Conditions for compactness of integral operator on Musielak—Orlicz space of vector-valued functions

Ryszard Płuciennik (Poznań)

Abstract. There is given a criterion for compactness of the linear integral operator

$$Ax(t) = \int_{T_1} \langle K(t, s), x(s) \rangle d\mu_1$$

acting from a Musielak—Orlicz space of vector-valued functions into a Musielak—Orlicz space of real-valued functions. Combining this result with results of papers [6] and [7], there is obtained a condition for compactness of the Hammerstein operator in the form

$$Hx(t) = \int_{T_1} \langle K(t, s), f(s, x(s)) \rangle d\mu_2.$$

The application of the above-mentioned results leads to a theorem on the existence of solutions of linear integral equations and integral equations of Hammerstein type in Musielak—Orlicz space.

0. Introduction. (T, Σ, μ) is a space of non-negative, non-atomic, complete and σ -finite measure; $(X, \|\cdot\|_X)$ denotes a reflexive and separable real Banach space and $(Y, \|\cdot\|_Y)$ denotes the dual space to the space X. We denote by $S(X) = S(T, \Sigma, X)$ the linear space obtained from the set of all strongly μ -measurable functions $x: T \to X$ by identifying the functions which are equal μ -almost everywhere. Similarly, we denote by $S(Y) = S(T, \Sigma, Y)$ the space of strongly measurable functions from T into Y. Moreover, let $\langle y, x \rangle$ stand for the value of the functional $y \in Y$ at the point $x \in X$. Obviously, for $x \in S(X)$ and $y \in S(Y)$ the function $\langle y(\cdot), x(\cdot) \rangle$ is μ -measurable.

A function $\Phi: X \times T \rightarrow [0, \infty]$ is called an \mathcal{N} -function if:

a) Φ is $\mathscr{B} \times \Sigma$ -measurable (\mathscr{B} is the Borel σ -algebra in X),

b) for a.a. $t \in T$ the function $\Phi(\cdot, t)$: $X \to [0, \infty]$ is lower semicontinuous, convex, even for $x \in X$ and $\Phi(0, t) = 0$,

c) there exists a measurable function α : $T \rightarrow (0, \infty)$ such that for a.a. $t \in T$, if $x \in X$ and $||x||_X \ge \alpha(t)$, then $\Phi(x, t) \ge 1$.

The functional I_{φ} : $S(X) \rightarrow [0, \infty]$ defined by

$$I_{\Phi}(x) = \int_{T} \Phi(x(t), t) d\mu$$

is a convex pseudomodular (see [4]) on S(X). The pseudomodular I_{Φ} determines the Musielak—Orlicz space

$$L_{\Phi} = L_{\Phi}(T, \Sigma, X) = \{x \in S(X): I_{\Phi}(rx) < \infty \text{ for some } r > 0\}.$$

The set

$$\operatorname{dom} I_{\Phi} = \{x \in S(X) \colon I_{\Phi}(x) < \infty\}$$

is called the Orlicz class. Using the pseudomodular I_{φ} , we denote the Luxemburg norm $\|\cdot\|_{\Phi}$: $L_{\Phi} \rightarrow [0, \infty)$ by

$$||x||_{\Phi} = \inf \{r > 0 \colon I_{\Phi}(r^{-1}x) \le 1\}.$$

For every N-function Φ we define the complementary function $\Psi: T \times Y \rightarrow [0, \infty]$ by the formula

$$\Psi(y, t) = \sup \{ \langle y, x \rangle - \Phi(x, t) \colon x \in X \}$$

for every $t \in T$, $y \in Y$. The function Ψ is an \mathcal{N} -function, too. The Musielak—Orlicz space generated by the function Ψ is denoted by L_{Ψ} and it is called conjugate to the space L_{Φ} . It is worth to accentuate that the space L_{Ψ} is not the dual space to the space L_{Φ} in general (see [1]). The Luxemburg norm for L_{Ψ} is denoted $\|\cdot\|_{\Psi}$. One can consider another norm in the space L_{Φ} which is defined by the formula

$$||x||_{\Phi}^{0} = \sup_{I_{\Psi}(y) \le 1} \left| \int_{T} \left\langle y(t), x(t) \right\rangle d\mu \right|$$

where

$$I_{\Psi}(y) = \int_{T} \Psi(y(t), t) d\mu.$$

The norm $\|\cdot\|_{\Phi}^0$ is called the Orlicz norm. The Orlicz norm for N-function Ψ , we define

$$||y||_{\Psi}^{0} = \sup_{I_{\Phi}(x) \le 1} \left| \int_{T} \langle y(t), x(t) \rangle d\mu \right|.$$

