On reduction of bivector connections

By LASZLO KOZMA (Debrecen)

In this paper some reduction problems are investigated for connections of bi-
vectors, i.e. of contravariant antisymmetric tensors of order 2. This class of tensors
has an important geometrical content, namely, there is a close relation between the
simple (in other words, decomposable) bivectors and the 2-dimensional plane direc-
tions. Furthermore, in the geometry of areal spaces simple bivectors (in general,
m-vestors) are fundamental objects of study.

Given a linear connection in a vector bundle &, one can easily construct an in-
duced linear connection in the bivector bundle A2, It can be also said that the bi-
vector connection obtained in this manner reduces to a vector connection. An induced
bivector connection has naturally the property that the parallel transport of bivec-
tors maps simple bivectors into simple ones. S. STEINER [1] proved that this property
is not only necessary but sufficient for reduction of a linear bivector connection to a
vector connection. This is also an immediate consequence of a result of L. TAMAssY
[2]. Our aim is to find other conditions for reduction of bivector connections.

In the first section the preliminary notions and the notations used are fixed.
Then, according to various approaches of connection theory, the reduction question
of linear bivector connections is investigated, in Section 2 from vector bundle view-
point, and in Section 3 in the principal bundle framework. Finally the two lines of
the study is synthetized.

1. Preliminaries

Bundles

In this paper the usual differential geometric conditions are assumed. All mani-
folds are paracompact, finite dimensional and of class C*, maps and functions are of
class C=. {=(E, n, B, F) denotes a real vector bundle of finite rank s, with the
total space E, the n-dimensional base space B, the projection n: E—B, the fibre
type F. The fibre 77(x) over x¢€ B is denoted by E,. The construction theorems for
vector bundles admit to create the bivector bundle A2%*=(A%E,n,, B, \*F) belong-

ing to the vector bundle ¢. The rank of the bivector bundle A% is ; . A bivector

in the form a«A#(a,f€F) is called simple (or decomposable). Considering all
simple bivectors in the fibres we obtain a subbundle of A2, called the Grassmann
cone bundle Z3*¢=(Z*E, nz, B) belonging to &. Z2*¢ is not a vectorial subbundle
of A%,
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P(&)=(P, p, B, GI(F)) denotes the frame bundle belonging to &. Then the
fibre P, over x€B consists of linear isomorphisms F—E,. Accordingly, the frame
bundle of the bivector bundle AZ¢ is denoted by P(A*&):(P“,pA,B, GI(A%)).
Now we describe a subbundle of P(/\2¢), which consists of the so-called induced
bivector frames. A bivector frame R: A*F—-A2E, over x¢B is called induced
when R=A? for some reP,, ie. R(aanb)=r(a)ar(£) for all a,f€F. The set
of all induced bivector frame is denoted by P4. The action of GI(F) on P} can be
defined in a natural way: (R, g)—A\%rog) for R=A%*€cP}), gcGI(F). Thus we
obtain readily the following.

Proposition 1. The principal bundle P,(\*¢)=(P},p, , GI(F)), with the struc-
ture group GI(F) is a reduced subbundle of the frame bundle P(/\*¢), which is isomor-
phic to P(%).

Connections

Starting from a vector bundle £ we can construct the canonical short exact
sequence

(1 0-VEs TE_‘E-L n*(tg) = 0
4
[

where V¢ denotes the vertical subbundle of the tangent bundle 7 of the total space
E, n*(tp) is the pull-back bundle of the tangent bundle 7 of the base space B by =,
and dn («)=(ng(«), dn(«)) for «€TE. A splitting H: n*(t)—~1g of (1), for which
dno H=id,, holds, is called a VB-horizontal map for £. It is well known (see [3],
[4]) that all fundamental data of connection theory can be derived from a horizontal
map. The images H, at z€E, called horizontal subspaces, are supplementary sub-
spaces to the vertical subspaces V_E, z€ E. The horizontal and vertical projections

are h:= HOEE, vi=id—h resp. We obtain a linear connection when the horizontal
projection satisfies the homogeneity condition ([4]): (HC) for all real 1€ R du,ch=
=hody,, where u,: E~FE is the scalar multiplication by ¢ in the fibres. Then the
covariant derivation V: X(B)XSec {—~Sec ¢ is given as follows: (X, o)—Vyo:=
i=a+V.do(x), where a: VZ—¢ is the canonical epimorphism. A section o€Sec ¢
is called parallel along a curve ¢ in B, if Vz;06=0, where ¢ denotes the tangent curve
in TB belonging to . It gives the possibility to define the parallel transport of a fiber
into another along a curve of the base space. Thus we obtain a parallelism structure
T, in ¢, which could be also a starting point of definition for linear connections (see
[5]). We will need the explicite formula between the covariant derivation and the
parallel transport:

