N-recurrent V-manifolds and Takeno's conjecture

By F. SÖLER (Moncton)

1. Introduction

Takeno and Kitamura [1] have introduced the V-manifolds and they have developed the theory of V-space-times (cf. references in [2]). Later Takeno [2] has studied the recurrency conditions for V-manifolds. He found the same conditions for 1, 2, and 3-recurrent V-manifolds, and he conjectures that this condition is also true for n-recurrent manifolds ($n \ge 4$). In this paper, the author will formulate again the recurrency conditions in a some different way, to find among other theorems a proof of Takeno's conjecture. It will be shown here that the same results as in [2] can be found easily without computing $\nabla^2 R$ and $\nabla^3 R$ in a local chart. The computations for finding the components of different tensors were realized with an IBM-370 using methods developed by the author [3].

A V-manifold is defined here to have, in a local coordinate system, the following non-vanishing components for the covariant metric tensor:

$$(1-1) g_{11} = -1 g_{22} = -B g_{33} = -C g_{44} = D$$

where B, C and D are functions of a single variable x, and are of class C^{∞} :

2. Recurrent and symmetric manifolds

Symmetric manifolds, in short s-manifolds were introduced and completely investigated by Cartan [4]. Recurrent manifolds, in short r-manifolds, were introduced by Ruse [5] and most of their properties investigated by Walker [6].

Let R be the Riemann—Christoffel tensor defined by: $R(x, y)z = [\nabla_x, \nabla_y]z - \nabla_{[x,y]}z$ where $x, y, z \in \Re$ are vector fields and ∇ is the connexion on the manifold. It will be supposed here that the torsion: $T(x, y) = \nabla_x y - \nabla_y x - [x, y] \equiv 0$, is

The recurrency condition can be formulated:

$$(2-1) \nabla R = R \otimes a$$

where a is a 1-form.

In a similar way an r^n -manifold is defined, when the following condition is satisfied:

$$\nabla^{(n)}R = R \otimes t$$

where $t \in \overset{\circ}{\otimes} \Re^*$ is a tensor field of order n.

We will consider s-manifolds as special cases of r-manifolds; they arise if in (2-1) $a \equiv 0$, i.e.: $\nabla R = 0$; and we get an sⁿ-manifold if $t \equiv 0$ in (2-1), i.e.: $\nabla^{(n)}R = 0$.

The properties of r-manifolds have been investigated by several authors (see references in [7] and [8]). In this paper, we will use some of these properties which are well known. To simplify the presentation these will be given in form of propositions without proof.

Proposition 2-1. Any r-manifold is a r^n -manifold i.e.: if $\nabla R = R \otimes a$ then $\nabla^{(n)}R = R \otimes t$ where $t = f(a, \nabla a, ..., \nabla^{(n-1)}a)$.

In particular for r^2 -manifolds the recurrence tensor **b** is given by $b = a \otimes a + \nabla a$.

Proposition 2-2. If $\nabla R = 0$ then $\nabla^{(n)} R = 0$.

Proposition 2-3. For r-manifolds the recurrence's 1-form is closed, i.e. $a = d\theta$:

Proposition 2-4. If $R \neq 0$ (scalar curvature) then the 1-form of recurrence is given by $a = d \ln R$.

Proposition 2-5. If $R \neq 0$ then any r^2 -manifold is necessarily an r-manifold.

Proposition 2-6. For non-simple r-manifolds the recurrence 1-form a is isotropic and recurrent. i.e.: $\nabla a = \tau \cdot a \otimes a$, and g(a, a) = 0.

Proposition 2-7. For r^2 -manifolds the recurrence tensor is symmetric, Ab=0. Let us now investigate the conditions for an r-manifold, with $a \neq 0$, to be an s^2 -manifold.

We must have $b=0 \Leftrightarrow \nabla a = \tau \cdot a \otimes a$ and we can state:

Proposition 2-8. The only r-manifolds which can be s²-manifolds are the non-simple ones in Walker's classification [6].

The properties of r-vector fields can be found elsewhere [9].

Proposition 2-9. A manifold with constant curvature is necessarily an s-manifold.

