Conditions for compactness of integral operator
on Musielak—Orlicz space of vector-valued functions

Ryszard Pluciennik (Poznati)

Abstract. There is given a criterion for compactness of the linear integral operator

Ax() = [ (K(t, ), x(s))dpy
1“I.

acting from a Musielak—Orlicz space of vector-valued functions into a Musielak—Orlicz space
of real-valued functions. Combining this result with results of papers [6] and [7], there is obtained
a condition for compactness of the Hammerstein operator in the form

Hx(t) = [ (K, $), £(s, x(5)))du.
¥

The application of the above-mentioned results leads to a theorem on the existence of solutions
of linear integral equations and integral equations of Hammerstein type in Musielak—Orlicz space.

0. Imtroduction. (7, Z, u) is a space of non-negative, non-atomic, complete and
o-finite measure; (X, | -|ly) denotes a reflexive and separable real Banach space and
(Y, -lly) denotes the dual space to the space X. We denote by S(X)=S(T, Z, X)
the linear space obtained from the set of all strongly u-measurable functions x: T—+X
by identifying the functions which are equal u-almost everywhere. Similarly, we
denote by S(Y)=S(T, X, Y) the space of strongly measurable functions from T
into Y. Moreover, let {y, x) stand for the value of the functional y€Y at the point
x€X. Obviously, for x€S(X) and y€S(Y) the function {y(-), x(-)) is pu-meas-
urable.

A function @: XX T—[0, =] is called an .4 -function if:

a) @ is B X Z-measurable (# is the Borel g-algebra in X),

b) for a.a. t€T the function @(-.,7): X—-[0, =] is lower semicontinuous,
convex, even for x€X and (0, t)=0,

c) there exists a measurable function «: T—(0, ==) such that for a.a. €T,
if x€X and ||x]|y=a(t), then ®(x,7)=1.

The functional I;: S(X)=[0, =] defined by

Io(x) = [ ®(x(0),1)du

is a convex pseudomodular (see [4]) on S(X). The pseudomodular 7, determines
the Musielak—Orlicz space

Ly = Lo(T, Z, X) = {x€S(X): Is(rx) <o for some r >0}
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The set
dom Iy = {x€S(X): Io(x) <<=}

is called the Orlicz class. Using the pseudomodular I,, we denote the Luxemburg
norm || -[lg: Le—[0, =) by
Ix]le = inf {r > 0: Io(r~*x) = 1}.

For every A4 -function @ we define the complementary function ¥: T'XY-[0, =]
by the formula

Y(y, 1) = sup {(y, x)—P(x, 1): x€X}

for every t€T, y€Y. The function ¥ is an 4 -function, too. The Musielak—Orlicz
space generated by the function ¥ is denoted by Ly and it is called conjugate to
the space Ly. It is worth to accentuate that the space Ly is not the dual space to
the space Ly in general (see [1]). The Luxemburg norm for Ly is denoted |- |ly.

One can consider another norm in the space Lg which is defined by the formula

IxI% = sup | [ (y(),x(®)dy
I y(]f)é 1 T
where

L) = [P(r@).1)dp.
r

The norm || -|% is called the Orlicz norm. The Orlicz norm for A -function ¥,
we define

Iyl = sup U(}'(I), x(0) d,ul.
Ig(x)=1"1
The Orlicz and Luxemburg norms are equivalent; in fact,

Ixlo = x| =2[x|e for every x€Lg
and . . '
Iyle = yl$ =2|yle for every y€Ly.

Moreover, for any function x€Lg and y€ Ly the function (y(-), x(-)): T—(— e, =)
is integrable and the following inequalities

a) | [O.x0)du| = [x|5]yle
b) | [ G@,x®)du = |xlo]yI¥
? 4

hold. Hereunder, let the following condition for A4 -function @ be satisfied:
(B): There exists an increasing sequence {T;} (i=1,2, ...) of sets from X with
u(T;)<ee for i=1,2,... such that

p(r\g T)=0

and there is a sequence {f,} (n=1,2,...) of y-measurable non-negative functions
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such that
[f@dp <o
T

for every i,n=1,2,... and ®(x,2)=f,(t) for x€X, |x[|x=n n=1,2,... and
for a.a. 1€T.

