $x_v \in \mathbb{N}$ for which there exists $a(x) = \lim_{v \to \infty} \varphi(x_v)$, and $p(x_v) \to \infty$ as $v \to \infty$. Let A be the set of limit points

a(x), $x \in A$. Since $\tilde{M}_0 \subseteq A$, $\tilde{M}_{-2} \subseteq A$, therefore $H_{-2} \subseteq A$, $H_0 \subseteq A$. It is obvious that A is a closed semigroup, and so it is a group. To prove this we need only to repeat the argument has been done in section 2. Let now $x \in A$, $R = \{R_1 < R_2 < ...\} \in \tilde{M}_{-1}$. Let j_v be so large that $j_v > j_{v-1}$, $P(R) < p(x_{j_v})$. Then the sequence $S_v = R_v x_{j_v}$ belongs to \tilde{M}_{-1} , $(R_v, x_{j_v}) = 1$, and so $a(R) + a(x) \in H_{-1}$. So we have

$$(4.1) A + H_{-1} \subseteq H_{-1},$$

and from $H_{-2} \subseteq A$, $H_0 \subseteq A$, we get that

$$(4.2) H_{-2} + H_{-1} \subseteq H_{-1}, \ H_0 + H_{-1} \subseteq H_{-1}.$$

Let us consider now H_{-2} . Let $x, y \in \tilde{\mathcal{M}}_{-2}$, $a(x) = h_1$, $a(y) = h_2$. Then the sequence $z_y = x_y y_{j_y}$, $p(y_{j_y}) > P(x_y)$ belongs to $\tilde{\mathcal{M}}_0$, and a(z) = a(x) + a(y), i.e.

(4.3)
$$h_1 + h_2 \in H_0$$
, whenever $h_1, h_2 \in H_{-2}$.

Similarly, if we take $x \in \tilde{\mathcal{M}}_{-2}$, $y \in \tilde{\mathcal{M}}_{0}$, we get that $z \in \mathcal{M}_{-2}$, consequently

$$(4.4) h+g\in H_{-2} whenever h\in H_{-2}, g\in H_0.$$

Since F^2 is a function, $F^2(H_{-2})=H_0$, therefore card $(H_{-2}) \ge \text{card } (H_0)$. Let us fix h_2 , and let h to run over H_{-2} in (4.3). Then we get immediately that

$$(4.5) \operatorname{card}(H_{-2}) = \operatorname{card}(H_0).$$

But this implies that

(4.6)
$$\operatorname{card}(H_{-2}) = \operatorname{card}(H_{-1})$$

From (4.1) we get that card (A) \leq card (H₋₁). From (4.5), (4.6), and from $H_0 \cup H_2 \subseteq A$ we get that $H_{-2} = H_0$.

Let now $M = \{M_1 < M_2 < ...\} \in \tilde{\mathcal{M}}_0$, a(M) = g, k > 1. Then $\varphi(M_v + k) \to F^k[g]$. We may assume that $M_v - 1 \equiv 0 \pmod{(k+1)}$ for $v \ge 1$. Then the sequence $N_v = \frac{M_v - 1}{k+1} + 1$ belongs to \mathcal{M}_0 , consequently a rarified subsequence of it belongs to $\tilde{\mathcal{M}}_0$, $\varphi(N_{jv}) \to g^* \in H_0$. Since $\varphi(M_v + k) = \varphi((k+1)N_v)$, we get that $F^k[g] = g^* + \varphi(k+1)$, and so $H_k = F^k[H_0] \subseteq H_0 + \varphi(k+1)$. Observing that the function F^2 : $H_{-2} \to H_0$ is one to one, we have that card $(H_k) = \operatorname{card}(H_0)$ for every k, consequently

(4.7)
$$H_k = H_0 + \varphi(k+1).$$

Since $H_0 = H_2 = H_4 = ...$, from (4.7) we get that $\varphi(2n+1) \in H_0$ whenever $n \in \mathbb{N}$. Furthermore, $H_1 = H_3 = ...$ that by (4.7) implies that $\varphi(2k) - \varphi(2l) \in H_0$ for each $k, l \in \mathbb{N}$.

Since $H_{-2}=H_0$, there exists a sequence $\{y_v\}\in \tilde{\mathcal{M}}_{-2}$ such that $\varphi(y_v)\to 0$. Let $z_v=y_v-3$, and z_{n_v} be so rarified that $\lim \varphi(z_{n_j})=h$ there exists. Since $3+y_v$, therefore $(z_v,y_v)=1$ for each large v. Starting from the identity 2+x(x+3)==(x+1)(x+2), substituting $x=z_{n_v}$, we deduce that

$$F^{2}[h+F^{3}[h]] = F[h]+F^{2}[h],$$

that by $0=F^3[h]=\lim \varphi(y_v)$ gives that F(h)=0, whence $F^2[0]=0$ immediately follows. Since in this case $R=\{\varphi(n)|n\in\mathbb{N}\}$ is a sicsrete set, for a sequence $n_1< n_2<\dots$ $\ldots \varphi(n_v)$ is convergent if and only if $\varphi(n_v)=\varphi(n_{v+1})$ for every large v. Let \mathscr{B} denote the set of all $n\in\mathbb{N}$ for which $\varphi(n)=0$. \mathscr{B} contains infinitely many element. From $F^2[0]=0$ it follows immediately that $n\in\mathscr{B}$, n is large enough implies $n+2\in\mathscr{B}$. Since \mathscr{B} contains infinitely many odd elements, therefore $\varphi(n)=0$ for every large odd integer. From the additivity we get that $\varphi(n)=0$ for every odd n. Let now $n_v=2^{\alpha}v-1$ $(v=1,3,\ldots)$.

Then $\varphi(n_v) = 0$ (v = 1, 3, ...), consequently $\varphi(n_v + 1) = \varphi(2^{\alpha}) = F[0]$ (v = 1, 2, ...), i.e. $\varphi(2) = \varphi(2^2) = \varphi(2^3) = ...$

The theorem is proved.

References

- Z. Daróczy and I. Kátai, On additive number-theoretical functions with values in a compact Abelian group, Aequationes Mathematicae 28 (1985), 288—292.
- [2] Z. DARÓCZY and I. KÁTAI, On additive arithmetical functions with values in topological groups I. Publ. Math. (Debrecen) 33 (1985), 287—291.
- [3] E. Wirsing, The proof is given in a letter to I. Kátai (9. 3. 1984).
- [4] E. HEWITT and K. A. Ross, Abstract harmonic analysis, Berlin 1963 (Springer).
- [5] J. L. MAUCLAIRE and LEW MURATA, On the regularity of arithmetic multiplicative functions I., Proc. of the Japan Academy, 56 ser. A (1980), 438—440.

(Received October 1, 1985.)