On sets of elements of the same order in the alternating group 4,

By CZESLAW BAGINSKI (Biatystok)

In a series of works J. L. BRENNER and others investigated the existence of a con-
jugacy class C such that CC =G, where G is a finite non-abelian simple group. An
analogous property of a set K, of all elements of order m of G is studied here. In [1]
it was shown that in the alternating group 4,, n=6, conjugacy classes with elements
of order 2 or 3 do not satisfy this condition. Here we establish the following

Theorem A. If n=>4, then in the alternating group A, K,K,=A, if and only if
ne{s, 6, 10, 14}.

This is the essential strenghtening of the theorem 3.05 of [1]. We also prove
Theorem B. If n=2, then in the alternating group A, K;K;=A,.

The notation and terminology is standard with the following addition: if fis a
permutation of a finite set X, then supp (f) denotes the set {x€X: f(x)=x}.

Lemma 1. Let f and g be two involutions of S,. If fg#gf, then there exist involu-
tions fy, g such that supp (f,), supp (g,)supp (/8) and f,8,=/g.

Proor. Each involution of S, is a product of disjoint transpositons. Let
g=(j)(k1)... and icsupp (g)—supp (fg). Then i=fg(i)=/(j) and j=f(i)=
=/g(j). Hence jésupp (g)—supp (fg) and f=(ij)(k"I).... Let us take f'=(ij)f
=k’ I')..., g =(ij)g=(kI).... By our assumptions f”, g" are not identities and of
course fg=f'"g’. Thus by induction on |supp (f)| we obtain the lemma.

Lemma 2. If h is a product of disjoint cycles with pairwise distinct lengths and for
involutions f, g h=fg, then for an arbitrary orbit X of h f(X)=g(X)=X.

PROOF. Let us observe first that fg(X)=X implies f(X)=g(X). Let now X
be an orbit of 4 with the smallest number of elements for which g(X)=X and let
Y=XUg(X). Then g(¥Y)=Y=f(Y) andso h(¥Y)=Y and H(Y—-X)=Y—X. If 4
is an orbit of 4 contained in Y—X then by our assumptions and by inequality
|Y—X|=|X| we have |4|<|X|. But g(4)cg(Y—X)cX implies g(A4)>A. This
is a contradiction.

Lemma 3. A4 product of two disjoint cycles with equal or even lengths can be
expressed as a product of two involutions which are simultaneously odd or simultaneously
even.
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ProoF. The lemma is an immediate consequence of the following decompositions :
(12...2k) = [(12k) (2 2k—1)...(k k+D]J[(1 2k—1)(2 2k —2)...(k—1 k+1)]
(12...2k) =[(22k)(32k—1)...(k k+2)][(1 2k)(2 2k—1)...(k k+1)]
(12...2k+1) =[(1 2k+1)(2 2k)...(k k+2)][(1 2k)(22k—1)...(k k+1)]
(12...2k+1)(2k+22k+3...4k+2) =
= [(12k+2)(2k+1 2k+3)(2k 2k +4)...(2 4k +2)] -
(1 4k+2)(24k+1)...(2k+ 1 2k + 2)].
By the above lemma and 2.5.7 of [3] we have then

Lemma 4. If fis a cycle of odd length or f is a product of two disjoint cycles of
even lengths, then f can be expressed as a product of two involutions conjugated in S,,.

Corollary 1. If n=4 then in the symmetric group S, K;K,=S,. Moreover
each odd permutation is a product of two involutions conjugated in S,,.

In [2] it was shown that each element of the alternating group A, is a commu-
tator of two elements from this group. By corollary 1 we immediately obtain

Corollary 2. Each element of A, is a commutator of two elements from S, one of
which has order 2.

Lemma 5. Let h be a cycle of length 2k+1 and f, g be involutions such that
supp (f), supp (g)supp (h). If h=fg, then f and g are products of k disjoint trans-
positions.