The Orlicz and Luxemburg norms are equivalent; in fact,

$$\|x\|_{\Phi} \leq \|x\|_{\Phi}^{0} \leq 2\|x\|_{\Phi}$$
 for every $x \in L_{\Phi}$

and

$$||y||_{\Psi} \le ||y||_{\Psi}^{0} \le 2||y||_{\Psi} \text{ for every } y \in L_{\Psi}.$$

Moreover, for any function $x \in L_{\Phi}$ and $y \in L_{\Psi}$ the function $\langle y(\cdot), x(\cdot) \rangle : T \to (-\infty, \infty)$ is integrable and the following inequalities

a)
$$\left| \int_{T} \langle y(t), x(t) \rangle d\mu \right| \le ||x||_{\Phi}^{0} ||y||_{\Psi}$$

b)
$$\left| \int_{T} \langle y(t), x(t) \rangle d\mu \right| \leq ||x||_{\Phi} ||y||_{\Psi}^{0}$$

hold. Hereunder, let the following condition for \mathcal{N} -function Φ be satisfied:

(B): There exists an increasing sequence $\{T_i\}$ (i=1,2,...) of sets from Σ with $\mu(T_i) < \infty$ for i=1, 2, ... such that

$$\mu(T \backslash \bigcup_{i=1}^{\infty} T_i) = 0$$

and there is a sequence $\{f_n\}$ (n=1, 2, ...) of μ -measurable non-negative functions

such that

$$\int_{t^T} f_n(t) \, d\mu < \infty$$

for every $i, n=1, 2, \ldots$ and $\Phi(x, t) \leq f_n(t)$ for $x \in X$, $||x||_X \leq n$, $n=1, 2, \ldots$ and for a.a. $t \in T$.

We shall denote by E_{Φ} the closure in L_{Φ} (with respect to the norm topology in L_{Φ}) of the set of all simple functions from T into X vanishing outside a subset, which is included in T_i for some natural number i.

Note that E_{Φ} is well defined, that is, the dependence on $\{T_i\}$ and $\{f_n\}$ from Condition (B) is not essential (see [1]). Moreover, we put

$$d(x, E_{\Phi}) = \inf \{ ||x-y||_{\Phi} : y \in E_{\Phi} \} \text{ for } x \in L_{\Phi}$$

and

$$\Pi(E_{\Phi}, r) = \{x \in L_{\Phi} : d(x, E_{\Phi}) < r\}.$$

We shall say that the function $x \in L_{\Phi}$ has an absolutely continuous norm, if $\|x\chi_{C_n}\|_{\Phi} \to 0$ for every decreasing sequence of measurable sets $C_n \downarrow \Phi$ as $n \to \infty$ and $C_n \subset T$ (n=1, 2, ...).

0.1. Theorem. A function $x \in L_{\Phi}$ has an absolutely continuous norm if and only if $x \in E_{\Phi}$ (see [7], Th. 1.2.).

We shall say that the family \mathcal{R} of functons $x \in L_{\phi}$ has equi-absolutely continuous norms if for every $\varepsilon > 0$ and for every decreasing sequence of sets $C_n \downarrow \phi$ as $n \to \infty$, an n_0 can be found such that

$$\|X\chi_{C_n}\|_{\Phi} < \varepsilon$$

for all functions of the family \mathcal{R} , provided $n > n_0$.

If $X=Y=\mathbb{R}$, then the definition of \mathcal{N} -function becomes simplified. In this case we will denote M and N instead of Φ and Ψ , respectively. Then the definition of \mathcal{N} -function is of the form:

A function $M: \mathbb{R} \times T \to [0, \infty]$ is called an \mathcal{N} -function, if there exists a null set $A \subset T$ such that the following conditions are satisfied:

a) for all $t \in T \setminus A$ the function $M(\cdot, t)$: $\mathbb{R} \to [0, \infty]$ is convex, nondecreasing, even and M(0, t) = 0,

b) $M(u, \cdot)$: $T \rightarrow [0, \infty]$ is measurable for every $u \in \mathbb{R}$. In this case Condition (B) is equivalent to the condition

$$\int\limits_{T_t} M(u,\,t) d\mu < \infty$$

for every $u \in \mathbb{R}$ and for each T_i defined as in the vector case.