We shall denote by Eg the closure in Ly (with respect to the norm topology
in Lg) of the set of all simple functions from 7 into X vanishing outside a subset,
which is included in T; for some natural number i.

Note that E, is well defined, that is, the dependence on {7;} and {f,} from
Condition (B) is not essential (see [1]). Moreover, we put

d(x, Eg) = inf {|x—y|o: y€EEp} for x€Lg

II(E,, 1) = {x€Lo: d(x, Eg) < r).

We shall say that the function x€L, has an absolutely continuous norm, if
[lxxc lo—~0 for every decreasing sequence of measurable sets C,i¢p as n—< and
C.cT (a=1,2,..)

and

0.1. Theorem. A fimction x€Lg has an absolutely continuous norm if and only
if x€Eq (see (7], Th.1.2.).

We shall say that the family # of functons x€L, has equi-absolutely contin-
uous norms if for every £¢=>0 and for every decreasing sequence of sets C,l¢ as
n—e<, an n, can be found such that

Ixxe,lle <&

for all functions of the family 2, provided n=n,.

If X=Y=R, then the definition of .4 -function becomes simplified. In this
case we will denote M and N instead of @ and Y, respectively. Then the definition
of A -function is of the form:

A function M: RXT-|0, =] is called an A -function, if there exists a null
set AT such that the following conditions are satisfied:

a) for all 1€ T\ A the function M(-,): R—[0, =] is convex, nondecreasing,
even and M (0, 1)=0,

b) M(u, -): T—[0, ==] is measurable for every ucR.

In this case Condition (B) is equivalent to the condition

[ M(u, dp <
T
for every ucR and for each T; defined as in the vector case.
The complementary function we define
N(v, 1) = sup {uv—M(u, 1)} veR,1€T.
uéER
The pseudomodulars I, and Iy, Musielak—Orlicz spaces Ly, and Ly, norms
llags 0ol I=lns I -I% we define analogously as in case of vector-valued func-

tions. The Holder inequality and equivalence of the norms for A -functions M
and N remain also true.
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1. Continuity of linear integral operators

Let p; and p, be non-negative, non-atomic, complete and o-finite measures on
T; and T, respectively, and assume that @: XX T;—+[0, <] and M: RXT,—[0, <]
are A -functions. Let Ly and Ly, be Musielak—Orlicz spaces generated by @ and
M, respectively. Let the function K: T,XT;—~Y be strongly u,X u,-measurable.
Then for every strongly u,-measurable vector-valued function x: T;—+X, it is
evident that (K(--, -), x(-)) is strongly p,Xu,-measurable on 7,X7T,. We shall
consider an integral operator of the form

(1.1 Ax() = [(K(t,5), x(s)) dpy.
T

We shall naturally search for conditions for the continuity of A4 in terms of the
properties of the kernel X(#, s).

1.1, Theorem. If
IK(t, )¢ < o ae in T, and [K(-, -)|g€Ly,
then A is a continuous operator from the space Ly into the space Ly,.
Remark. The symbol |K(:+, +)|ly denotes that the norm is calculated for K

as a function of this variable which is denoted by one full-stop. [K(:-, «)lly is
an ciement of Ly, as a function of this variable which is symbolized by two full-

stops.

