Prolongations of G-structures to the frame bundle of second order

By MANUEL DE LEÓN and MODESTO SALGADO (Santiago)

Introduction

Let M be an n-dimensional differentiable manifold, TM its tangent bundle T^rM its tangent bundle of order r, $r \ge 2$, FM its frame bundle and F^2M its frame bundle of second order.

The theory of prolongations of G-structures on M to appropriate G-structures on TM and T^rM has been introduced by A. Morimoto in [7] and [8], respectively. Recently, L. A. Cordero and M. de León [1] has developed a similar theory for FM.

In this paper, we extend this theory for F^2M and show, by studying the prolongations of some classical G-structures on M, how the different definitions of lifts given in [3], [4] and [13] fit nicely in this general framework.

In a forthcoming paper, we shall show that a similar theory can be developed for the diagonal lifts of tensor fields on M to F^2M introduced in [13].

§ 1. Preliminaires

1.1. The tangent bundle of n2-velocities.

Let M be an n-dimensional manifold. We denote by T_n^2M the set of all 2-jets at 0 of differentiable mappings $R^n \to M$. Let $\pi_n^2 \colon T_n^2M \to M$ be the target projection, i.e., $\pi_n^2(j_0^2f) = f(0)$. In T_n^2M we consider the following manifold structure (see MORIMOTO [9]): Let N_2 denote the set of all n-tuplas $v = (v_1, ..., v_n)$ of non negative integers such that $|v| = v_1 + ... + v_n \le 2$. Every chart (U, x^i) on M induces a chart $((\pi_n^2)^{-1}(U) = T_n^2U, x_{(v)}^i \colon i = 1, ..., n; v \in N_2)$ on T_n^2M , called the induced chart, where

$$x_{(v)}^i(j_0^2f) = \frac{1}{v!} \left(\frac{\partial}{\partial t}\right)^{\mathbf{v}} (x^i \circ f)_{t=0} = \frac{1}{v!} \frac{\partial^{\mathbf{v}_1 + \dots + \mathbf{v}_n}}{\partial t_1^{\mathbf{v}_1} \dots \partial t_n^{\mathbf{v}_n}} (x^i \circ f)_{t=0}$$

being $(t_1, ..., t_n)$ the natural coordinates of \mathbb{R}^n and $v! = v_1! ... v_n!$.

The set N_2 has $1+n+\frac{n(n+1)}{2}$ elements which can be ordered by the fol-

lowing bijection

$$N_2 \rightarrow \left\{0, 1, ..., n, ..., n + \frac{n(n+1)}{2}\right\}$$

$$\Psi(0,...,0)=0,$$

 $\Psi(0, ..., 1, ..., 0) = i$ (we place 1 in *i*-th position)

$$\Psi(0, ..., 1, ..., 1, ..., 0) = j + \frac{(2n-i)(i-1)}{2} + n,$$

(we place 1 in *i*-th and *j*-th positions, i < j)

$$\Psi(0,...,2,...,0) = i + \frac{(2n-i)(i-1)}{2} + n,$$

(we place 2 in i-th position).

If $v = (v_1, ..., v_n)$ and $\lambda = (\lambda_1, ..., \lambda_n)$ are two *n*-tuples, then we writte $v \pm \lambda = (v_1 \pm \lambda_1, ..., v_n \pm \lambda_n)$ and $v = \lambda$ if $v_i = \lambda_i$ for i = 1, ..., n.

It is clear that $x^i_{(0,\ldots,0)}(j^2_0f) = x^i(f(0))$ and we shall denote these coordinates $x^i_{(0,\ldots,0)}$ by x^i . In the sequel, we shall denote by $(x^i, x^i_{(\lambda)}, x^i_{(\nu)})$ the induced coordinate system in T^2_nU , where $\lambda, \nu \in N_2$ with $|\lambda| = 1, |\nu| = 2$.

Let (U, x^i) and $(\overline{U}, \overline{x}^i)$ be two intersecting charts on M and the coordinate transformation in $U \cap \overline{U}$ given by $\overline{x}^i = \overline{x}^i(x)$. Then the transformation of induced coordinates in $T^2_nU \cap T^2_n\overline{U} = T^2_n(U \cap \overline{U})$ is given by

(1.1)
$$\bar{x}^{i} = \bar{x}^{i} \quad \bar{x}^{i}_{(\lambda)} = \frac{\partial \bar{x}^{i}}{\partial x^{r}} x^{r}_{(\lambda)}, \quad |\lambda| = 1,$$

$$\bar{x}^{i}_{(\nu)} = \frac{\partial^{2} \bar{x}^{i}}{\partial x^{r} \partial x^{s}} \sum_{\substack{|\lambda|=1\\\lambda \in N_{\bullet}}} x^{r}_{(\nu-\lambda)} x^{s}_{(\lambda)} + \frac{\partial \bar{x}^{i}}{\partial x^{r}} x^{r}_{(\nu)}, \quad |\nu| = 2.$$