Proor. Clearly S, may be regarded as a group of permutations of the additive
group Z,={0, 1, ...,n—1}, where n=2k+1. We also may assume that 2=(0, 1, ...
... 2k). Let h=fg with involutions f, g and x€Z,—supp (g). Thus x+1=fg(x)=
=f(x) and so x, x+1€supp (f). Since f(x+1)=x=fg(x—1) we have g(x—1)=
=x+1 and so x—1, x+1€supp (g). Hence by easy induction we can show that
f(x—m)=x+m+1 and g(x—m)=x+m. Therefore x—md¢supp (f) if and only if
x—m=x+m++1 (thatis m=k) and similarly x—m¢dsupp (g) ifand only if x—m=
=x+m (i.e. m=0). This ends the proof.

THE PROOF OF THEOREM A. Let n4 {5, 6, 10, 14}, n=4. If fis an involution
of A,, then |supp (f)| is divisible by 4. Hence by lemmas 1, 2 and 5 the following
permutations cannot be expressed as products of involutions from A,:

for n=4k—1 or n=4k a cycle of length 4k—1,

for n=4k or n=4k+1 a product of two disjoint cycles of lengths 3 and 4k —3,

for n=4k+2 a product of three disjoint cycles of lengths 3,5 and 4(k—2)+1.

Let us assume now that n€ {5, 6, 10, 14}, A is a permutation from 4, and f, g
are involutions from S, such that A=fg and supp (f),supp (g)Tsupp (k). If
|supp (h)|<n—1 then for i, j¢supp (h) either fand g or f(ij) and (i j)g belong to
A,and h=fg=/(ij)(ij)g. Letthen |supp (h)|=n—1. If in the decomposition of /
into the product of disjoint cycles the cycles of equal or even lengths occure then by
lemma 3 involutions f and g can be chosen from A4,. Permutations which are not
regarded yet are cycles or products of odd cycles with pairwise distinct lengths. There
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are only a few types of such permutations. Using Lemmas 2, 5 and the decomposi-

tion of a cycle of length 2k + 1 in the proof of Lemma 3 we can easely find the desired
decompositions.

THE PROOF OF THEOREM B. Let k be an odd natural number. Then
(12...2k+1) = ((123)(452k)(6 7 2(k—1))...(k+1 k+2 k+3))-
((k+3 k+4k)(k+5k+6 k—2)...(2k 2k+1 3)).
If k is even, then
(12...2k+1) = ((123)(452k)(6 7 2(k—1))...(k k+1 k+4))-
((k+2k+3 k+1)k+4 k+5k—1)...(2k 2k+1 3)).
Let us consider now a product of two cycles of even lengths. We have
(12..2k)(2k+12k+2...2k+2m) =
= ((2k+2 2k+12k)(2k—112...2k—2))-
((2k+3 2k+4...2k+2m 2k +2)(2k+ 1 2k 2k — 1)).
By the above decompositions of cycles of odd lengths we can find permutations
fisf2s &15 &2 such that each of them has order 3, supp(f))<{l,2,...,2k—1)},
supp (fo)c{l,2,...,2k—2}, supp (g,)c{2k+3,2k+4, ...,2k+2m}, supp (g.)C
c{2k+2,2k+3,...,2k+2m} and (2k—112..2k-2)=ff;, (k+32k+4...

o 2k+2m 2k +2)=g,8,. Thus (2k+22k+12k)fig, and fog(2k+12k2k—1)
are of order 3 and their product is equal to (12 ...2k)(2k+12k+2 ... 2k+2m).

References

[1] J. L. BRENNER, M. RANDAL, J. RIDDEL, Covering theorems for finite nonabelian simple groups,
Collog. Math. 32 (1974), 39—45.

[2] N. Ito, A theorem on the alternating group A4,,, n=5, Mathematica Japonica 2 (1950—1952),
59—60.

[3] M. 1. Kapranonos, FO. 1. Mep3nakos, Ocrosel Teopun rpynn, Mocksa 1982,

UNIVERSITY OF WARSAW
DIVISION BIALYSTOK
INSTITUTE OF MATHEMATICS
AKADEMICKA 2, BIALYSTOK

( Received October 9, 1985.)