Proposition 2-10. In an r-manifold there exists a tensor $S \in \mathfrak{T}$ which has the same properties of symmetry as R and such that it is parallel $\nabla S = 0$ and is collinear to R; i.e.: $S = \varphi R$ and φ is given by: $\varphi = \exp \{k\theta\}$ where $d\theta = a$, and if in particular $R \neq 0$ then $\varphi = \tau \cdot R$.

PROOF. Since $\nabla S = \nabla \varphi \otimes R + \varphi \cdot \nabla R$ and $\nabla R = R \otimes a$, we have:

(2-3)
$$\nabla \varphi + \varphi \cdot \mathbf{a} = 0 \Rightarrow \mathbf{a} = d \ln \varphi$$

Now as $a = d\theta$ we get: $\varphi = e^{k\theta}$, and we have the first part of proposition 10. The second part follows immediately from proposition 4. Because $a = d \ln R$,

The second part follows immediately from proposition 4. Because $a=d \ln R$, from (2-3) we get $d \ln \varphi = d \ln R$.

3. Recurrency conditions for V-manifolds

In a coordinate system the recurrency condition can be written, as follows:

$$\nabla_{\mu}R_{\alpha\beta\rho\sigma} = a_{\mu}R_{\alpha\beta\rho\sigma}$$

Proposition 3-1. For indicies α , β , ϱ , σ and μ fixed, we have:

i) if
$$R_{\alpha\beta\rho\sigma} = 0$$
 then $\nabla_{\mu} R_{\alpha\beta\rho\sigma} = 0$

ii) if
$$\nabla_{\mu} R_{\alpha\beta\rho\sigma} = 0$$
 and $R_{\alpha\beta\rho\sigma} \neq 0$ then $a_{\mu} = 0$.

Let X(x) be an arbitrary non-vanishing function of x. We put:

(3-2)
$$\varphi_n(X) \equiv X^{(n+1)}/X^{(n)}$$

for
$$n \in \mathbb{Z}^+$$
 and $X^{(n)} \equiv \frac{d^n}{dx^n} X(x)$, $X^{(0)} \equiv X(x)$.

By straightforward computation it will be found that:

(3-3)
$$\frac{d}{dx}\varphi_n = \varphi_n(\varphi_{n+1} - \varphi_n) : n \in \mathbb{Z}^+$$

We define the following functionals:

$$F(X) \equiv \frac{1}{4} \varphi_0(X) [\varphi_0(X) - 2\varphi_1(X)]$$

(3-4)
$$H(X) \equiv \frac{1}{2} \, \varphi_0(X) [\varphi_0^2(X) - 2\varphi_1(X) \, \varphi_0(X) + \varphi_1(X) \, \varphi_2(X)]$$
$$G(X, Y) \equiv \frac{1}{4} \, \varphi_0(X) \cdot \varphi_0(Y)$$

$$J(X,Y) \equiv \frac{1}{2} [\varphi_0(X) + \varphi_0(Y) - 2\varphi_1(X)].$$

We can now write the non-vanishing independents components of R:

(3-5)
$$R_{1212} = -B \cdot F(B)$$

$$R_{1414} = D \cdot F(D)$$

$$R_{2323} = B \cdot C \cdot G(B, C)$$

$$R_{2424} = -B \cdot D \cdot G(B, D)$$

$$R_{3131} = -C \cdot F(C)$$

$$R_{3434} = C \cdot D \cdot G(C, D)$$

For the components $\nabla_1 R$ we have:

$$R_{1212/1} = B \cdot H(B)$$

$$R_{1414/1} = -D \cdot H(D)$$

$$R_{2323/1} = -B \cdot C \cdot G(B, C) [J(B, C) + J(C, B)]$$

$$R_{2424/1} = B \cdot D \cdot G(B, D) [J(B, D) + J(D, B)]$$

$$R_{3131/1} = C \cdot H \cdot (C)$$

$$R_{3434/1} = D \cdot C \cdot G(C, D) \cdot [J(C, D) + J(D, C)]$$

and for the other components:

(3-7)
$$R_{1223/3} = B \cdot C \cdot G(B, C) \cdot J(B, C)$$

$$R_{1224/4} = -B \cdot D \cdot G(B, D) \cdot J(B, D)$$

$$R_{1424/2} = B \cdot D \cdot G(B, D) \cdot J(D, B)$$

$$R_{1434/3} = D \cdot C \cdot G(C, D) \cdot J(D, C)$$

$$R_{3123/2} = C \cdot B \cdot G(C, B) \cdot J(C, B)$$

$$R_{3134/4} = C \cdot D \cdot G(D, C) \cdot J(C, D)$$

and the scalar curvature is given by:

