On additive arithmetical functions with values
in the circle group

By Z. DAROCZY and I. KATAI

1. We shall use the following standard notations: N=natural numbers;
Z=rational integers; Q,=multiplicative group of positive rationals; R,=multipli-
cative group of positive reals; Q =additive group of rationals; R =additive group of
reals; T=one-dimensional circle group (torus), each of them in the usual topology.

Let G be an Abelian group, metrically compact in addition. A function ¢: N—G
is called an additive numbertheoretical function if @ (nm)= (o(n)-f-rp(m) holds for
every coprime pairs of m and n, m, n€N. We shall say that ¢ is completely additive
if @(mn)=¢(m)+e(n) for any m,neN.

Let x, (v=1, 2, ...) be aninfinite sequence in G. We shall say that it is of prop-
erty D, if for any convergent subsequence x,, (/=1,2, ...) the shifted subsequence
Xy,+1 (/=1,2,...) is convergent too. We shall say that x, is of property K if
Xy+1—X,~0 (v—oo). It is obvious that the sequences having property K all have
property D and that the second set is much wider in general than the first one. In
our paper [1] we proved that if x,=¢(v), ¢ is completely additive, then the fulfilment
of D implies the fulfilment of K. This, by a recent result due to E. Wirsing allowed us
to give a complete characterization of the completely additive functions having
property D.

Our purpose in this paper is to solve this problem for the additive functions if
G=T.

2. Theorem 1. Let ¢: N—T be an additive fmbtioh_s;itfsff'yfng property D, i.e.
the existence of lim @ (n,)=g (ny<ny<...) implies the existence of lim @(n,+1)=g’.
Then

(2.1) @(n) = u(n)+zlogn (mod1) -

with a suitable t€R, uis an additive function, u(m)=0 for every odd m, ul 2')=ui2)
for every a=l.
Furthermore, if ©#0, then u(2*)=0 or 1/2. 3 ]

Ehe—_ |

ProoF. Let ¢@€D be fixed in the sequel. Let S denote the set of accumulation
points of the sequence a,:=¢(n) (n€N), i.e. let ge€S if there exists a subsequence
ny<n,<... of natural numbers such that g=liPJ ¢(m)=g, then let

F(g):=g =lim(m +1).
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Lemma 1. The correspondence F: S—S is a function and F(S)=S.

The proof of it was given in [1].

Let p(n) and P(n) denote the smallest and the largest prime factor of n€N.
We shall say that a sequence M:={M,<M,<...} (M,N) belongs to .#, if for
every déEN M,—1=0(mod d) whenever v is sufficiently large, v=>v,(d, M). We
shall say that a sequence L:={L,<L,<...} belongs to #; (k€Z) if M(=L_)=
={L,—k<L,—k<...} belongs to #,. Let L:={L,<L,<...}¢.#,. We shall say
that LeM, (<.#,) if there exists lisn o(L,):=:a(L).

Let H, denote the set of the limit points a(L) while L runs over M,.

First we consider H,. Let McM,, R={R,<R,<...}¢M,. For a given v let j,
be so large that p(R;)=P(M,), j,=j,-1; Jo=0. Then (R; , M,)=1, consequently
o(R; M,)=¢(R;)+®(M,), and the sequence {S,=R; M, (v=1,2,...)} belongs
to M,. Hence it follows immediately that lim @(M,)=g,, lim ¢(R,)=g, implies
lim @(S )=g,+8:€H,. Then H, is a semigroup in 7. It is clear that H, is closed.
The closedness of H, implies that H, is a compact semigroup in 7, and so by [4]
(9.16) it must be a group. Consequently H, is a discrete group or H,=T.

3. Continuation of the proof, case H,=T

From Lemma 1 we get that Hy=H,=H,=...=T.
Lemma 2. Let R:= {¢p(n)[néN}. Then R+T<T. R is everywhere dense in T.

Let geT(=H,), and M¢M, be such a sequence for which a(M)=g. Let
NEN be fixed. Then (M,, N)=1 for every large v, so ¢(M,N)=¢(M,)+¢(N)—~
—-g+@(N), i.e. R+T<T. Since 0¢T, therefore R T. It is obvious that R is
everywhere dense in 7.

Lemma 3. F is continuous on T.

For the proof see Lemma 5 in [1].
Let a, bEN.