The Jacobian of (1.1) is given by the matrix

(1,2)
$$\begin{pmatrix}
a & 0 & \cdots & 0 & \cdots & 0 \\
B_1 & a & & & & & & & & & \\
\vdots & & 0 & \ddots & & & & & & & \\
\vdots & & \vdots & \ddots & & & & & & & \\
B_n & & 0 & \cdots & 0 & a & & & & \\
C_{n+1} & & & 0 & a & & & & \\
\vdots & & & (*) & & \ddots & 0 & & \\
C_n + \frac{n(n+1)}{2} & & 0 & \cdots & 0 & a
\end{pmatrix}$$

being (*) the matrix

where

$$a = \left(\frac{\partial \bar{x}^i}{\partial x^t}\right)$$

$$B_k = \left(\frac{\partial^2 \bar{x}^i}{\partial x^r \partial x^t} x_{\psi^{-1}(k)}^r\right), \quad k = 1, ..., n,$$

$$C_{j+\frac{(2n-h)(h-1)}{2}+n} = \left(\frac{1}{2} \frac{\partial^3 \bar{x}^i}{\partial x^r \partial x^s \partial x^t} x_{(\psi^{-1}(j)}^r x_{\psi^{-1}(h))}^s + \frac{\partial^2 \bar{x}^i}{\partial x^r \partial x^t} x_{\psi^{-1}}^r\right) + \frac{\partial^2 \bar{x}^i}{\partial x^r \partial x^t} x_{\psi^{-1}}^r \left(j + \frac{(2n-h)(h-1)}{2} + n\right), \quad j \leq h,$$

and

Definition 1.1. The differentiable manifold $T_n^2 M$ with projection π_n^2 is called the tangent bundle of n^2 -velocities of M.

 $x_{(\psi^{-1}(j)}^{r}x_{\psi^{-1}(h)}^{s} = x_{\psi^{-1}(j)}^{r}x_{\psi^{-1}(h)}^{s} + x_{\psi^{-1}(h)}^{r}x_{\psi^{-1}(h)}^{s}$

Now, we shall recall some properties of the functor T_n^2 :

(A) Let $f: M \to N$ be a map of a manifold M into another manifold N. Then the map f induces a map $T_n^2 f: T_n^2 M \to T_n^2 N$ defined by $T_n^2 f(j_0^2 g) = j_0^2 (f \circ g)$. Moreover, if f has maximal rank, then $T_n^2 f$ has maximal rank. Therefore, if f is an immersion (resp. diffeomorphism) then $T_n^2 f$ is an immersion (resp. diffeomorphism), and if f is a diffeomorphism then $(T_n^2 f)^{-1} = T_n^2 (f^{-1})$.

(B) Let M and N be two arbitrary manifolds and $M \times N$ the manifold product.

Then $T_n^2(M\times N)$ and $T_n^2M\times T_n^2N$ are canonically diffeomorphic.

(C) Let G be a Lie group with multiplication $\mu: G \times G \to G$. Then T_n^2G is a Lie group with multiplication $T_n^2\mu$: $T_n^2G\times T_n^2G\to T_n^2G$. Moreover, if $h\colon G\to G'$ is a homomorphism of Lie groups then $T_n^2h\colon T_n^2G\to T_n^2G'$ is so also. Therefore, if G is a Lie subgroup of G', then T_n^2G is a Lie subgroup of T_n^2G' .

(D) If a Lie group G operates on a manifold M differentiably and effectively

then $T_n^2 G$ operates on $T_n^2 M$ differentiably and effectively.

(E) If $P(M, \pi, G)$ is a principal fibre bundle then $T_n^2 P(T_n^2 M, T_n^2 \pi, T_n^2 G)$ is a principal fibre bundle which be called the induced bundle. In fact, let U be a coordinate neighbourhood on M; if $\varphi_U: U \times G \rightarrow \pi^{-1}(U)$ is the local trivialization of P then $T_n^2(\varphi_U)$: $T_n^2U\times T_n^2G\to T_2^n(\pi^{-1}(U))$ is the local trivialization of T_n^2P .

1.2. The frame bundle of second order.

Let M be an n-dimensional manifold. We denote by F^2M the set of all 2-jets at 0 of diffeomorphisms of open neighbourhoods of 0 in \mathbb{R}^n onto open subsets of M. Let π^2 : $F^2M \to M$ be the target projection $\pi^2(j_0^2f) = f(0)$. Then π^2 : $F^2M \to M$ is a principal fibre bundle with the structural group L_n^2 of all 2-jets with the source and the target at 0 of local diffeomorphisms of \mathbb{R}^n . The group L_n^2 operates on \mathbb{R}^n on the right in the natural way $((j_0^2f)(j_0^2g)=j_0^2(f\circ g))$, where j_0^2f and j_0^2g belong to F^2M and L_n^2 , respectively.

Let us remark that F^2M is an open and dense subset of T_n^2M . If $f: M \to N$ is a local diffeomorphism then we define its prolongation f^2 : $F^2M \to F^2N$ by $f^2(j_0^2g) =$

 $=j_0^2(f \circ g)$, and it is clear that $T_n^2 f|_{F^2M} = f^2$. Every chart (U, x^i) on M induces a chart $((\pi^2)^{-1}(U) = F^2 U, x^i_{(v)}: i=1, ..., n;$ $v \in N_2$) on F^2M , where

$$x_{(v)}^{i}(j_0^2f) = \frac{1}{v!} \left(\frac{\partial}{\partial t}\right)^{v} (x^{i} \circ f)_{t=0}.$$

We shall denote the induced coordinate system by $(x^i, x^i_{(\lambda)}, x^i_{(\nu)})$, where $\lambda, \nu \in N_2$, with $|\lambda|=1$, $|\nu|=2$.

Now, we can consider the restriction to F^2M of the γ -lifts $(\gamma \in N_2)$ of tensor fields on M to T_n^2M (see [3], [4]):

(A) Lifts of functions.