@ V2o () = lim 1 (75 (0 (p (0) ~0 (x)

where ¢: I—+B is such a surve that ¢(0)=X(x), x<B.
The theory of linear connections can be built also upon the principal bundles.
Let us consider the frame bundle P(£)=(P, p, B, GI(F)) belonging to &. A splitting
HP? of the short exact sequence
0 = VP(E)L 7,2+ p*(z) = 0

{ w |
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constructed from P(£) is called a PB-horizontal map when its horizontal projection
AP is invariant with respect to the right action of the structure group GI/(F):

dR,-h? = h?-dR, for all a€cGI(F).

As it is well known [6] there is a one-to-one correspondence between the set of VB-
horizontal maps satisfying the homogeneity condition (HC) and the set of PB-
horizontal maps, i.e. the linear connections in ¢ are just the principal connections of
the frame bundle P(&). The exact relation between H and H?” is expressed by the
following commutative diagram:

P*(15) —2—» 7*(15) where for all «¢F
HP H i,,P-E r—r(a
Tp d‘a TE and L: p* (tB) = T[* (TB) ("; 1") e (in (r)s f)).

Considering the parallel transport 75 belonging to H? in the frame bundle P($),
an analogous commutative diagram holds for the parallelism structures

ia

P40 Eq(0)

(3) T2()

La
Pfﬂ(r) Ew{t)

T,

for all curve ¢ in B and «€ F. The parallel transports T, and T% determine uniquely
each other through this diagram.

2. Induced linear connections in the bivector bundle

Let us consider a linear connection in a vector bundle ¢&. When denoting its
covariant derivation by V, we can readily see that there exists a unique covariant

derivation V: X(B)XSec A% —~Sec A2¢ in the bivector bundle A%( such that
(@) Ve(eAn) = VeaAn+6AV,

holds for all ¢, n€Sec ¢ and XeX(B). In fact, we may define V for simple bivector
sections by (4), and then requiring the usual properties of a covariant derivation, V
is extended for arbitrary bivector sections.

On the other hand, there is a second way of induction by means of parallelism
structure. Considering the parallel transport T, belonging to the given linear connec-
tion in &, there is a unique parallel transport T, in the bivector bundle such that
T,(1)=AT,(¢) holds for all curve ¢ in B, i.e. for all z;,z,€Eyq To(t)(z:/\22)=
=To(1)(z1) A Ty (1)(2).

This latter way of induction is equivalent to that one given by covariant deriva-
tion. To check it we calculate the covariant derivation V belonging to the parallelism

12 D
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structure T, by making use of (2). For all XcX(B) and o,, 0,€Sec ¢
V(@A) (x) = lim = [T, (0030 (9 () — (1A o) ()]

Since T, '(1)=A*T,*(t) holds, we can continue as

= lim — [T (00D A9 (1))~ () Ao ()] =

= lim % [T, () (o1 (@())AT; (D) (02(@ (1) — T, (1) (01 (@ (1)) Ao (x) +

+ T;l(")(al(‘P(’)))AUz(x) _Gl(x)Aaz(x)] =
= 01(x)\Vx0,3(x) + Vy0,(x) Aoy (x).

This means that V=V, for a covariant derivation of bivectors is uniquely deter-
mined by its action on the simple bivectors. The linear bivector connection H”,
constructed by covariant derivation, or by parallelism structure of a linear connec-
tion H in &, is called an induced linear connection in the bivector bundle. In this
situation we also say that the bivector connection reduces to a vector connection.

Now our question is inverted: under what assumption a linear bivector connec-
tion reduces to some vector connection. From the construction of an induced bivector
connection by means of parallelism structure it is clear that the induced parallel
transport in the bivector bundle maps simple bivectors into simple ones. The result
that this condition is not only necessary but also sufficient for reduction is due to
S. STEINER [1] and L. TAMAssy [2].

