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Some commutativity theorems for rings

By R. D. GIRI (Nagpur) and A. R. DHOBLE (Nagpur)

Abstract. In this paper we prove two results: (1) If, in a semiprime ring R, for
x, y ∈ R, there exist fixed positive integers n, m greater than 1 such that either (a)
[xn, ym] ∈ Z(R) or (b) (xn ◦ ym) ∈ Z(R) then R is commutative. (2) If, in a division
ring R, for x, y ∈ R there exists a positive integer n > 1 such that (xy)nyn − yn(yx)n

commutes with y, then R is commutative.

1. Introduction

Throughout this paper R represents an associative ring, Z(R) denotes
the center of R; [a, b] denotes the Lie product ab − ba and (a ◦ b) denotes
the Jordan product ab + ba.

In [5], Quadri, Khan and Ashraf have shown, that if R is a prime
ring and n > 1 a fixed positive integer, such that [xn, y] is central for all
x, y ∈ R, then R is commutative. We generalise this result in the form of
the following theorem:

Theorem 1.1. Let R be a semiprime ring and n, m fixed positive inte-
gers larger than 1, such that R satisfies one of the conditions (a) [xn, ym] ∈
Z(R), (b) (xn ◦ ym) ∈ Z(R), where x, y ∈ R, then R is commutative.

Abu–Khuzam and Adil Yaqub [1] proved that if R is a division
ring such that for all x, y ∈ R there exists a positive integer n = n(x, y)
for which (xy)n − (yx)n is in the center of R, then R is commutative. We
prove the generalized version of this theorem as follows:

Theorem 1.2. Let R be a division ring such that for all x, y in R
there exists a positive integer n = n(x, y) for which (xy)nyn − yn(yx)n

commutes with y, then R is commutative.

2. Preliminaries

We mention a few Lemmas without proof, which are well known.
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Lemma 2.1 (I.N. Herstein [2, Theorem]). Let R be a ring having
no nonzero nil ideals in which for every x, y ∈ R there exist integers
m = m(x, y) ≥ 1, n = n(x, y) ≥ 1 such that [xn, ym] = 0, then R is
commutative.

Lemma 2.2 (I. N. Herstein [3, Lemma 1.1]). Let R be a ring and
(0) 6= A a right ideal of R. Suppose that given a ∈ A, an = 0 for a fixed
integer n, then R has a nonzero nilpotent ideal.

Lemma 2.3 E. C. Posner [4, Theorem 1]). Let R be a prime ring of
Char R 6= 2 and d1, d2 derivations of R such that the iterate d1 · d2 is also
a derivation. Then at least one of d1, d2 is zero.

3. Preparatory results

To prove the above Theorem 1.1 we start with the following lemmas.

Lemma 3.1. For all x, y ∈ R, if [xn, [xn, ym]] = 0, then 2[xn, ym]2 =
[xn, [xn, y2m]], where m and n are positive integers.

Proof. We have to prove

2[xn, ym]2 − [xn, [xn, y2m]] = 0

L.H.S. = 2(xnym)2 + 2(ymxn)2 − 2ymx2nym − x2ny2m − y2mx2n

= 2xnymxnym + 2ymxnymxn − ymx2nym − ymx2nym−
− x2ny2m − y2mx2n

= (2xnymxn−ymx2n−x2nym)ym+ym(2xnymxn−x2nym−ymx2n)

= − [xn, [xn, ym]]ym − ym[xn, [xn, ym]]
= 0 = R.H.S. by the given hypothesis.

Lemma 3.2. Let m,n be fixed positive integers. If R is a prime ring
satisfying one of the conditions (a) [xn, ym] ∈ Z(R), (b) (xn ◦ ym) ∈ Z(R),
then R contains no nonzero nilpotent elements.

Proof. Suppose 0 6= a ∈ R and a2 = 0. Let R satisfy the condition
[xn, ym] ∈ Z(R) which implies

(1) [[xn, ym], x] = 0 for all x, y ∈ R.

Putting ax for x and xa for y in (1), and using a2 = 0, we get

(2) (ax)n+1(xa)m = 0
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Replacing x by xa + x in the above equation and again using a2 = 0, we
obtain
(3) (axa + ax)n+1(xa)m = 0

and so,
(axa + ax)n[(axa)(xa)m + (ax)(xa)m] = 0

simplifying the above equation and using a2 = 0, we get
{
(ax)na + (ax)n

}{
(axa)(xa)m + (ax)(xa)m

}
= 0

which implies (ax)n(axa)(xa)m + (ax)n+1 + (xa)m = 0. Using (2) in the
above equation, we get (ax)n+1a(xa)m = 0. This on simplifying gives
(ax)n+1(ax)ma = 0 which implies that (ax)n+m+2 = 0 for all x ∈ R.

If aR 6= 0, then by the above argument aR is a nonzero nil right ideal,
satisfying the identity (z)n+m+2 = 0 for all z ∈ aR. Thus by Lemma 2.2
we see that aR = 0 i.e. aRa = (0). This by primeness of R forces that
a = 0.

Similarly, we can prove the case when R satisfies the condition
(xn ◦ ym) ∈ Z(R).

Lemma 3.3. Suppose R is a division ring and m,n are fixed positive
integers greater than 1. Let R satisfy one of the conditions
(a) [xn, ym] ∈ Z(R), (b) (xn ◦ ym) ∈ Z(R), for all x, y ∈ R, then R is
commutative.

Proof. (a) First, we assume that

[xn, ym] ∈ Z(R) for all x, y ∈ R

This implies that [xn, ym] commutes with xk for any positive integer k, so
that
(6) [[xn, ym], xn] = 0 for all x, y ∈ R and

n,m positive integers.
Now there arise two cases: (A) CharR = 2 and (B) CharR 6= 2.