If f is a differentiable function on M, we define the 0-lift, (λ) -lift $(\lambda, \nu \in N_2: |\lambda| = 1, |\nu| = 2)$ as the functions f^0 , $f^{(\lambda)}$, $f^{(\nu)}$ on F^2M given by

(1.3)
$$f^{0} = f^{V} = (\pi^{2})^{*}f,$$

$$f^{(\lambda)} = x^{i}_{(\lambda)}\partial_{i}f,$$

$$f^{(\nu)} = \sum_{\substack{\lambda \in N_{2} \\ |\lambda| = 1}} x^{i}_{(\nu - \lambda)} x^{j}_{(\lambda)} \partial_{i}\partial_{j}f + x^{i}_{(\nu)}\partial_{i}f,$$

where $\partial_i f = \frac{\partial^i f}{\partial x}$.

It is convenient to define $f^{(\gamma)}=0$ if $\gamma \notin N_2$.

(B) Lifts of vector fields.

If X is a vector field on M, we define the complete lift (or 0-lift), (λ) -lift and (ν) -lift to F^2M as the vector fields on F^2M given by

(1.4)
$$X^{C} = (X^{i})^{V} \frac{\partial}{\partial x^{i}} + \sum_{\substack{\lambda \in N_{2} \\ |\lambda| = 1}} (X^{i})^{(\lambda)} \frac{\partial}{\partial x^{i}_{(\lambda)}} + \sum_{\substack{\nu \in N_{2} \\ |\nu| = 2}} (X^{i})^{(\nu)} \frac{\partial}{\partial x^{i}_{(\nu)}},$$
$$X^{(\lambda)} = (X^{i})^{V} \frac{\partial}{\partial x^{i}_{(\lambda)}} + \sum_{\substack{\mu \in N_{2} \\ |\mu| = 1}} (X^{i})^{(\mu)} \frac{\partial}{\partial x^{i}_{(\lambda+\mu)}},$$
$$X^{(\nu)} = (X^{i})^{V} \frac{\partial}{\partial x^{i}_{(\nu)}},$$

where X^i are the local components of X.

It is convenient to define $X^{(\gamma)} = 0$ if $\gamma \notin N_2$.

(C) Lifts if l-forms.

Similarly, if Θ is an *i*-form on M, we can define the corresponding lifts Θ^0 , $\Theta^{(\lambda)}$, $\Theta^{(\nu)}$ to F^2M as the *i*-forms on F^2M given by

(1.5)
$$\Theta^{0} = \Theta^{V} = (\pi^{2})^{*} \Theta,$$

$$\Theta^{(\lambda)} = (\Theta_{i}) dx_{(\lambda)}^{i} + (\Theta_{i})^{V} dx^{i},$$

$$\Theta^{(v)} = (\Theta_{i})^{V} dx_{(v)}^{i} + \sum_{\substack{\mu \in N_{2} \\ |\mu| = 1}} (\Theta_{i})^{(v-\mu)} dx_{(\mu)}^{i} + (\Theta_{i})^{V} dx^{i},$$

where Θ^i are the local components of Θ .

It is convenient to define $\Theta^{(\lambda)} = 0$, if $\gamma \notin N_2$.

From (1.3), (1.4) and (1.5), we deduce

Proposition 1.2. Let X and Θ be a vector field and l-form on M, respectively. Then we have

(1)
$$\Theta^{V}(X^{C}) = (\Theta(X))^{V}, \quad \Theta^{V}(X^{(\lambda)}) = 0, \quad \Theta^{V}(X^{(\nu)}) = 0,$$

(2)
$$\Theta^{(\alpha)}(X^C) = (\Theta(X))^{(\alpha)}, \quad \Theta^{(\alpha)}(X^{(\lambda)}) = \delta^{\alpha\lambda}(\Theta(X))^V, \quad \Theta^{(\alpha)}(X^{(\nu)}) = 0,$$

(3)
$$\Theta^{(\beta)}(X^C) = (\Theta(X))^{(\beta)}, \quad \Theta^{(\beta)}(X^{(\lambda)}) = (\Theta(X))^{(\beta-\lambda)}, \quad \Theta^{(\beta)}(X^{(\nu)}) = \delta^{\beta\nu}(\Theta(X))^{\nu},$$

where $\alpha, \beta, \lambda, \nu \in \mathbb{N}_2$, with $|\alpha| = |\lambda| = 1$, $|\beta| = |\nu| = 2$. #

(D) Lifts of tensor fields of type (1, 1).

If F is a tensor field of type (1, 1) on M, we define the (γ) -lift $(\gamma \in N_2)$ of F to F^2M as the tensor field $F^{(\gamma)}$ of type (1, 1) on F^2M given by

$$F^{(\gamma)}(X^{C}) = (FX)^{(\gamma)}, \quad F^{(\gamma)}(X^{(\xi)}) = (FX)^{(\gamma-\xi)},$$

for any vector field X on M, where $\xi \in N_2$, $1 \le |\xi| \le 2$.

We shall denote $F^{(0,\dots,0)}$ by F^C . F^C is called the complete lift of F to F^2M . In [3], Gancarzewicz proved that F^{C} is completely characterized by the identity $F^{c}(X^{c}) = (FX)^{c}$, for any vector field X on M.

(E) Lifts of tensor fields of type (0, 2).