(3.1 I(a, b) := @(ab)—¢(a)— ¢@(b).
If the common prime factors of @ and b are p,, p;, ..., p,, @=pi*...p%a,, b=p{'...
'°'pf1bh (al! bl)=1a Pj+al.'! pj+bl (J":l) a5ap r)’ then

(2) I(a, b) = E'l (%, P)

Let now a, b, ¢, d, f be nonnegative integers such that a+b=c+d, ab=cd+f.
Then

(3.3) (x+a)(x+b) = (x+c)(x+d)+f

is an identity.
Let g€T, ny<n,<... be a sequence in .#, (k=0) such that ¢(n,)—g.
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Since n,—(k+1)=0(mod d) if v=v,(d) for every d, and (n,+a, n,+b)lb—a,
therefore I(n,+a,n,+b)=I(a+k+1,b+k+1) for every large v, consequently

o((n,+a)(n,+b)) -~ l(a+k+1,b+k+1)+o(n,+a)+¢(n,+b)
for every large v. Arguing similarly with ¢, d instead of a, b, we get that
(3.9
lla+k+1,b+k+1)+F(g)+F'(g) = F/[l(c+k+1,d+k+ 1)+ F(g)+ F(g)].

Hence we get that I(c+k,+1,d+ks+1)=Il(c+ks+1.d+k,+1) implies
a+k,+1,b+k;+1)=la+ks+1,b+k,+1).

Let now g=2 be a prime, (@, q)=1, b—a=q, d=0, c=a+b=2a+q. Then
(2a+g+1+4k, 1+k)=1 for at least one arithmetical progression k(mod (2a+g)).
Let us fix such an arithmetical progression k=k,(mod (2a+¢)). Then I(c+1+k,
d+1+k)=0 as k=k,. Let us consider now [l(a+1+k,b+1+k) while k=k,
gmod (2a+q)). Since b—a=q, (a+1+k,b+1+k)b—a=q, therefore (a+1+k,

+1+k)=1 or q. Since (2a+gq, q)=1, therefore the system a+1+k+=0 (mod g),
k=ky(mod (20+q)% is solvable. Hence we get that l(a+1+k,b+1+k)=0 as
k=k,(mod (2a+¢)). Similarly, the congruences a+1+k=0(mod ¢%), a+1+k#
#0 (mod ¢**) b+1+k#Z0mod g%, k=k,(modc) are solvable for every a=1,
we get that

(g% 9)=0 (@=12,..).

This implies immediately that @(g*)=a¢(q). So we have proved the following

Lemma 4. ¢(mn)=@(m)+q@(n) for every pairs of odd integers m, n.

Lemma 5. We have

(3.5) Flg]+ F*[g] = F*[g+ F*[g]].

Let n, be so chosen that ¢(n,)—~g. Starting from the identity (x+1)(x+2)=
=x(x+3)+2, taking into account Lemma 4, we get that

@((n,+1)(n,+2)) ~ F(g)+F*(g),

o(n,(n,+3)) ~ g+ F[g), o(n,(n,+3)+2) ~ F*[g+ F*[g]].

Let now n be such an element in T for which F*(n)=0. The existence of such
an 7 is almost obvious (see [1]). Then, if we put g=n into (3.5), we get F(n)=0,
which implies

Lemma 6.
(3.6) F2[0] = 0.

Let now k be an odd integer, M={M,<M,<...)c.#, such that @(M,)—~
— —@(k). Then
@o(kM,) = ¢(k)+¢(M,) ~ 0,

@ (kM,+k) - F*[0] = F[0],
e(kM,+k) = ¢(k)+ (M, + 1) ~ ¢(k)+ F[— o (K)].
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This implies that
(EX)) F[—o(k)] = —¢(k)+ F[0].

In [1] we proved that F is continuous. Since H,=T, therefore ¢ (k) (k=1, 3,5, ...)
is everywhere dense in 7. Since T'is a group therefore {—@(k)} is everywhere dense as
well. Consequently we have

Lemma 7.
(3.8) F(g) = g+ F[0].
Hence it follows immediately that

. F*[g] = F[F(g)+F[0]] = F*[g]+2F[0],
i.e. that

(3.9 2F[0] = 0.
So F[0]=y, y=0 or 1/2.
Lemma 8. We have
lim {p(n+D)—o(m)} =y

Assuming the contrary, there exists a subsequence n,<ny<... of positive inte-
gers such that Adg(n)=¢(n;+1)—o@(n;)~h, h#y. We can choose a suitable con-
vergent subsequence of ¢(n;), ¢(n;)—~g. Then o@(n; +1)~g+h, Fl[g]l=g+h,
h=F[0]. This contradicts to F[0]=y.

Lemma 9. If ¥: N—T is additive, and Ay (n):=y(n+1)—y(n)—=0 (n— =),
then  is completely additve.

For the proof see e.g. [5].
We shall need the following theorem due to E. WIRSING [3] which we quote now as

Lemma 10. If y: N—T is completely additive and Ay (n)—~0, then Y(n)=
=t logn(mod 1) with a suitable t€R.