The complementary function we define

$$N(v,t) = \sup_{u \in \mathbb{R}} \{uv - M(u,t)\} \quad v \in \mathbb{R}, t \in T.$$

The pseudomodulars I_M and I_N , Musielak—Orlicz spaces L_M and L_N , norms $\|\cdot\|_M$, $\|\cdot\|_M^0$, $\|\cdot\|_N$, $\|\cdot\|_N^0$ we define analogously as in case of vector-valued functions. The Hölder inequality and equivalence of the norms for $\mathcal N$ -functions M and N remain also true.

1. Continuity of linear integral operators

Let μ_1 and μ_2 be non-negative, non-atomic, complete and σ -finite measures on T_1 and T_2 respectively, and assume that $\Phi\colon X\times T_1\to [0,\,\infty]$ and $M\colon \mathbb{R}\times T_2\to [0,\,\infty]$ are \mathscr{N} -functions. Let L_Φ and L_M be Musielak—Orlicz spaces generated by Φ and M, respectively. Let the function $K\colon T_2\times T_1\to Y$ be strongly $\mu_2\times \mu_1$ -measurable. Then for every strongly μ_1 -measurable vector-valued function $x\colon T_1\to X$, it is evident that $\langle K(\cdot,\cdot), x(\cdot)\rangle$ is strongly $\mu_2\times \mu_1$ -measurable on $T_2\times T_1$. We shall consider an integral operator of the form

(1.1)
$$Ax(t) = \int_{T_1} \langle K(t,s), x(s) \rangle d\mu_1.$$

We shall naturally search for conditions for the continuity of A in terms of the properties of the kernel K(t, s).

1.1. Theorem. If

$$||K(t, \cdot)||_{\Psi} < \infty$$
 a.e. in T_2 and $||K(\cdot, \cdot)||_{\Psi} \in L_M$,

then A is a continuous operator from the space L_{Φ} into the space L_{M} .

Remark. The symbol $||K(\cdot,\cdot)||_{\Psi}$ denotes that the norm is calculated for K as a function of this variable which is denoted by one full-stop. $||K(\cdot,\cdot)||_{\Psi}$ is an element of L_M as a function of this variable which is symbolized by two full-stops.

PROOF. In view of the Hölder inequality, we have

$$\begin{split} & \left| \int_{T_2} Ax(t) y(t) \, d\mu_2 \right| \leq \int_{T_2} \left| \int_{T_1} \langle K(t,s), x(s) \rangle \, d\mu_1 \right| |y(t)| \, d\mu_2 \leq \\ & \leq \int_{T_2} \| K(t, \, \cdot) \|_{\Psi} \| x \|_{\Phi}^0 |y(t)| \, d\mu_2 = \| x \|_{\Psi}^0 \int_{T_2} \| K(t, \, \cdot) \|_{\Psi} |y(t)| \, d\mu_2 \end{split}$$

for $x \in L_{\Phi}$ and $y \in L_N$. Hence, applying the definition of the Orlicz norm, we obtain

$$\begin{aligned} \|Ax\|_{M}^{0} &= \sup_{I_{N}(y) \leq 1} \left| \int_{T_{2}} Ax(t)y(t) \, d\mu_{2} \right| \leq \\ &\leq \|x\|_{\Phi}^{0} \sup_{I_{N}(y) \leq 1} \int_{T_{2}} \|K(t, \, \cdot)\|_{\Psi} |y(t)| \, d\mu_{2} \leq \|x\|_{\Phi}^{0} \left| \left| \|K(\cdot \, \cdot \, , \, \cdot \,)\|_{\Psi} \right| \right|_{M}^{0} \end{aligned}$$

for $x \in L_{\Phi}$. From the assumption of the theorem follows that

$$\|K(\cdot\cdot,\cdot)\|_{\Psi}\|_{M}^{0}<\infty,$$

and consequently, that A is a continuous operator from L_{Φ} into L_{M} .

