On sets of elements of the same order in the alternating group A_n

By CZESŁAW BAGIŃSKI (Białystok)

In a series of works J. L. Brenner and others investigated the existence of a conjugacy class C such that CC = G, where G is a finite non-abelian simple group. An analogous property of a set K_m of all elements of order m of G is studied here. In [1] it was shown that in the alternating group A_n , n > 6, conjugacy classes with elements of order 2 or 3 do not satisfy this condition. Here we establish the following

Theorem A. If n>4, then in the alternating group A_n $K_2K_2=A_n$ if and only if $n \in \{5, 6, 10, 14\}$.

This is the essential strenghtening of the theorem 3.05 of [1]. We also prove

Theorem B. If n>2, then in the alternating group A_n $K_3K_3=A_n$.

The notation and terminology is standard with the following addition: if f is a permutation of a finite set X, then supp (f) denotes the set $\{x \in X: f(x) \neq x\}$.

Lemma 1. Let f and g be two involutions of S_n . If $fg \neq gf$, then there exist involutions f_1 , g_1 such that supp (f_1) , supp $(g_1) \subset \text{supp } (fg)$ and $f_1g_1 = fg$.

PROOF. Each involution of S_n is a product of disjoint transpositons. Let $g=(i\ j)(k\ l)\dots$ and $i\in \operatorname{supp}(g)-\operatorname{supp}(fg)$. Then i=fg(i)=f(j) and j=f(i)=fg(j). Hence $j\in \operatorname{supp}(g)-\operatorname{supp}(fg)$ and $f=(i\ j)(k'\ l')\dots$. Let us take $f'=(i\ j)f=(k'\ l')\dots$, $g'=(i\ j)g=(k\ l)\dots$. By our assumptions f',g' are not identities and of course fg=f'g'. Thus by induction on $|\operatorname{supp}(f)|$ we obtain the lemma.

Lemma 2. If h is a product of disjoint cycles with pairwise distinct lengths and for involutions f, g h=fg, then for an arbitrary orbit X of h f(X)=g(X)=X.

PROOF. Let us observe first that fg(X) = X implies f(X) = g(X). Let now X be an orbit of h with the smallest number of elements for which $g(X) \neq X$ and let $Y = X \cup g(X)$. Then g(Y) = Y = f(Y) and so h(Y) = Y and h(Y - X) = Y - X. If A is an orbit of h contained in Y - X then by our assumptions and by inequality $|Y - X| \leq |X|$ we have |A| < |X|. But $g(A) \subset g(Y - X) \subset X$ implies $g(A) \neq A$. This is a contradiction.

Lemma 3. A product of two disjoint cycles with equal or even lengths can be expressed as a product of two involutions which are simultaneously odd or simultaneously even.

PROOF. The lemma is an immediate consequence of the following decompositions:

$$(1 \ 2 \dots 2k) = [(1 \ 2k)(2 \ 2k-1) \dots (k \ k+1)][(1 \ 2k-1)(2 \ 2k-2) \dots (k-1 \ k+1)]$$

$$(1 \ 2 \dots 2k) = [(2 \ 2k)(3 \ 2k-1) \dots (k \ k+2)][(1 \ 2k)(2 \ 2k-1) \dots (k \ k+1)]$$

$$(1 \ 2 \dots 2k+1) = [(1 \ 2k+1)(2 \ 2k) \dots (k \ k+2)][(1 \ 2k)(2 \ 2k-1) \dots (k \ k+1)]$$

$$(1 \ 2 \dots 2k+1)(2k+2 \ 2k+3 \dots 4k+2) =$$

$$= [(1 \ 2k+2)(2k+1 \ 2k+3)(2k \ 2k+4) \dots (2 \ 4k+2)] \cdot$$

$$\cdot [(1 \ 4k+2)(2 \ 4k+1) \dots (2k+1 \ 2k+2)].$$

By the above lemma and 2.5.7 of [3] we have then

Lemma 4. If f is a cycle of odd length or f is a product of two disjoint cycles of even lengths, then f can be expressed as a product of two involutions conjugated in S_n .

Corollary 1. If n>4 then in the symmetric group S_n $K_2K_2=S_n$. Moreover each odd permutation is a product of two involutions conjugated in S_n .

In [2] it was shown that each element of the alternating group A_n is a commutator of two elements from this group. By corollary 1 we immediately obtain

Corollary 2. Each element of A_n is a commutator of two elements from S_n one of which has order 2.

Lemma 5. Let h be a cycle of length 2k+1 and f, g be involutions such that supp (f), supp $(g) \subset \text{supp }(h)$. If h=fg, then f and g are products of k disjoint transpositions.