Finally, let g be a tensor field of type (0, 2) on M. Then we define the (γ) -lift of g to F^2M , $\gamma \in N_2$, as the tensor field of type (0,2) on F^2M given by

$$g^{(\gamma)}(X^{(\alpha)}, Y^{(\beta)}) = (g(X, Y))^{(\gamma - \alpha - \beta)},$$

for any vector field X on M, where α , $\beta \in N_2$.

§ 2. Imbedding of
$$T_n^2$$
 GL (n) into Gl (N), $N=n\left(1+n+\frac{n(n+1)}{2}\right)$.

Let R^n be the *n*-dimensional euclidean space, and consider the tangent bundle of n^2 -velocities $T_n^2 R^n$ of R^n . It is clear that $T_n^2 R^n$ is a vector space of dimension N. In fact, for any two 2-jets $j_0^2 f$ and $j_0^2 g$, we define their sum by: $j_0^2 f + j_0^2 g = j_0^2 (f+g)$, where (f+g)(t)=f(t)+g(t), for $t\in R^n$. For any $c\in R^n$ we define the scalar multiplication of j_0^2f by c as follows: $c\cdot (j_0^2f)=j_0^2(c\cdot f)$, where $(c\cdot f)(t)=c\cdot f(t)$, for $t\in R^n$. Let (t^i) be the natural coordinate system on R^n and let $(t_{(\alpha)}^i:i=1,\ldots,n;\alpha\in N_2)$ be the induced coordinate system on $T_n^2R^n$. Then the sum and scalar multiplication

in $T_n^2 R^n$ are as follows:

$$(t^i_{(\alpha)}) + (t^i_{(\alpha)}) = (t^i_{(\alpha)} + t^i_{(\alpha)}), c \cdot (t^i_{(\alpha)}) = (c \cdot t^i_{(\alpha)}).$$

Let Gl(n) be the general linear group. Then $T_0^2Gl(n)$ is a Lie group. Let $\widetilde{A} \in T_n^2 Gl(n)$ be the 2-jet defined by the map A: $\mathbb{R}^n \to Gl(n)$, and $(A_i^h(t))$ the matrix that represents to A(t) for each $t \in \mathbb{R}^n$. The element \widetilde{A} can be identified to the $\left(1+n+\frac{n(n+1)}{2}\right)$ -tupla

$$(a; ..., B^{(\lambda)}, ...; ..., C^{(\nu)}, ...), |\lambda| = 1, |\nu| = 2,$$

where

$$a = (A_i^h(0)), a \in Gl(n),$$

$$B^{(\lambda)} = \frac{1}{\lambda!} \left[\left(\frac{\partial}{\partial t} \right)^{\lambda} \left(A_i^h(t) \right) \right]_{t=0}, \quad B^{(\lambda)} \in gl(n),$$

$$C^{(v)} = \frac{1}{v!} \left[\left(\frac{\partial}{\partial t} \right)^{v} (A_{t}^{h}(t)) \right]_{t=0}, \quad C^{(v)} \in gl(n),$$

being gl(n) the Lie algebra of Gl(n).

Now, let $Gl(n) \times \mathbb{R}^n \to \mathbb{R}^n$ be the usual operation of the general linear group Gl(n) on R^n and consider the induced operation

$$T_n^2 Gl(n) \times T_n^2 R^n \to T_n^2 R^n$$

 $(\tilde{A}, \tilde{P}) \to \tilde{A} \cdot \tilde{P}$

If $\tilde{A} = j_0^2 A$, $\tilde{P} = j_0^2 P$, where $A: R^n \to Gl(n)$, $P: R^n \to R^n$ are defined by $A(t) = (A_i^h(t))$, $P(t) = (\xi^h(t))$, then $\tilde{A} \cdot \tilde{P} = j_0^2 (A \cdot P)$, being $A \cdot P : R^n \to R^n$ the map defined by $(A \cdot P)(t) = A(t) \cdot P(t)$ for $t \in \mathbb{R}^n$. Therefore, if $(A.P)(t) = ({}^{t}\xi^h(t)$, then ${}^{t}\xi^h(t) = A^h_i(t)$ $\xi^t(t)$ for $t \in \mathbb{R}^n$. Let $(t^i_{(\alpha)})$ and $({}^{t}t^i_{(\alpha)})$ the induced coordinates of \tilde{P} and $\tilde{A} \cdot \tilde{P}$, respectively. Then we obtain

from where deduce that $T_n^2Gl(n)$ operates on $T_n^2R^n$ as a group of linear transformations. So, each element $\widetilde{A}=j_0^2A\in T_n^2Gl(n)$ can be identified to a linear automorphism of $T_n^2R^n\cong R^N$. Therefore, we deduce the following proposition.