(3-8)
$$\mathbf{R} = -2[F(B) + F(C) + F(D) - G(B, C) - G(B, D) - G(D, C)]$$

By inspection of (3-5), (3-6) and (3-7), we get for example:

$$R_{1212} \neq 0$$
 and $R_{1212/\alpha} = 0$ for $\alpha = 2, 3, 4$

and from proposition (3-1) ii) we get:

$$a_2 = a_3 = a_4 = 0.$$

Now we can state

Proposition 3-2. For V-manifolds the most general form for the recurrency's 1-form is given in a local chart by: $a_{\mu} = \delta^{1}_{\mu} a_{1}$.

Let us consider now the different cases of V-manifolds when all of the functions B, C and D are not constants.

All of the \overline{B} , \overline{C} and \overline{D} (here $X = \frac{dX(x)}{dx}$) cannot vanish, otherwise the manifold is flat.

Type I: All functions differents from zero $\overline{B} \cdot \overline{C} \cdot \overline{D} \neq 0$.

Type II: At most one vanishing function. Subcases:

$$II_a$$
: $\overline{B} = 0$, $\overline{C} \cdot \overline{D} \neq 0$
 II_b : $\overline{C} = 0$, $\overline{B} \cdot \overline{D} \neq 0$
 II_c : $\overline{D} = 0$, $\overline{B} \cdot \overline{C} \neq 0$

Type III: At most one non-vanishing function Subcases:

$$III_a$$
: $\overline{B} \neq 0$, $\overline{C} = \overline{D} = 0$

$$III_h$$
: $\overline{C} \neq 0$, $\overline{B} = \overline{D} = 0$

$$III_c$$
: $\overline{D} \neq 0$, $\overline{B} = \overline{C} = 0$

These three different types will be investigated in the following three sections.

4. Recurrency conditions and solutions for type I

We have $\overline{B} \cdot \overline{C} \cdot \overline{D} \neq 0$ and from (3-1), (3-5) and (3-6) we get:

A1)
$$a_1 = -\frac{H(X)}{F(X)} = J(X, Y) + J(Y, X)$$

for X any of B, C, or D, and $X \neq Y$. From (3-7) and proposition (3-1) i) we get:

$$B1) J(X,Y) = 0$$

for X, Y any B, C, or D, and $X \neq Y$. When B1 is satisfy follows that

- i) $a_1 = 0$
- ii) H(X) = 0, for X any B, C or D.

Let us investigated the case when condition B1 is satisfied. It follows from the definition of J in (3-4) that:

$$(4-2) J(X,Y) = 0 \Leftrightarrow \varphi_0(X) + \varphi_0(Y) = 2\varphi_1(X)$$

and since (4-2) must be true when (X, Y) is replaced by any of the couples (B, C), (B, D), (C, B), (C, D), (D, B) or (D, C), we must have

$$\varphi_0(X) = \varphi_0(Y)$$

for any X and Y. Then the equation (4-2) become

and with the help of definition (3-2) the solution of this differential functional equation, can be found easily to be:

$$(4-5) X(x) = x \cdot e^{kx}$$

Now condition ii) of (4-1) imposes more restrictions on (4-5).

(4-6) If
$$H(X) = 0$$
 then $\varphi_0^2(X) - 2\varphi_0(X)\varphi_1(X) + \varphi_1(X) = 0$

and with (4-4), (4-6) become

From (3-2) we have $\varphi_n(X) = k$ and then from (3-4) and conditions (4-4) and (4-7) we get: $F(X) = -G(X, Y) = -k^2/4$.

The scalar curvature can be written:

(4-8)
$$R = -\varphi_0(B) \cdot J(B, C) - \varphi_0(C) \cdot J(C, D) - \varphi_0(D) \cdot J(D, B)$$

from B1 we get R=0.

We can formulate these results in the four following propositions.

Proposition 4-1. Recurrent V-manifolds of type I impose the following restrictions on the functions:

$$B = x_1 e^{kx}$$
, $C = x_2 e^{kx}$ and $D = x_3 e^{kx}$

Proposition 4-2. Recurrent V-manifolds of type I are conformal to flat manifold. i.e.: W=0 (Weyl's tensor).