PROOF. Clearly S_n may be regarded as a group of permutations of the additive group $Z_n = \{0, 1, ..., n-1\}$, where n=2k+1. We also may assume that h=(0, 1, ..., n-1). Let h=fg with involutions f, g and $x \in Z_n$ —supp (g). Thus x+1=fg(x)=f(x) and so x, $x+1 \in \text{supp}(f)$. Since f(x+1)=x=fg(x-1) we have g(x-1)=x+1 and so x-1, $x+1 \in \text{supp}(g)$. Hence by easy induction we can show that f(x-m)=x+m+1 and g(x-m)=x+m. Therefore $x-m \notin \text{supp}(f)$ if and only if x-m=x+m+1 (that is m=k) and similarly $x-m \notin \text{supp}(g)$ if and only if x-m=x+m (i.e. m=0). This ends the proof.

THE PROOF OF THEOREM A. Let $n \in \{5, 6, 10, 14\}$, n > 4. If f is an involution of A_n , then |supp(f)| is divisible by 4. Hence by lemmas 1, 2 and 5 the following permutations cannot be expressed as products of involutions from A_n :

for n=4k-1 or n=4k a cycle of length 4k-1,

for n=4k or n=4k+1 a product of two disjoint cycles of lengths 3 and 4k-3, for n=4k+2 a product of three disjoint cycles of lengths 3,5 and 4(k-2)+1.

Let us assume now that $n \in \{5, 6, 10, 14\}$, h is a permutation from A_n and f, g are involutions from S_n such that h = fg and supp (f), supp $(g) \subset$ supp (h). If $|\sup (h)| < n-1$ then for $i, j \notin$ supp (h) either f and g or f(ij) and (ij)g belong to A_n and h = fg = f(ij)(ij)g. Let then $|\sup (h)| \ge n-1$. If in the decomposition of h into the product of disjoint cycles the cycles of equal or even lengths occure then by lemma 3 involutions f and g can be chosen from A_n . Permutations which are not regarded yet are cycles or products of odd cycles with pairwise distinct lengths. There

are only a few types of such permutations. Using Lemmas 2, 5 and the decomposition of a cycle of length 2k+1 in the proof of Lemma 3 we can easely find the desired decompositions.

THE PROOF OF THEOREM B. Let k be an odd natural number. Then

$$(12...2k+1) = ((123)(452k)(672(k-1))...(k+1k+2k+3)) \cdot ((k+3k+4k)(k+5k+6k-2)...(2k2k+13)).$$

If k is even, then

$$(12...2k+1) = ((123)(452k)(672(k-1))...(kk+1k+4)) \cdot ((k+2k+3k+1)(k+4k+5k-1)...(2k2k+13)).$$

Let us consider now a product of two cycles of even lengths. We have

$$(1 2...2k)(2k+1 2k+2...2k+2m) =$$

$$= ((2k+2 2k+1 2k)(2k-1 1 2...2k-2)) \cdot \cdot ((2k+3 2k+4...2k+2m 2k+2)(2k+1 2k 2k-1)).$$

By the above decompositions of cycles of odd lengths we can find permutations f_1, f_2, g_1, g_2 such that each of them has order 3, supp $(f_1) \subset \{1, 2, ..., 2k-1\}$, supp $(f_2) \subset \{1, 2, ..., 2k-2\}$, supp $(g_1) \subset \{2k+3, 2k+4, ..., 2k+2m\}$, supp $(g_2) \subset \{2k+2, 2k+3, ..., 2k+2m\}$ and $(2k-1)(2k-2) = f_1f_2$, $(2k+3)(2k+4) = f_1f_2$. Thus $(2k+2)(2k+1)(2k+2) = f_1f_2$ and $(2k-1)(2k+2)(2k+1)(2k+2) = f_1f_2$ are of order 3 and their product is equal to $(12 ... 2k)(2k+1)(2k+2) = f_1f_2$.

References

- J. L. Brenner, M. Randal, J. Riddel, Covering theorems for finite nonabelian simple groups, Colloq. Math. 32 (1974), 39—45.
- [2] N. Ito, A theorem on the alternating group A_n , $n \ge 5$, Mathematica Japonica 2 (1950—1952), 59—60.
- [3] М. И. Каргаполов, Ю. И. Мерзляков, Основы теории групп, Москва 1982.

UNIVERSITY OF WARSAW DIVISION BIAŁYSTOK INSTITUTE OF MATHEMATICS AKADEMICKA 2, BIAŁYSTOK

(Received October 9, 1985.)