Proposition 2.1. There is a canonical homomorphism ϱ_n^2 of $T_n^2Gl(n)$ into Gl(N) which is given by the following equality:

(2.2)
$$\varrho_{n}^{2}(\tilde{A}) = \begin{pmatrix} a \\ B_{1} & 0 & 0 & 0 & 0 \\ \vdots & a & \vdots & \ddots & \vdots \\ B_{n} & \vdots & \ddots & \vdots & \vdots \\ C_{n+1} & 0 & 0 & a & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ C_{n} + \frac{n(n+1)}{2} & (*) & 0 & 0 & a \end{pmatrix}$$

where (*) is the following matrix

$$\begin{pmatrix}
B_1 \\
\vdots & B_1 \\
\vdots & & & & & \\
\vdots & & & & & & \\
B_n & 0 & & & & \\
B_n & 0 & & & & \\
B_n & 0 & & & & \\
\vdots & & & & & & \\
0 & B_2 & & & & & \\
\vdots & & & & & & \\
\vdots & & & & & & \\
B_1 & & & & & \\
0 & \vdots & & & & \\
B_n & & & & & \\
B_2 & & & & & \\
B_n & & & & & \\
B_n & & & & & \\
B_{n-1} & 0 & & & \\
0 & & & & & & \\
B_{n-1} & 0 & & & \\
0 & & & & & \\
B_n & & & & & \\
B_{n-1} & 0 & & & \\
0 & & & & & \\
B_n & & & & & \\
B_n & &$$

being

$$B_i = B^{(0,\dots,1,\dots,0)}$$

(we place 1 in th-position)

$$C_{j+\frac{(2n-i)(l-1)}{2}+n} = C^{(0,\cdots,1,\cdots,1,\cdots,0)}$$

(we place 1 in i-th and j-th position, j < i)

$$C_{i+\frac{(2n-i)(i-1)}{2}+n} = C^{(0,\dots,2,\dots,n)}$$

(we place 2 in i-the position).

§3. Imbedding of T_n FM into FF² M.

Let $FM(M, \pi_M, Gl(n))$ be the frame bundle of $M, T_n^2 FM(T_n^2 M, T_n^2 \pi_M, T_n^2 Gl(n))$ the induced bundle and $FT_n^2 M(T_n^2 M, \pi_{T_n^2 M}, Gl(N))$ the frame bundle of $T_n^2 M$.

Theorem 3.1. There exists a canonical injective homomorphism of principal bundles

$$j_M^2: T_n^2 FM \to FT_n^2 M$$

over the identity of T_n^2M , with associate Lie group homomorphism ϱ_n^2 : $T_n^2Gl(n)$ $\rightarrow Gl(N)$.

PROOF. Let U be a coordinate neighbourhood in M, and

$$\varphi_{II}$$
: $T_n^2 U \times T_n^2 Gl(n) \to T_n^2 FU$, ψ_{II} : $T_n^2 U \times Gl(N) \to FT_n^2 U$

the local trivializations of T_n^2FM and FT_n^2M , respectively. Then we define $j_{M|U}^2$: $T_n^2FU \to FT_n^2U$ as the composition $j_{M|U}^2 = \psi_U \circ (1_{T_n^2U} \times \varrho_n^2) \circ \varphi_U^{-1}$. In order to prove Theorem 3.1 it is sufficient to check the following identity

$$\tilde{J}_{U\overline{U}} = \varrho_n^2 \circ T_n^2 J_{U\overline{U}} \quad \text{on} \quad T_n^2 U \cap T_n^2 \overline{U},$$

where $J_{U\overline{U}}\colon U\cap \overline{U}\to Gl(n)$ and $\widetilde{J}_{U\overline{U}}\colon T_n^2U\cap T_n^2\overline{U}\to Gl(N)$ denote the Jacobian matrices of change of coordinates in M and T_n^2M , respectively.

Let (x^i) and (y^i) be the coordinate functions in U and \overline{U} , respectively. We assume that $y^i=f^i(x^j)$ in $U\cap \overline{U}$. Let $j_0^2g\in T_n^2U\cap T_n^2\overline{U}=T_n^2(U\cap \overline{U})$ and $(x^i,x^i_{(\lambda)},x^i_{(\nu)})$ be the induced coordinates. Then $T_n^2J(j_0^2g)=j_0^2(J\circ g)$ is the 2-jet corresponding to the composition $(J \circ g)(t) = \left(\frac{\partial f^i}{\partial x^j}\right)_{|g(t)|}$. Therefore, $j_0^2(J \circ g)$ is identified to the $\left(1+n+\frac{n(n+1)}{2}\right)$ -tupla

$$(a; ..., B^{(\lambda)}, ...; ..., C^{(\nu)}, ...),$$

where

(3.2)
$$a = \left(\frac{\partial f^{i}}{\partial x^{j}}\Big|_{x}\right), \quad x = g(0),$$

$$B^{(\lambda)} = \left(\frac{\partial^{2} f^{i}}{\partial x^{j} \partial x^{r}}\Big|_{x} x^{r}_{(\lambda)}\right), \quad |\lambda| = 1,$$

$$C^{(\nu)} = \left(\frac{1}{2} \frac{\partial^{2} f^{i}}{\partial x^{j} \partial x^{r} \partial x^{s}}\Big|_{x} \sum_{\substack{\lambda \in N_{2} \\ |\lambda| = 1}} x^{r}_{(\nu - \lambda)} x^{s}_{(\lambda)} + \frac{\partial^{2} f^{i}}{\partial x^{j} \partial x^{r}} x^{r}_{(\nu)}\right), \quad |\nu| = 2.$$

Now, from (3.2) one gets that the matrix $\varrho_n^2(j_0^2(J \circ g))$ coincides with the Jacobian matrix (1.2). This proves the equality (3.1). #

Now, let $T_n^2 F^2 M_{|F^2M}$ be the restriction of $T_n^2 F^2 M$ to the open submanifold $F^2 M$ of $T_n^2 M$. Remark that the restriction $FT_n^2 M_{|F^2M}$ is canonically isomorphic to the frame bundle $FF^2 M$ of $F^2 M$. Then, from Theorem 3.1, we deduce

Theorem 3.2. j_M^2 induces a bundle homomorphism of $T_n^2FM_{|F^2M}$ into FF^2M over the identity of F^2M and with associate Lie group homomorphism ϱ_n^2 . #

§ 4. Prolongations of G-structures to F^2M .