2. Compactness of the linear integral operator

In the present section, we shall study the problem of conditions for the compactness of the operator (1.1). We put

$$S_{\phi}(r) = \{x \in L_{\phi} : ||x||_{\phi}^{0} < r\}.$$

2.1. Theorem. (A criterion for compactness of the linear integral operator.) Let $K(t, \cdot) \in E_{\Psi}$ for a.a. $t \in T_2$ and

$$\int\limits_{T_{\bullet}}\left\langle K(\,\cdot\,,s),x(s)\right\rangle d\mu_{1}{\in}E_{M}\quad\text{for}\quad x{\in}L_{\Phi}.$$

The operator A is compact if and only if the set

$$A[S_{\phi}(1)] = \{Ax: x \in S_{\phi}(1)\}$$

has equi-absolutely continuous norms.

PROOF OF NECESSITY. Assume that A is compact, but the set $A[S_{\Phi}(1)]$ has not equi-absolutely continuous norms. This means that there exist a sequence of μ_2 -measurable sets $C_n \subset T$ with $C_n \nmid \phi$ as $n \to \infty$, a number $\varepsilon_0 > 0$ and a sequence of functions $x_n \in S_{\Phi}(1)$ such that

$$||Ax_n\chi_{C_n}||_M > \varepsilon_0$$
 for $n = 1, 2, ...$

Since $A[S_{\Phi}(1)]$ is conditionally compact, we can extract a subsequence $\{Ax_{n_k}\}$ from the sequence $\{Ax_n\}$, which is convergent to an element $y \in L_M$. Obviously, y belongs to E_M as the limit of a sequence of the functions from E_M . Hence y has absolutely continuous norm. This implies that there exists a number k_1 such that

$$\|y\chi_{C_{n_k}}\|_M < \frac{\varepsilon_0}{2}$$
 for $k > k_1$.

Moreover, by convergence of the subsequence $\{Ax_{n_k}\}$ in E_M , a number k_2 can be found such that

$$||Ax_{n_k}-y||_M < \frac{\varepsilon_0}{2} \text{ for } k > k_2.$$

Therefore,

$$||Ax_{n_k}\chi_{C_{n_k}}||_M \le ||Ax_{n_k}-y||_M + ||y\chi_{C_{n_k}}||_M < \varepsilon_0$$

for $k > \max \{k_1, k_2\}$, and we obtain a contradiction.

PROOF OF SUFFICIENCY. Suppose $K(t, \cdot) \in E_{\Psi}$ and the set $A[S_{\Phi}(1)]$ has equiabsolutely continuous norms. Let $\{T_{2n}\}$ be an increasing subsequence of μ_2 -measurable sets such that

$$\bigcup_{n=1}^{\infty} T_{2_n} = T_2 \quad \text{and} \quad \mu_2(T_{2_n}) < \infty \quad \text{for} \quad n = 1, 2, \dots.$$

We choose $\varepsilon > 0$. Since $T_2 \setminus T_{2n} \downarrow \phi$ as $n \to \infty$, a natural number c can be found such that

$$\|Ax\chi_{T/T_{2_c}}\|_{M}<\frac{\varepsilon}{4}$$

for $x \in S_{\Phi}(1)$. In virtue of Theorem 2.2 from [9], a ball in the space L_{Φ} is E_{Ψ} -weakly compact. Therefore, every sequence of elements of a ball contains an E_{Ψ} -weakly convergent subsequence. It suffices to prove that A transforms an E_{Ψ} -weakly convergent sequence into a sequence which converges in norm. Suppose the sequence $x_n \in S_{\Phi}(1)$ (n=1, 2, ...) is E_{Ψ} -weakly convergent to the function $x_0 \in S_{\Phi}(1)$. By definition of E_{Ψ} -weak convergence and by the fact that $K(t, \cdot) \in E_{\Psi}$ a.e. in T_1 , we have

$$Ax_n(t) = \int_{T_1} \langle K(t,s), x_n(s) \rangle d\mu_1 \xrightarrow[n\to\infty]{} \int_{T_1} \langle K(t,s), x_0(s) \rangle d\mu_1$$