Proor. In view of the Holder inequality, we have

| [Ax@y@ d| = [| [ (K(1,5), %(5)) dps] iy (O] dpa =
T, T T

= [IK@, e lxl%ly®)ldpe = [x]% [1KE ely@)] dps
T, Ty
for x€Ly and y€Ly. Hence, applying the definition of the Orlicz norm, we obtain

4l = sup | ]_[ Ax(0y(0) dp| =
= [x|3 sup [1K(t, lely@ldus = [x|S[{IKC- -, |2
Ix0)=1 7,

for x€Lgy. From the assumption of the theorem follows that

IKC: -5 |2 <=,

and consequently, that 4 is a continuous operator from Ly into Ly. [
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2. Compactness of the linear integral operator

In the present section, we shall study the problem of conditions for the com-
pactness of the operator (1.1). We put

So(r) = {x€Lo: |x]|o <r}.
2.1. Theorem. (A criterion for compactness of the linear integral operator.) Let
K(t, ')EEI;: for a.da. fETg aﬂd

f (K(+,5), x(s))dmEEy for x€L,.
T,

The operator A is compact if and only if the set
A[Se(D)] = {Ax: x€Sp(1)}
has equi-absolutely continuous norms.

PROOF OF NECESSITY. Assume that A4 is compact, but the set 4[Sg(1)] has not
equi-absolutely continuous norms. This means that there exist a sequence of -
measurable sets C,cT with C,i¢ as n—-, a number g=>0 and a sequence
of functions x,€S¢(1) such that

lAxy2c e =8 for n=12,....

Since A[Se(1)] is conditionally compact, we can extract a subsequence {4x,, } from
the sequence {4x,}, which is convergent to an element y€L,,. Obviously, y belongs
to E,, as the limit of a sequence of the functions from E,,. Hence y has absolutely
continuous norm. This implies that there exists a number k, such that

g
||J’Xc,,kﬂu = To for k=k,.

Moreover, by convergence of the subsequence {4x, } in E,, a number k, can be
found such that

ﬂAx,,k—yﬂu*:-;—"- for k> k,.

Therefore,
lAx, Xcy, e = 1A%~ YIa+1Vic, e < &0

for k>max {k,, k,}, and we obtain a contradiction.

PROOF OF SUFFICIENCY. Suppose K(t, -)€Ey and the set A[Sg(1)] has equi-
absolutely continuous norms. Let {7, } be an increasing subsequence of u,-meas-
urable sets such that

CIT,“=T, and po(T,) <o for n=1,2,....

n=1

We choose &>0. Since T;\T, i¢ as n—e<o, a natural number ¢ can be found
such that

&
HAxXxz/zs I <5
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for x€Sg(1). In virtue of Theorem 2.2 from [9], a ball in the space Ly is Ey-weakly
compact. Therefore, every sequence of elements of a ball contains an Eg-weakly
convergent subsequence. It suffices to prove that 4 transforms an Ey-weakly con-
vergent sequence into a sequence which converges in norm. Suppose the sequence
x,€S54(1) (n=1,2,...) is Ey-weakly convergent to the function x,€S5(1). By
definition of Ey-weak convergence and by the fact that K(7, -)€Ey a.e. in T3,

we have
Axn (t) — f (K(.f, 5)! xu(s)> d;“l -ﬁ:* f (K(ts S), xo(-‘)) ddul

T, T,
a.e. in T,. Hence xTs, Ax, is convergent to Xr, Ax, everywhere, and consequently, it
converges to this function in measure. We note that g, (¢) Ax(?)=A[xr, x](2).
Obviously, yxr, x€Se(l) for x€Sg(1). From this it follows that the set

{itr,, Ax: x€So(1)

has equi-absolutely continuous norms, too. It is know that if a sequence convergent
in measure has equi-absolutely continuous norms, then it is convergent in norm
(see Lemma 2.3 in [8]). Thus

€
HXTgchn_XTgc Axoﬂu ] E

for n=>n,. Therefore, for an arbitrary sequence {x,} of elements of the ball S,(1),
which is Ey-weakly convergent to the function x,€S4(1), we have

| Axa— Axo| s = [xy, (AXs— AXo) |3+ [t 1, (A% — AX0)| 3 <
£ "
= 5‘!' EXT;\Tgchn]TM'I' nxr,\rgchuL-M = &,

provided n=n,, and this completes the proof. ||

2.2. Corollary. If the kernel K(t,s) as a fumction of the variable s belongs
to Ey for a.e. t€T, and |K(--, -)|g€Ey, then the linear operator (1.1) is a com-
pact operator from the space Ly into the space E,;.