Now we finish the proof of the theorem. If y=0, then F[0]=0, Lemma 9 and
10 implies that (2.1) holds with u(n)=0 (n=1,2,...). Let us assume that y=1/2.
Then (n):=2¢(n) satisfies the conditions of Lemma 10, consequently V¥ (n)=
=Klogn(mod 1). Consequently ¢(n)=1logn+u(n) (mod 1), 7=§, where
2u(n)=0 for every n. Since Ap(n)=o0(1)+4du(n), 4@ (n)—~1/2, therefore du(n)—~1/2,
which by u(n)=0 or 1/2 gives that u(n+2)—u(n)=0 for every large n. Then u(n)
is ultimately periodic mod 2, completely additive on the set of odd numbers,
conse-quently wu(m®)=u(n) (n,2)=1, ie. u(m)=0 if (n,2)=1. Furthermore
u(n+1)—u(n)=1/2 for every large n, consequently u(2)=u(2%)=...=1/2.

The proof is finished in the case Hy=T.
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4. Continuation of the proof, case H,= T

In this case H, is a discrete subgroup, the case H,= {0} may be occur.
Let A be the set of those sequences x={x,, Xs, ...}, x,€N for which there
exists a(x)=Ilm ¢(x,), and p(x,)=>= as v—e. Let 4 be the set of limit points

a(x), x€A. Since My= A, M_,< A, therefore H_,= A, Hy= A. It is obvious
that A4 is a closed semigroup, and so it is a group. To prove this we need only to
repeat the argument has been done in section 2. Let now x€A4, R={R,<R,<...}€
€M_,. Letj, beso large that j,=j,_,, P(R )<p(x;,). Then thesequence S,=R,x;,
belongs to #_,, (R,,x;)=1, and so a(R)+a(x)EH_,. So we have

(4.1) At B0
and from H_,c A, H,c A, we get that
4.2) H. ,+H. S H.,, Hp+H_, & H_,.

Let us consider now H_,. Let x, }'E.li_g, a(x)=hy,a(y)=h,. Then the se-
quence z,=Xx,y;,, p(y;)=P(x,) belongs to .#, and a(z)=a(x)+a(y), ie.

4.3) h,+h,€ H,, whenever h,, ho¢ H_,.

Similarly, if we take x€M_y, yEM,, we get that z€.#_,, consequently
(4.4) h+geH_, whenever heH_,, g€ H,.

Since F?is a function, F*(H_,)=H,, therefore card (H_,)=card (H,). Let us fix
hy, and let /i to run over H_, in (4.3). Then we get immediately that

(4.5) card (H_,) = card (H,).
But this implies that
(4.6) card (H_,) = card (H -,)

From (4.1) we get that card (4)=card (H_,). From (4.5), (4.6), and from
HyJUH,= A we get that H_,=H,.

Let now M={M,<M,<..)c.h,, a(M)=g, k=1. Then o(M,+k)—~Fg].

We may assume that M,—1=0(mod (k+1)) for v=1. Then the sequence
o M,—1

"7 k+1

to M,, @(N;)—~g*€H,. Since @(M,+k)=¢((k+1)N,), we get that F{g]=
=g*+o(k+1), and so H,=FYH,)) < H,+@(k+1). Observing that the function
F*: H_,—~H, is one to one, we have that card (H,)=card (H,) for every k, con-
sequently

4.7) H, = Hy+@(k+1).

Since Hy=H,=H,=..., from (4.7) we get that ¢(2n+1)é H, whenever néN.
Furthermore, H,=H,;=... that by (4.7) implies that ¢(2k)—¢(2/)€¢ H, for each
k, IEN.

+ 1 belongs to .#,, consequently a rarified subsequence of it belongs
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Since H_,=H,, there exists a sequence {y,,}e.,l.(__2 such that ¢(p,)—0. Let
z,=y,—3, and z, be so rarified that lim ¢(z,)=~h there exists. Since 3+y,, there-
fore (z,,y,)=1 for each large v. Starting from the identity 2+x(x+3)=
=(x+1)(x+2), substituting x=z, , we deduce that

F*[h-+ F3[h]] = F[h]+ F*[h],

that by 0= F3Ah)=lim ¢(y,) gives that F(h)=0, whence F?0]=0 immediately
follows. Since in this case R={@(n)|n€N} is a sicsrete set, for a sequence n,<ny=...
...¢p(n,) 1s convergent if and only if ¢@(n,)=¢(n,;,) for every large v. Let # denote
the set of all néN for which ¢(n)=0. # contains infinitely many element. From
F?[0]=0 it follows immediately that ncZ, n is large enough implies n+2€%.
Since # contains infinitely many odd elements, therefore ¢@(n)=0 for every large
odd integer. From the additivity we get that ¢(n)=0 for every odd n. Let now
a,=y-1 (v=1,3...).

Then ¢@(n,)=0 (v=1,3,...), consequently ¢(n,+1)=¢(2%)=F[0]
v=12,..), ie. 0Q)=0(2)=0(2%)=....

The theorem is proved.
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