a.e. in T_2 . Hence χ_{T_2} Ax_n is convergent to χ_{T_2} Ax_0 everywhere, and consequently, it converges to this function in measure. We note that $\chi_{T_{2_c}}(t) Ax(t) = A[\chi_{T_{2_c}}x](t)$. Obviously, $\chi_{T_2} x \in S_{\Phi}(1)$ for $x \in S_{\Phi}(1)$. From this it follows that the set

$$\{\chi_{T_2} Ax : x \in S_{\Phi}(1)\}$$

has equi-absolutely continuous norms, too. It is know that if a sequence convergent in measure has equi-absolutely continuous norms, then it is convergent in norm (see Lemma 2.3 in [8]). Thus

$$\|\chi_{T_{2_o}}Ax_n-\chi_{T_{2_o}}Ax_0\|_M<\frac{\varepsilon}{2}$$

for $n > n_0$. Therefore, for an arbitrary sequence $\{x_n\}$ of elements of the ball $S_{\phi}(1)$, which is E_{Ψ} -weakly convergent to the function $x_0 \in S_{\Phi}(1)$, we have

$$||Ax_{n}-Ax_{0}||_{M} \leq ||\chi_{T_{2_{c}}}(Ax_{n}-Ax_{0})||_{M} + ||\chi_{T_{2}}|_{T_{2_{c}}}(Ax_{n}-Ax_{0})||_{M} < \frac{\varepsilon}{2} + ||\chi_{T_{2}}|_{T_{2_{c}}}Ax_{n}||_{M} + ||\chi_{T_{2}}|_{T_{2_{c}}}Ax_{0}||_{M} < \varepsilon,$$

provided $n > n_0$, and this completes the proof.

2.2. Corollary. If the kernel K(t, s) as a function of the variable s belongs to E_{Ψ} for a.e. $t \in T_2$ and $||K(\cdot, \cdot)||_{\Psi} \in E_M$, then the linear operator (1.1) is a compact operator from the space L_{Φ} into the space E_{M} .

PROOF. It sufficies to verify that the assumptions of Theorem 2.1 are satisfied. We note that, by Hölder inequality, the operator A acts from L_{φ} into E_{M} . Indeed, et $x \in L_{\varphi}$. Then

$$|Ax(t)| = \left| \int\limits_{T_1} \langle K(t,s), x(s) \rangle \, d\mu_1 \right| \le \|K(t,\,\cdot\,)\|_{\Psi} \|x\|_{\Phi}^0 \quad \text{a.e. in} \quad T_2.$$

From this and by the assumption $||K(t, \cdot)||_{\Psi} \in E_M$ follows that $Ax \in E_M$. Now, we shall show that the set $A[S_{\Phi}(1)]$ has equi-absolutely continuous norms. Let $\{C_n\}$ be a decreasing sequence which is convergent to the empty set. For $x \in S_{\Phi}(1)$ and $y \in L_N$, applying the Hölder inequality, we obtain

$$\begin{split} & \left| \int\limits_{C_n} Ax(t)y(t) \, d\mu_2 \right| \leq \int\limits_{C_n} \left| \int\limits_{T_2} \langle K(t,s), x(s) \rangle d\mu_1 \right| \, |y(t)| \, d\mu_2 \leq \\ & \leq \int\limits_{C_n} \| K(t, \, \cdot \,) \|_{\Psi} \| x \|_{\Phi}^0 \, |y(t)| \, d\mu_2 \leq \int\limits_{C_n} \| K(t, \, \cdot \,) \|_{\Psi} \, |y(t)| \, d\mu_1. \end{split}$$

In virtue of Theorem 0.1, for every $\varepsilon > 0$ there exists a positive integer n_0 such that for every $x \in S_{\Phi}(1)$ and $n > n_0$, we have

$$\|Ax\chi_{C_n}\|_{M}^{0} = \sup_{I_N(y) \le 1} \left| \int_{C_n} Ax(t)y(t) \, d\mu_2 \right| \le A \|K(\cdot \cdot, \cdot)\|_{\Psi} \chi_{C_n}\|_{M}^{0} < \varepsilon.$$

Hence, the set $A[S_{\Phi}(1)]$ has equi-absolutely continuous norms. Thus, Theorem 2.1 implies the conclusion.