Proor. It sufficies to verify that the assumptions of Theorem 2.1 are satisfied.
We note that, by Holder inequality, the operator A acts from Ly into E,,. Indeed,
et x€ Lg. Then

lAx(0)] = | [ (K, ), x()) dw| = |K(t, )le|x]$ ae. in T
1“I.

From this and by the assumption |K(, -)|g€Ey follows that Ax€E,,.

Now, we shall show that the set A[Ss(1)] has equi-absolutely continuous
norms. Let {C,} be a decreasing sequence which is convergent to the empty set.
For x€Se(1) and y€Ly, applying the Holder inequality, we obtain

| [ Ax@y@dps| = [| [ (K, 9),x(s)dw| |y ()] dps =
., G, Ty

= [IK@, lelxloly®ldus = [1KE, lely @) dp.
C, Cn
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In virtue of Theorem 0.1, for every >0 there exists a positive integer n, such that
for every x€Sg(1) and n=>n,, we have

lxzc, %= sup | [Ax@p() dus| = AIKC- -, pze, I <&
Ix0=1'¢,

Hence, the set A[S4(1)] has equi-absolutely continuous norms. Thus, Theorem 2.1
implies the conclusion.

3. Some remarks on compactness of Hammerstein operators

3.1. Definition. Suppose the function f: T;XX—+X satisfies the Carathéodory
conditions, i.e. it is continuous in X for almost all s¢7, and measurable for every
fixed u€X. The operator F, defined by the formula

[Fx](s) = f(s, x(5)),

where x€S(X), s€T;, is called a superposition operator.
The fundamental properties of the superposition operator are presented in
papers [6] and [7]. Among other things, the following results are presented there:

3.2. Theorem. If the operator F acts from II(Ey ,r) into Eg, then F is con-
tinuous at every point of II(Eg ,r).

3.3. Theorem. Suppose the operator F acts from the ball Sq (r) into dom I,.
Then F is bounded on any ball S, (ry) for ry<r, ie.

sup | Fx|g, <o

o
x| =<r,

3.4. Definition. The nonlinear integral operator
3.1) Hx(®) = [ (K(t5).f(s, x(5))) dpy
TI

is called the Hammerstein operator.

This operator can be represented as the composition of the nonlinear operator
F and a linear operator (1.1). Combining the conditions under which the operator
F acts from the space Lg, into Ly, and is continuous and bounded on Ly, with the
conditions under which the operator (1.1) acts from L, into Ey, and is compact,
we arrive at the conditions for compactness of the operator (3.1).

Let ¥, and ¥, be complementary functions to @, and ®,, respectively.

3.5. Theorem. Let @, satisfy the A, condition. If the kernel K(t,s) of the Ham-
merstein operator as a function of s belongs to Ey, for almost all t€T,, and
|K(-+, *Mp,€EEy, and F acts from Ly, into Eg,, then the Hammerstein operator
(3.1) is a continuous and compact operator from Lg, into E\. J§
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4. The existence of solutions of integral equations in Musielak—Orlicz space

Now, we shall apply the results from preceding sections to the theorem on
existence of solutions of integral equations in Musielak—Orlicz space. To this end,
we suppose: In=T,=T, py=p,=p, &3=9=M, ¥;=¥,=N, and X=Y=R.
We shall consider the integral equation

4.1) x(0) =% [ K(@t,9)x(s)du+z(i) for XxEEy,
oy

where % is a real number, z is an element of the space E,; and the kernel X: TX TR
is a pX p-measurable function.