Let G be a subgroup of Gl(n), and denote $G^{(2)} = \varrho_n^2(T_n^2 G)$. Then $G^{(2)}$ is a Lie subgroup of Gl(N) isomorphic to $T_n^2 G$. Let $P(M, \pi, G)$ be a G-structure on M. Then we have

Theorem 4.1. If M has a G-structure P, then F^2M has a canonical $G^{(2)}$ -structure $P^{(2)}$.

PROOF. Taking into account Theorem 3.2, it suffices to set $P^{(2)} = j_M^2 (T_n^2 P_{|F^2M})$.

Definition 4.2. $P^{(2)}$ will be called the prolongation of the G-structure P on M to the frame bundle of second order F^2M .

Let M and M' be n-dimensional manifolds, $f: M \rightarrow M'$ a diffeomorphism and $f^1: FM \rightarrow FM'$ the induced isomorphism of principal bundles (see [1]). Then we have

Theorem 4.3. The following diagram is commutative Theorem 4.3. The following diagram is commutative

$$T_n^2 FM \longrightarrow j_M^2 \longrightarrow FT_n^2 M \\ \downarrow^{T_n^2(f^1)} \downarrow \qquad \downarrow^{(T_n^2 f)^1} \qquad \#$$

Theorem 4.4. Let P and P' be G-structures on M and M', respectively, and $f: M \rightarrow M'$ a diffeomorphism. Then f is an isomorphism of P to P' if and only if f^2 is an isomorphism of $P^{(2)}$ to $P'^{(2)}$.

PROOF. Suppose that f is an isomorphism of P to P'. Then by virtue of Theorem 4.3 and since $T_n^2(f^1)(T_n^2P_{|F^2M}) = T_n^2P'_{|F^2M}$, we have

$$(f^2)^1(P^{(2)}) = (f^2)^1 \left(j_M^2(T_n^2 P_{|F^2M})\right) = j_{M'}^2 \left(T_n^2(f^1)(T_n^2 P_{|F^2M})\right) = j_{M'}^2(T_n^2 P'_{|F^2M}) = P'^{(2)}.$$

Conversely, if

$$(f^2)^1(P^{(2)}) = P'^{(2)}, \text{ then } (f^2)^1(j_M^2(T_n^2P_{|F_*M})) = j_{M'}^2(T_n^2P_{|F^2M}).$$

On the other hand,

$$(f^2)^1 \big(j_M^2 (T_n^2 P_{|F^2 M}) \big) = j_{M'}^2 \big(T_n^2 (f^1) (T_n^2 P_{|F^2 M}) \big).$$

Then, since j_M^2 is injective, we deduce that $T_n^2(f^1)(T_n^2P_{|F^2M}) = T_n^2P'_{|F^2M}$. Hence $f^1(P) = P'$ that is, f is an isomorphism of P to P'. #

Corollary 4.5. Let P be a G-structure on M and let f be a diffeomorphism of M into itself. Then f is an automorphism of P if and only if f^2 is an automorphism of $P^{(2)}$. #

Corollary 4.6. A vector field X on M is an infinitesimal automorphism of a G-structure P on M if and only if X^C is an infinitesimal automorphism of the prolongation $P^{(2)}$ of P to F^2M .

PROOF. It is a consequence of the following result (see Gancarzewicz [3]): If φ_t is the local 1-parameter generated by X then φ_t^2 is the local 1-parameter generated by X^c .

§ 5. Integrability of the prolongation of G-structures

In this section, we shall prove that the prolongation of an integrable G-structure is also integrable, and viceversa.

Definition 5.1. Let $P(M, \pi, G)$ be a G-structure on M. P is said to be integrable if for each point $x \in M$ there is a coordinate system (U, x^i) with $x \in U$ such that the frame $\left(\frac{\partial}{\partial x^1}\Big|_{y}, \dots, \frac{\partial}{\partial x^n}\Big|_{y}\right) \in P$ for every $y \in U$.

Theorem 5.2. Let (U, x^i) be a coordinate system in M, and let $\Phi: U \to FM$ be a cross-section given by $\Phi(x) = \left(\Phi_j^i(x) \frac{\partial}{\partial x^i}\Big|_{x}\right)$, $x \in U$. Define $\Phi^2 = j_M^2 \circ T_n^2 \Phi: T_n^2 U \to FT_n^2 M$. Then Φ^2 is also a cross-section which is given at $p \in T_n^2 U$, with $\pi_n^2(p) = x$, by

(5.1)
$$\Phi^{2}(p) = (X_{i|p}^{C}, X_{i|p}^{(\lambda)}, X_{i|p}^{(\nu)}), \quad i = 1, ..., n; \ \lambda, \nu \in \mathbb{N}_{2}, |\lambda| = 1, |\nu| = 2,$$

where X_i is the local vector field given on U by $X_{i|x} = \Phi_i^j(x) \frac{\partial}{\partial x^v}|_x$ $x \in U$, and X_i^c , $X_i^{(\lambda)}$, $X_i^{(\nu)}$ are the complete lift, (λ)-lift and (ν)-lift of X_i to $T_n^2 M$.