Proposition 4-3. Recurrent V-manifolds of type I are manifolds of constant curvature. i.e. they verifying

$$R_{\alpha\beta\varrho\sigma} = k(g_{\alpha\varrho}g_{\beta\sigma} - g_{\alpha\sigma}g_{\beta\varrho}).$$

Proposition 4-4. Recurrent V-manifolds of type I are s-manifolds i.e. the recurrency's 1-form is $a \neq 0$.

The last proposition follows also from proposition (4-3) and (2.9).

5. Recurrency conditions for type II. The solutions are similar for each one of the different subcases. For each subcase we have only one function constant.

From (3-1), (3-5) and (3-6), we get:

A2)
$$a_1 = -\frac{H(X)}{F(X)} = -\frac{H(Y)}{F(Y)} = J(X, Y) + J(Y, X)$$

and from (3-7) and proposition 3-1:

$$B2) J(X,Y) = J(Y,X) = 0$$

here X and Y are different and they replace for each case II_a , II_b , II_c , and (C, D), (B, D), (B, C) respectively.

When B2 is satisfied we get

i)
$$a_1 = 0$$

(5-1)

ii)
$$H(X) = H(Y) = 0$$
.

Using definition (3-2) and with the help of (3-3) it is a straightforward matter to verify that if

$$\frac{d}{dx}F = -H$$

then condition (5-1) ii) is equivalent to:

$$(5-3) F = C^{te} \neq 0.$$

Otherwise $X=(x+b)^2$, $Y=C^{te}$ i.e. the manifold is flat R=0.

The integral of the differential equation (5-3) can easily be found if we note that $\varphi_0^1 = \varphi_0 \cdot \varphi_1 - \varphi_0^2$, and if we replace by (5-3) and put the constant $-\frac{1}{4}k^2$ we get the differential equation:

$$\frac{d\varphi_0}{k^2 - \varphi_0^2} = \frac{1}{2} dx.$$

The solutions are

i)
$$\varphi_0^2 < k^2$$
, $k^2 > 0$, $X(x) = \cos h^2 z$

ii)
$$\varphi_0^2 < k^2$$
, $k^2 < 0 \Rightarrow X(x) = \cos^2 z$

(5-4) iii)
$$\varphi_0^2 > k^2$$
, $k^2 > 0 \Rightarrow X(x) = \sin h^2 z$

iv)
$$\varphi_0^2 > k^2$$
, $k^2 < 0 \Rightarrow X(x) = \sin^2 z$

v)
$$k^2 = 0 \Rightarrow X(x) = (x+b)^2$$

where $z = \frac{1}{2}kx + c$, k and c are constants.

If we replace the solution X(x) in the differential equation J(X, Y) = 0 we get: $\varphi_0(Y) = 2\varphi_1(X) - \varphi_0(X)$, and the solutions for the above five cases are respectively:

- i) $Y(x) = \sin h^2 z$
- ii) $Y(x) = \sin^2 z$
- iii) $Y(x) = \cos h^2 z$
- iv) $Y(x) = \cos^2 z$
- v) $Y=C^{te}$.

In each one of the four cases, the conditions B2 and (5-1) are identically satisfied.

Proposition 5-1. Recurrent V-manifold of type II impose the followin restriction on the functions:

- a) B=X, C=Y and $D=C^{te}$
- b) B=Y, C=X and $D=C^{te}$

with $X = \cos h^2(k_1x + k_2)$ and $Y = \sin h^2(k_1x + k_2)$ where k_1 is a complex number with either the real or imaginary part vanishing.

Proposition 5-2. Recurrent V-manifolds of type II are s-manifolds.

6. Recurrency conditions for type III.

In these three cases we have only one non-constant component for the covariant metric tensor. We get only one condition, namely:

$$a_1 = -\frac{H(X)}{F(X)}$$

All other components of R and ∇R are identically vanishing.

With (5-3) condition A3 can be written:

$$a_1 = \varphi_0(F)$$

By proposition 2-4 we have the equivalent condition:

$$a_1 = \partial_1 \ln R$$

where

$$\mathbf{R} = -\frac{1}{2} \,\varphi_0(\varphi_0 - 2\varphi_1)$$
$$= -2F$$

Only when $F=C^{te}\neq 0$ is the manifold an s-manifold. This differential equation was solutioned in section 5, and the solution is given by (5-4).