3. Some remarks on compactness of Hammerstein operators

3.1. Definition. Suppose the function $f: T_1 \times X \to X$ satisfies the Carathéodory conditions, i.e. it is continuous in X for almost all $s \in T_1$ and measurable for every fixed $u \in X$. The operator F, defined by the formula

$$[Fx](s) = f(s, x(s)),$$

where $x \in S(X)$, $s \in T_1$, is called a superposition operator.

The fundamental properties of the superposition operator are presented in papers [6] and [7]. Among other things, the following results are presented there:

- **3.2. Theorem.** If the operator F acts from $\Pi(E_{\Phi_1}, r)$ into E_{Φ_2} then F is continuous at every point of $\Pi(E_{\Phi_1}, r)$.
- **3.3. Theorem.** Suppose the operator F acts from the ball $S_{\Phi_1}(r)$ into dom I_{Φ_2} . Then F is bounded on any ball $S_{\Phi_1}(r_0)$ for $r_0 < r$, i.e.

$$\sup_{\|x\|_{\Phi_1}^0 < r_0} \|Fx\|_{\Phi_2} < \infty.$$

3.4. Definition. The nonlinear integral operator

(3.1)
$$Hx(t) = \int_{T_2} \langle K(t,s), f(s,x(s)) \rangle d\mu_1$$

is called the Hammerstein operator.

This operator can be represented as the composition of the nonlinear operator F and a linear operator (1.1). Combining the conditions under which the operator F acts from the space L_{Φ_1} into L_{Φ_2} and is continuous and bounded on L_{Φ_1} with the conditions under which the operator (1.1) acts from L_{Φ_2} into E_M and is compact, we arrive at the conditions for compactness of the operator (3.1).

Let Ψ_1 and Ψ_2 be complementary functions to $\hat{\Phi}_1$ and $\hat{\Phi}_2$, respectively.

3.5. Theorem. Let Φ_1 satisfy the Δ_2 condition. If the kernel K(t,s) of the Hammerstein operator as a function of s belongs to E_{Ψ_2} for almost all $t \in T_2$, and $\|K(\cdot,\cdot)\|_{\Psi_2} \in E_M$, and F acts from L_{Φ_1} into E_{Φ_2} , then the Hammerstein operator (3.1) is a continuous and compact operator from L_{Φ_1} into E_M .

4. The existence of solutions of integral equations in Musielak-Orlicz space

Now, we shall apply the results from preceding sections to the theorem on existence of solutions of integral equations in Musielak—Orlicz space. To this end, we suppose: $T_1 = T_2 = T$, $\mu_1 = \mu_2 = \mu$, $\Phi_1 = \Phi_2 = M$, $\Psi_1 = \Psi_2 = N$, and X = Y = R. We shall consider the integral equation

(4.1)
$$x(t) = \varkappa \int_{T} K(t, s) x(s) d\mu + z(t) \quad \text{for} \quad x \in E_{M},$$

where κ is a real number, z is an element of the space E_M and the kernel $K: T \times T \to \mathbb{R}$ is a $\mu \times \mu$ -measurable function.

4.1. Theorem. Let the kernel K(t,s) as a function of the variable s belong to the space E_N for almost all $t \in T$ and let $||K(\cdot,\cdot)||_N$ be an element of the space E_M . Then the integral equation (4.1) has at least one solution in the ball with radius

(4.2)
$$r > \frac{\|z\|_{M}^{0}}{1 - 2|\varkappa| \|\|K(\cdot \cdot, \cdot)\|_{N}\|_{M}},$$

for

(4.3)
$$|\varkappa| \leq \frac{1}{2|||K(\cdot \cdot, \cdot)||_N||_M}.$$

PROOF. Let A be an integral operator defined by the formula (1.1). By Corollary 2.2, the operator A is a compact operator from the space E_M into itself, so the operator B defined by the formula

$$Bx = \varkappa Ax + z$$

where \varkappa and z are as in the equation (4.1), is also a compact operator from the space E_M into itself. First, we shall estimate the norm of elements of the set of values of the operator A on some ball $S_M^E(r) = \{x \in E_M : ||x||_M^O < r\}$. Using in turn the Fubini theorem and twice the Hölder inequality, we obtain

$$\Big| \int_{T} Ax(t)y(t) d\mu \Big| < r ||y||_{N} \Big| \Big| ||K(\cdot \cdot, \cdot)||_{N} \Big| \Big|_{M}^{0},$$

