A variant of Katai’s minimax theorem for additive functions

By MARIJKE VAN ROSSUM-WIJSMULLER (Philadelphia, Pa)

Let f(n) be a nonnegative, strongly additive function, which tends to 0 monotoni-
cally on the sequence of primes. Assume

(1 > f(p=o0(l), y-—=c.

y<p=2y

For C=0, let my<...<m=... be the sequence of integers determined by the con-
dition f(n;)=C.

In this note we investigate the gaps (., —n;).

If f(n) has a limiting distribution F(x) and ¢ is determined by

(2) m<..<m=x, fn)=C

then lim % = F(C).
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If F(C)#0 and 10, it follows that for large x’_rw_FTE'_)"

=1
+ > (nj4y—n;) and n,~x, one can conclude that the gaps in (2) are bounded in
i=1

Since nm,=n,+

average.

A well-known theorem by ERDGs and WINTNER gives the following criterion to
determine if an additive function has a limiting distribution.

Theorem 1. In order that an additive function f(n) should possess a limiting dis-
tribution, it is both necessary and sufficient that the three series
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converge.
One can use theorem 1 to prove the following lemma.

Lemma. If f(n) is a nonnegative, additive function which tends monotonically to
0 on rthe sequence of primes, and which satisfies (1), then f(n) hasa limiting distribution.

ProoF. The firstseries in (3) is a finite sum since f(p) tends to 0 monotonically.
The convergence of the third series in (3) will be a consequence of the conver-
gence of the middle series and the fact that f(p)=0.
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The convergence of the middle series in (3) follows from the ‘assumption (1),
which implies that there exists N=0 such that for all n=N

2 f(p) ==
n<=p=2ln 2
Therefore
f(p) 10 , f(p)
—_—= _ _—
I!u%‘sx P |f;g‘)|~§1 P %2‘!\‘-:;52'*’.\' P

The first sum is a finite sum and the double sum can be majorized by
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Therefore each series in (3) converges and the lemma has been proved.
Application of the lemma therefore implies that the gaps (n;,,—#n;) are bounded
in average. But this does not exclude the possibility that lil‘n sup (; 4, —n;)=oo,

which in fact is often the case. But it is possible, and this is the purpose of the present
note, to show that there is a function k(x) such that “T sup n';;—;x_;-,iél. The
function k(x) will be determined through the method of proof which Katai developed
for his minimax theorem. Let us first state the result of KATAI [2].

Theorem 2. Let f(n) be a nonnegative additive function, which tends monotoni-
cally to 0 on the sequence of primes. Let

V()= 2 f(p)

p=y

B(p) = sup f(p)
For k=1, let E,(x)= max min {f(n+1), f(n+2), ..., f(n+k)}. Assume that

YR2y) -y () =o(l), y—=oe
Y(y) =
2 B(p)=f(p)] ==

Y (logx)
k

Y (k)
k

Then anl {E,, (x)— }= B, +C,—

k

where B, = sup% 2> 2 f(p) and C = "‘{Tp%(ﬁ(P)—f(P))-

n=1 Jj=1 p=k
P*lin+j
In the proof of theorem 2, k is considered fixed. But as long as k(x)<log x,
one can let k=Kk(x) depend upon x without altering the proof. We now prove the
following result:
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Theorem 3. Let f(n) be a nonnegative, strongly additive function which tends
monotonically to 0 on the sequence of primes. Let A= 2 M and let C>A4

p
determine a sequence of integers my<...<my<... by the condition f(n;)=C. Let

kKD == = 1.

= logx

Then lim sup Lo ";’( )") = L

Proor. During the proof of the minimax theorem KATAI shows that for fixed
k=1

E,,(x)éB,ﬁC,-!-wﬂ?‘gx) "”U‘) +(¥ (41og x)— ¥ (log x).

For a strongly additive function C,=0, and

- Zf(p){; P f(p){[ ]+‘}

J=1 p=
L 7| Hil+}
J=1

If one drops the divisibility requirement and replaces [g] by l;— one obtains the
further inequality

! k o), ¥ ®
<I-{,§f(p);+’§f(p)} P
This implies that

Yows) | 5 1)

k p=k

Ey(x) < +o(1).

Although the inequalities were obtained under the assumption that k is fixed, they are
equally valid if k depends upon x as long as k(x)<log x. This will be true for large
x if we define

k(x) =

c—4 psé'uf(p) -

For this k(x), E,(x)<C+o(1) and lit}liup E,(x)=C.

But if E,(x)<C, then every interval of length k(x) contains at least one n;
such that f(n;)=C. Therefore, for all m;=x, (n;+;—n;)=k(x) which finishes the
proof.

A similar result has been obtained by GALAMBOS [1] for the case where f(p) L)

and C=2. In this case 4 can be shown to be less than 1 and k(x)=log log log x.
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