When F=0 the manifold is flat; then $X(x)=(x+b)^2$.

Proposition 6-1. V-manifolds of type III are always r-manifolds. In particular we have:

Proposition 6-2. V-manifolds of III with $F = C^{te}$ are necessarily s-manifolds and the restrictions are: one of B, C and D is equal to X and the other are constants. Here $X(x) = \cos h^2 z$ or $X(x) = \sin h^2 z$.

Proposition 6-3. When $F \neq C^{te}$ then the scalar curvature is non-constant and the manifold is properly $(a \neq 0)$ an r-manifold. The recurrency 1-form is given in the local chart by:

 $a_{\alpha} = \delta^{1}_{\alpha} \partial_{1} R$.

7. Takeno's conjecture

The results in the last three sections can be summarized by the table:

Type		Conditions on B, C and D		Solution	Recurrency 1-form	Manifold
I		all non-constants		$X = xe^{kx}$	a=0	s-manifold
П		only one constant		$X = \cos h^2(kx+c)$ $Y = \sin h^2(kx+c)$	a =0	s-manifold
Ш	s	only one	$F=C^{te}\neq 0$	$X = \cos h^{2}(kx+c)$ or $X = \sin^{2} h(kx+c)$	a=0	s-manifold
	r	non- constant	$F \neq C^{te}$	any other that $X \neq C^{te}$, $\cos h^2 z$, $\sin h^2 z$ or e^{kx}	$a_{\alpha} = \delta_{\alpha}^{1} \partial_{1} R$	r-manifold

For type I, II and III_s we can apply propositions 2-2. They are always s^n -manifolds.

For type III, we can apply propositions 2-1, 2-3, 2-4 and 2-5.

Let us investigate when a III_r -manifold is an s^2 -manifold. The square of the norm of the 1-form is $g(a, a) = a_1^2$ i.e.: it is always different from zero. Now we can apply propositions 2-6, 2-7, 2-8, 2-9 and 2-10.

We can state the following theorem:

Theorem 7-1. Non-symmetric r^n -manifolds are necessarily of type III_r, i.e.: $F \neq C^{te}$, they are always non-symmetric r-manifolds.

The following corollary asserts that Takeno's conjecture. cf. [2] is true.

Corollary 7-2. For V-manifolds the conditions for r^n -manifolds are the same for any $n \ge 1$.

In particular Takeno's theorems cf. [2], [5-1], [5-2], [7-3] and [7-4] are here obtained without computing $\nabla^2 R$ and $\nabla^3 R$ and they can be generalized for any $n \ge 1$.

References

- [1] H. TAKENO and S. KITAMURA, On some special kind of spacetimes I. Tensor, N. S. 24 (1972), 266-272.
- [2] H. TAKENO, On the recurrency of the space-time V. Tensor, N. S. 27 (1973), 309-318.
- [3] F. Söler. Non-numerical computer methods for relativists Publ. Rapport Research M A 82—02, RMC 1983.
- RMC 1983.
 [4] M. E. CARTAN, Sur une classe remarquable d'espaces de Riemann. Bull. Soc. Math. France 54 (1926), 214—264.
- [5] H. S. Ruse, On simply harmonic spaces J. London Math. Soc. 21 (1946), 243—247.
- [6] A. G. WALKER, On Ruses's spaces of recurrent curvature. Proc. London Math. Soc. 2. Ser. 52 (1950), 36—64.
- [7] F. Söler, Sur les variétés récurrentes conformément planes. C. R. Acad. Sc. Paris, A, 277 (1973), 601—603.
- [8] C. D. COLLINSON and F. SÖLER, Second order conformally recurrent and birecurrent plane fronted waves. Tensor, N. S. 27 (1973), 37—40.
- [9] F. SÖLER, r-vector fields on metric manifolds Ann. Math. P. and Appl., 4, 119 (1979), 1-8.

DÉPARTMENT DE MATHÉMATIQUE UNIVERSITÉ DE MONCTON, MONCTON, N.-B., CANADA

(Received May 14, 1985; in revised form February 13, 1986.)