First let us consider the horizontal subspaces of an induced linear bivector con-
nection. Since these are spanned by the tangent vectors of parallel sections along
curves, and for an induced linear bivector connection simple bivectors are mapped
into simple bivectors, the horizontal subspaces at simple bivectors are in the tangent
space of the total space containing all simple bivectors. In order to prove that this
property not only necessary but also sufficient for reduction of a linear bivector con-
nection we are in need of the following.

Lemma. Let n'=(E’, B, n’, F’) be a subbundle of a vector bundle n, not neces-
sarily a vector subbundle of n. Supposing that all the horizontal subspaces H.E at the
point z€E’ of a connection are contained in the tangent space T.E’ of the total space
E’ belonging to n’, then also the following is true: if for a parallel section o€Secn
along a curve ¢ in B o(@(0))€E’ holds, then a(¢(t))€E’ for all t€l.

ProOF. Let E’|¢ denote the subbundle of n* over ¢: E’lop=|]J E,. From
tel

dimensionality reasons H;:=H.ENT.(E’|p) is a one-dimensional subspace for all
z€E’|@p. Therefore the distribution H;, z€E’|p is integrable, i.e. for z€E’|p
there exists a curve ¢’ in E’|p starting from z€E’|ep. By the local uniqueness of
parallel sections along curves we have ¢’ =c0¢.

Applying our lemma to the case n'=2Z2¢ and n=A*, we obtain immediately
the following result.
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Theorem. The parallel transport of a (linear) bivector connection maps simple
ones if and only if the horizontal subspaces belonging to the connection are contained in
the tangent space of the simple bivectors.

Combining our Theorem with the mentioned result of S. STEINER, we have a
characterizing property for the reduction of linear bivector connections.

Corollary. A linear bivector connection in N\*¢ reduces to some vector connection
in ¢ if and only if its horizontal subspaces at simple bivectors are contained in the tan-
gent space of the total space Z*E of the Grassmann cone bundle Z*¢ consisting of all
simple bivectors.

3. Induced principal connection in the frame bundle of bivectors

By the isomorphism j: P(&)—~P,(/A%¢) mentioned in Proposition 1 a principal
connection H” in P(£) can be lifted to a principal connection H? in Py(/\%). Since
Py(A%) is a reduced subbundle, H} can be extended to the whole bivector frame
bundle P(A*). The extended connection in P(A*) is denoted also by HZ. In this
manner, through principal connections, starting from a linear connection in & we
obtain a linear connection in the bivector bundle. This method is called PB-induction.
Now we are going to show that the two methods of induction introduced are equiv-
alent.

Let H be a linear connection in £. Its corresponding principal connection in the
frame bundle P(&) is denoted by H”. The VB-induced connection in A2%£, and the
PB-induced connection in P(A*¢) are denoted by H, , and H}, resp. Then

Theorem. The principal connection in P(A\*%) corresponding to H, is just equal
toH?.

PrOOF. Since the parallel transport structure determines uniquely the connection
structure, it is enough to prove that the diagram (3) commutes applied for the parallel
transports T, , belonging to H, and T} , belonging to H}. Let </ be a simple
bivector in the form &/ =a A£€Z*F, and let R be an induced bivector frame:
R=A?. Calculate iy oT} ,(t)(R). First notice that the following relation is valid
between the parallel transports 7% , and T belonging to H”:

T?,o(D(R) = AT (1)(r)
Therefore

i40T o(R) = igo N} (T (D)) = N*T(D)(r)(a\6) =
= (T3 DATZ (D) (r)(6)) = [i.oTZ O MIALig- T (1) ()] =
Now using the fact that the diagram commutes for 7% and T,, we can continue as
= [(To(D0i,)(N]A[(Te(1)oig)(r)] = AT, (1) (r(a)Ar(£)) =
By the second definition of VB-induction A®*T,=T, , holds, thus we obtain finally
= (T),(0°i 4)(R),

12¢
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which means that the diagram in question is commutative. It should be remarked
that it is enough to check this relation only for simple bivectors, for they generate

the entire bivector space.
Our Theorem can be expressed also by the commutativity of the diagram:

linear connections in ¢ <« principal connections in P(¢)
VB-induction | PB-induction

Y

linear connections in A%¢ < principal connections in P(A2¢).
Finally a consequence of the Theorem is mentioned.

Corollary. A linear connection in the bivector bundle /\*¢ reduces to some vector
connection in & if and only if its corresponding principal connection in P(\*) is reduc-
ible to the reduced bundle P,(/\3*C).
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