Case (A): Simplifying (6), we obtain

x2nym − 2xnymxn + ymx2n = 0 ,

which further yields [x2n, ym] = 0, because CharR = 2. This by lemma 2.1
gives that R is commutative.

Case (B): Putting y2 for y in (6) we get

(7) [xn, [xn, y2m]] = 0
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but by lemma 3.1 we have

(8) 2[xn, ym]2 = [xn, [xn, y2m]] .

By equation (7) and (8) we get

2[xn, ym]2 = 0 .

This implies that [xn, ym]2 = 0, since CharR 6= 2. This further yields by
lemma 3.2 that [xn, ym] = 0. Now applying lemma 2.1 we get that R is
commutative.

Proof (b). By hypothesis (xn ◦ ym) ∈ Z(R), which implies that
(xn ◦ ym) commutes with xk for any positive integer k, so that

(9) [(xn ◦ ym), xn] = 0

This gives [x2n, ym] = 0. Hence by lemma 2.1, R is commutative.

4. Proof of the theorems

We are now ready to complete the proof of our Theorem 1.1.

Proof of Theorem 1.1. In the beginning, we assume that R is a prime
ring. Then, R contains no nonzero zero divisior [Lemma 3.2]. Thus, by
a strengthening of Posner’s theorem [7, Corollary 1] R can be embedded
in a simple ring R′, satisfying the same condition [xn, ym] ∈ Z(R′) or
(xn ◦ ym] ∈ Z(R′). Now for any simple ring, there arise two cases (1)
either it is a division ring (2) or it is not a division ring. The case (1) gets
through by lemma 3.3. For case (2) a subring of R is homomorphic to
D2, and 2× 2 matrices over a division ring D satisfiy the given condition
[xn, ym] ∈ Z(R) or (xn ◦ ym) ∈ Z(R). But this contradicts the fact that
x =

[
1 0
0 0

]
, y =

[
1 1
0 0

] ∈ D2 do not satisfy the foregoing conditions. Hence
R is embeddeble in a division ring. Now using lemma 3.3 we obtain that
R is commutative.

In the next phase, since semiprime rings are subdirect sums of prime
rings. So the semiprime rings are also commutative under the hypothesis
given in theorem 1.1.

Proof of Theorem 1.2. Let x, y be any nonzero elements of R. By
hypothesis, there exists a positive integer n = n(x, y) ≥ 1 such that

(10) [(xy)nyn − yn(yx)n, y] = 0

Replacing x by xy−1 in the equation (10) and simplifying, we get
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[xnyn − yn+1xny−1, y] = 0(11)

(xnyn − yn+1xny−1)y − y(xnyn − yn+1xny−1) = 0 oror

xnyn+1 − yn+1xn − yxnyn + yn+2xny−1 = 0(12)

Multiplying (12), by y on the right hand side, we obtain

xnyn+2 − yn+1xny − yxnyn+1 + yn+2xn = 0

y(xnyn+1 − yn+1xn)− (xnyn+1 − yn+1xn)y = 0 oror

[yn+1, [xn, y]] = 0(13)

for all x, y ∈ R and n = n(x, y) ≥ 1.
Now, there exist two cases for the ring R.

Case (1): Characteristic of R is zero.
Substitute (1 + y) for y in (13) and expand the resulting equation by
binomial theorem then using (13), to obtain

(14) (n+1)[y, [xn, y]]+
n(n + 1)
| 2
¯

[y2, [xn, y]]+ · · ·+(n+1)[yn, [xn, y]] = 0

We observe that first replacement of y by (1 + y) in (13), reduces the
maximum power of y namely yn+1 to yn. Similarly the second, same
replacement, reduce yn to yn−1 and so on. Using all the equation like
(14), which are obtained by successive replacement of y by (1 + y) in
consequent equations, we ultimately obtain N [y, [xm, y]] = 0, where N is
some positive integer large enough. Since, characteristic of R is zero then
the equation N [y, [xm, y]] = 0 implies

(15) [y, [xn, y]] = 0

Replace y by x + y in (15) and using (15), we get

(16) [xn, [x, y]] = 0

Let Ir denote the inner derivation by Ir : x → [r, x]; then (16) becomes

Ixn Ix(y) = 0 .

Thus, by lemma 2.3, we have either Ixn = 0 or Ix = 0. If Ixn = 0 then
Ixn(y) = 0 for all y ∈ R that is [xn, y] = 0, which by lemma 2.1, gives that
R is commutative. In the case when Ix = 0 then Ix(y) = 0 for all y ∈ R,
which implies that xy = yx, thus, R is commutative.

Case (2) : Characteristic of R = p > 0.
By equation(13), we get

[y, [xn, yn+1]] = 0



40 R. D. Giri and A. R. Dhoble : Some commutativity theorems for rings

Which yields
(17) [yk(n+1), [xn, yn+1]] = 0

where k is a positive integer.
By induction on k and using (17), we can prove

(18) [xn, yk(n+1)] = ky(k−1)(n+1)[xn, yn+1]

Let CharR = p = k say, then

[xn, yp(n+1)] = py(p−1)(n+1)[xn, yn+1]

But R is of characteristic p, so above equation yields

[xn, yp(n+1)] = 0 for all x, y ∈ R .

This by lemma 2.1, gives that R is commutative.

Remark 4.1. Theorem 1.2 can be further generalized for semi sim-
ple rings, proofs following the pattern of those given by Quadri and
Ashraf [6].

Remark 4.2. The ring of 3× 3 strictly upper triangular matrices over
a ring provides a counter example to show that theorem 1.2 is not valid
for arbitrary rings.
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