PROOF. From Theorem 3.1, one easily prove that Φ^2 is a cross-section. Now, putting $f(x) = (\Phi_j^i(x)) \in Gl(n)$, for $x \in U$, then we have $\varphi_U^{-1} \circ \Phi = (1_U, f)$, where φ_U is the local trivialization of FM. Hence

$$\Phi^2 = \psi \circ (1_{T_n^2M} \times \varrho_n^2) \circ T_n^2(1_U, f) = \psi_U \circ (1_{T_n^2M} \times (\varrho_n^2 \circ T_n^2 f)),$$

where φ_U is the local trivialization of $T_n^2 FM$.

If $j_0^2 h \in T_n^2 U$ has coordinates $(x^i, x_{(\lambda)}^i, x_{(\nu)}^i)$ then $T_n^2 f(j_0^2 h)$ has coordinates

$$\left(\Phi_{j}^{i}(x), \frac{\partial \Phi_{j}^{j}}{\partial x^{r}}\Big|_{x} x_{(\lambda)}^{r}, \frac{1}{2} \frac{\partial^{2} \Phi_{j}^{i}}{\partial x^{r} \partial x^{s}}\Big|_{\substack{x \ \lambda \in N_{2} \\ |\lambda| = 1}} \sum_{x (v - \lambda)} x_{(\lambda)}^{r} + \frac{\partial \Phi_{j}^{i}}{\partial x^{r}}\Big|_{x} x_{(v)}^{r}\right)$$

Then, from Proposition 2.1, one deduces (5.1). #

Actually, if $\Phi: U \to FM$ is a cross-section, then the restriction $\overline{\Phi} = \Phi^2_{|F^2U}: F^2U \to FF^2M$ is also a cross-section locally expressed by

(5.2)
$$\tilde{\Phi}(p) = (X_{i|p}^C, X_{i|p}^{(\lambda)}, X_{i|p}^{(\nu)}), \quad i = 1, \dots, n; \ \lambda, \nu \in N_2, \quad |\lambda| = 1, |\nu| = 2,$$

where
$$X_i = \Phi_i^j \frac{\partial}{\partial x^j}$$
 in U .

Proposition 5.3. Let P be a G-structure on M. Then P is integrable if and only if the prolongation $P^{(2)}$ is integrable.

PROOF. Suppose that P is integrable. From Definition 5.1 and Theorem 5.2

we deduce that $P^{(2)}$ is integrable.

Conversely, suppose that $P^{(2)}$ is integrable. Let x_0 be an arbitrary point in M, (U, x^i) a coordinate system with $x_0 \in U$, and $\Phi: U \to P$ a local cross-section of P over U. Now, let $p_0 \in F^2U$ be with coordinates $(x^i = x^i(x_0), x^i_{(\lambda)} = \delta^{iP(\lambda)}, x^i_{(v)} = 0)$. Since $P^{(2)}$ is integrable there exists a coordinate system $(\widetilde{U}, y^i, y^i_{(\lambda)}, y^i_{(y)}: i=1, ..., n; |\lambda|=1, |\nu|=2)$ in F^2U with $p_0 \in \widetilde{U}$, $\widetilde{U} \subset F^2U$, such that, if we define $\widetilde{\Phi}_0$ by

$$\tilde{\Phi}_0(p) = \left(\frac{\partial}{\partial y^i}\Big|_p, \quad \frac{\partial}{\partial y^i_{(\lambda)}}\Big|_p, \quad \frac{\partial}{\partial y^i_{(\nu)}}\Big|_p\right),$$

then $\widetilde{\Phi}_0$ is a cross-section of $P^{(2)}$ over \widetilde{U} . Now, since $\overline{\Phi}$ and $\widetilde{\Phi}_0$ are both cross-sections of $P^{(2)}$ over \widetilde{U} , there exists a map $\widetilde{g} \colon \widetilde{U} \to G^{(2)} = \varrho_n^2(T_n^2 G)$ such that $\widetilde{\Phi}_0(p) = \overline{\Phi}(p) \cdot \widetilde{g}(p)$ holds for $p \in \widetilde{U}$. Then, using similar arguments as in the proof of Proposition 5.5 [7], Proposition 10. [8] and Proposition 4.5 [1], we deduce that P is integrable. #

§ 6. Prolongations of classical G-structures

Let P be a G-structure on M, (U, x^i) a local coordinate system in U, and $\Phi: U \rightarrow P$ a cross-section. Then Φ defines a local field of frames $\{X_1, ..., X_n\}$ adapted to P and given by $X_i = \Phi_i^j \frac{\partial}{\partial x^j}$. Hence the local field of coframes $\{\theta^1, ..., \theta^n\}$ dual to $\{X_1, ..., X_n\}$ is given by $\theta^j = \psi_i^j dx^i$,

where (ψ_i^i) denotes the inverse matrix of (Φ_j^i) . Then Φ induces a cross-section $\overline{\Phi} \colon U \to P^{(2)}$ given by (5.2). There $\overline{\Phi}$ defines the local field of frames adapted to $P^{(2)}$ given by $\{X_i^c, X_i^{(\lambda)}, X_i^{(\nu)} \colon i=1, ..., n; \lambda, \nu \in N_2, |\lambda|=1, |\nu|=2\}$. From (6.1), we deduce that the dual local field of coframes is $\{(\theta^i)^V, (\theta^i)^{(\lambda)}, (\theta^i)^{(\nu)} \colon i=1, ..., n; \lambda, \nu \in N_2, |\lambda|=1, |\nu|=2\}$.