4.1. Theorem. Let the kernel K(t,s) as a function of the variable s belong to
the space Ey for almost all t€T and let |K(-+, -)|x be an element of the space
E,,. Then the integral equation (4.1) has at least one solution in the ball with radius

4.2) e i

; L=2[A[[IKC- -, <l ”
for
4.3) el :

2|I&C- -+ < linllar

ProOOF. Let A be an integral operator defined by the formula (1.1). By Corol-
lary 2.2, the operator A is a compact operator from the space E, into itself, so the
operator B defined by the formula

Bx = xAx+z,

where % and z are as in the equation (4.1), is also a compact operator from the space
E,, into itself. First, we shall estimate the norm of elements of the set of values
of the operator 4 on some ball S§;(r)={x€Ey: ||x||§<r}. Using in turn the Fubini
theorem and twice the Holder inequality, we obtain
| [ Ax(@)y @) du| < rlyls|[IKC -5 ]
i

0
M»

for xe S§(r)cEy, and y€Ly. Hence, by the definition of the Orlicz norm and by
the equivalence of Orlicz and Luxemburg norms, we have

l4x|% = sup | [ Ax(@y@)dp|<2r[IKC- -+, lsllaes
Iy=1'p

for x€SE(r). Resuming to the operator B, let us note that the inclusion

B[SH(N] < Sk (r)
follows from the inequality

IBx18 = |xllAx]3c+ 1215 < 2r PllllKC- -5 < nllae+ 1205 < 7.

It is easy to verify that the above inequality ist rue if » and x satisfy the inequalities
(4.2) and (4.3), respectively. Thus, in virtue of Schauder’s fixed-point principle,
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there exists at least one element x,€S%(r) such that Bx,=x,. Therefore

Xo() = Bxo()) =% [ K(t, 9)x%(s) du+2(0),
T

S0 X, 1s the solution of the integral equation (4.1). §
Finishing this note, we shall consider the integral equation of Hammerstein
type in form

(4.4) x(0) = [ Kt )f(s, () du+2(0),

where z€E,, and the functions K and f are as in Definition 3.4.

Puting B=xHx+z and reasoning similarly as in the proof of Theorem 4.1,
we obtain a theorem on existence of solutions of integral equations of Hammer-
stein type.

4.2. Theorem. Let an N -function M satisfy the A, condition and let the super-
position operator F act from Ly, into itself. If K(t, -)€Ey for almost all t¢T and
IK(+, *)InELy, then for every r=|z|3; the integral equation (4.4) has at least
one solution in the ball S (r) for

_ -l
P =< ZMRC, inlhe”
where
a= sup [Fx[3%. B
Xpr ES(r)
References

[1] A. Kozek, (;rlgrcf 2spaces of functions with Values in Banach spaces, Comment. Math. 19 (1977),
p. 25 88.

[2] A. Kozek, Convex integral functionals on Orlicz spaces, ibidem 21 (1979), p. 109—135.

[3] M. A, l(m.mos%l EL'sk and YA. B. Ruticku, Convex function and Orlicz spaces, Groningen
1961.

[4] J. MusieLAk, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., Springer-Verlag
Berlin, Heidelberg, New York, Tokyo, (1983) vol. 1034.

[5] J. MusieLak and W. OrLicz, On modular spaces, Studia Math. 18 (1959), p. 49—65.

[6] R. PruciennIK, On some properties of the superposition operator in generalized Orlicz spaces
of vector valued functions, Comment. Math, 25, 2 (1985), p. 331—337.

[7]1 R. Pruciennik, Boundedness of the superposition operator in generalized Orlicz spaces of
vector-valued functions, Bull. Pol. Ac.: Math., 33 (1985), p. 531—540.

[8] R. PLuciENNIK, Some remarks on compactness in Musielak—Orlicz space of vector-valued
functions, Fasciculi Mathematici 16 (1986), p. 11—17.

[9] R. PrucienNik, On Ey-weak convergence and Ey-weak continuity in Orlicz spaces of vector
valued functions, Fasciculi Mathematici 13 (1981), p. 5—13.

[10] R. Pruciennik and S. SzurLa, Nonlinear Volterra integral equations in Orlicz spaces, Demon-
stratio Math. 72, 2 (1984), p. 515—532.

TECHNICAL UNIVERSITY
INSTITUTE OF MATHEMATICS
PIOTROWO 3A

60-965 POZNAN, POLAND

( Received September 23, 1985 )