for $x \in S_M^E(r) \subset E_M$ and $y \in L_N$. Hence, by the definition of the Orlicz norm and by the equivalence of Orlicz and Luxemburg norms, we have

$$||Ax||_{M}^{0} = \sup_{I_{N}(y) \le 1} \left| \int_{T} Ax(t)y(t) d\mu \right| < 2r |||K(\cdot \cdot, \cdot)||_{N}||_{M},$$

for $x \in S_M^E(r)$. Resuming to the operator B, let us note that the inclusion

$$B[S_M^E(r)] \subset S_M^E(r)$$

follows from the inequality

$$||Bx||_{M}^{0} \leq |\varkappa|||Ax||_{M}^{0} + ||z||_{M}^{0} < 2r|\varkappa|||||K(\cdot \cdot, \cdot)||_{N}||_{M} + ||z||_{M}^{0} < r.$$

It is easy to verify that the above inequality ist rue if r and \varkappa satisfy the inequalities (4.2) and (4.3), respectively. Thus, in virtue of Schauder's fixed-point principle,

there exists at least one element $x_0 \in S_M^E(r)$ such that $Bx_0 = x_0$. Therefore

$$x_0(t) = Bx_0(t) = \varkappa \int_T K(t, s) x_0(s) d\mu + z(t),$$

so x_0 is the solution of the integral equation (4.1).

Finishing this note, we shall consider the integral equation of Hammerstein type in form

(4.4)
$$x(t) = \varkappa \int_{T} K(t, s) f(s, x(s)) d\mu + z(t),$$

where $z \in E_M$ and the functions K and f are as in Definition 3.4.

Puting $B = \varkappa Hx + z$ and reasoning similarly as in the proof of Theorem 4.1, we obtain a theorem on existence of solutions of integral equations of Hammerstein type.

4.2. Theorem. Let an \mathcal{N} -function M satisfy the Δ_2 condition and let the superposition operator F act from L_M into itself. If $K(t, \cdot) \in E_N$ for almost all $t \in T$ and $\|K(\cdot, \cdot)\|_N \in L_M$, then for every $r > \|z\|_M^0$ the integral equation (4.4) has at least one solution in the ball $S_M(r)$ for

$$|\varkappa| < \frac{r - \|z\|_M^0}{a\|\|K(\cdot\cdot,\cdot)\|_N\|_M},$$

where

$$a = \sup_{\mathbf{x}_{M} \in S(\mathbf{r})} \|F\mathbf{x}\|_{M}^{0}.$$

References

- A. Kozek, Orlicz spaces of functions with Values in Banach spaces, Comment. Math. 19 (1977), p. 259—288.
- [2] A. Kozek, Convex integral functionals on Orlicz spaces, ibidem 21 (1979), p. 109-135.
- [3] M. A. KRASNOSEL'SKIJ and YA. B. RUTICKIJ, Convex function and Orlicz spaces, Groningen 1961.
- [4] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., Springer-Verlag Berlin, Heidelberg, New York, Tokyo, (1983) vol. 1034.
- [5] J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), p. 49-65.
- [6] R. PŁUCIENNIK, On some properties of the superposition operator in generalized Orlicz spaces of vector valued functions, Comment. Math. 25, 2 (1985), p. 331—337.
- [7] R. PŁUCIENNIK, Boundedness of the superposition operator in generalized Orlicz spaces of vector-valued functions, Bull. Pol. Ac.: Math., 33 (1985), p. 531—540.
- [8] R. PŁUCIENNIK, Some remarks on compactness in Musielak—Orlicz space of vector-valued functions, Fasciculi Mathematici 16 (1986), p. 11—17.
- [9] R. PŁUCIENNIK, On E_N-weak convergence and E_N-weak continuity in Orlicz spaces of vector valued functions, Fasciculi Mathematici 13 (1981), p. 5—13.
- [10] R. PŁUCIENNIK and S. SZUFLA, Nonlinear Volterra integral equations in Orlicz spaces, Demonstratio Math. 72, 2 (1984), p. 515—532.

TECHNICAL UNIVERSITY INSTITUTE OF MATHEMATICS PIOTROWO 3A 60-965 POZNAŃ, POLAND

(Received September 23, 1985)