(I) G-structures defined by tensor fields of type (1, 1)

Let $\varrho: Gl(n) \to \operatorname{Aut}(R^n)$ be the canonical representation of Gl(n) into R^n , $u \in \operatorname{End}(R^n)$ an arbitrary element and G_u the isotropy group of u with respect to ϱ . Let $u^2 = T_n^2 u \in \operatorname{End}(R^N)$. R^N identified to $T_n^2 R^n$, the induced ma! defined by $u^2(j_0^2g) = j_0^2(u \circ g)$, $j_0^2g \in T_n^2 R^n$. Let $(x^i, x^i_{(\lambda)}, x^i_{(v)})$ and $(x^i, x^i_{(\lambda)}, x^i_{(v)})$ the induced coordinates of $j_0^2(u \circ g)$ and j_0^2g , respectively. If $u = (u^i_j)$ is the matrix representation of u, then we obtain

$$'x^i = u^i_j x^j, 'x^i_{(\lambda)} = u^i_j x^j_{(\lambda)}, 'x^i_{(v)} = u^i_j x^j_{(v)}, \lambda, v \in N_2, \quad |\lambda| = 1, \quad |v| = 2,$$

and therefore the matrix representation of u^2 is

(6.2)
$$u^2 = \begin{pmatrix} (u_j^i) & 0 \\ \vdots \\ 0 & (u_j^i) \end{pmatrix}$$

From (6.2) we deduce

Lemma 6.1. Let $u^2 = T_n^2 u \in \text{End}(\mathbb{R}^N)$ be the linear map induced by $u \in \text{End}(\mathbb{R}^n)$. If rank u = r, then rank $u^2 = r\left(1 + n + \frac{n(n+1)}{2}\right)$. Moreover, if u satisfies a polynomial equation Q(u) = 0, then u^2 satisfies the same equation, that is, $Q(u^2) = 0$. #

Proposition 6.2. Let G_{u^2} be the isotropy group of u^2 with respect to the canonical representation of Gl(N) into R^N , and denote $(G_u)^{(2)} = \varrho_n^2 (T_n^2 G_u)$. Then $(G_u)^{(2)} \subset G_{u^2}$. #

Theorem 6.3. If M admits a G_u -structure, then F^2M admits a G_{u^2} -structure. Moreover, if the G-structure in M is integrable, then the induced G_{u^2} -structure on F^2M is so also.

PROOF. From Theorem 4.1 we deduce that F^2M admits a $(G_u)^{(2)}$ -structure, which, by virtue of Proposition 6.2, can be extended to a G_{u^2} -structure. The assertion on the integrability follows from Proposition 5.3. #

Let P be a G_u -structure on M, and let F be the tensor field of type (1, 1) on M associated to P. If (U, x^i) is a coordinate system in M, and if $\{X_i\}$, $\{\theta^i\}$ are the local field of frames and coframes induced by a cross-section $\Phi: U \to P$, then F is locally given by

(6.3)
$$F = F_j^i \frac{\partial}{\partial x^i} \otimes dx^j = u_j^i X_i \otimes \theta^j.$$

Similarly, let $F^{(2)}$ be the tensor field of type (1, 1) on F^2M associated to $\tilde{P}^{(2)}$,

extension of the prolongation $P^{(2)}$ of P (Theorem 6.3). Then, from (5.2) and (6.2), we have

(6.4)
$$F^{(2)} = u_j^i X_i^C \otimes (\theta^i)^V + \sum_{|\lambda| = |\mu| = 1} \delta^{\lambda \mu} u_j^i X_i^{(\lambda)} \otimes (\theta^j)^{(\mu)} + \sum_{|\nu| = |\eta| = 2} \delta^{\nu \eta} u_j^i X_i^{(\nu)} \otimes (\theta^j)^{(\eta)}.$$

From (6.4), one easily deduces that $F^{(2)} = F^C$. Summing up, we can state

Theorem 6.4. Let be $u \in \text{End}(R^n)$, P a G_u -structure on M, and F the tensor field of type (1, 1) induced by P on M. Then the complete lift F^C of F to F^2M defines the G_{u^2} -structure on F^2M given in Theorem 6.3. #

From Lemma 6.1 and Theorem 6.4, we deduce

Corolary 6.5. [3]. If F defines on M a polynomial structure of rank r, then F^{C} defines on $F^{2}M$ a polynomial structure of rank $r\left(1+n+\frac{n(n+1)}{2}\right)$ and same structural polynomial. #

(II) G-structures defined by tensor fields of type (0, 2)

Let be $u \in \bigotimes_2(R^n)$,* $T_n^2 u$: $T_n^2 R^n \times T_n^2 R^n \to T_n^2 R$, the induced map, and let p_1, p_2 : $T_n^2 R \cong R^{N/n} \to R$ be the maps defined by

$$p_1(j_0^2g) = \sum_{\substack{\lambda \in N_2 \ |\lambda| = 1}} C_{(\lambda)}, \quad p_2(j_0^2g) = \sum_{\substack{\nu \in N_2 \ |\nu| = 2}} D_{(\nu)}$$

respectively, where $(g(0), C_{(\lambda)}, D_{(\nu)})$ are the induced coordinates of $j_0^2 g \in T_n^2 R$, $g: R^n \to R$. Then we define

$$\tilde{u}_i^2 \colon R^N \times R^N \to R$$

as the composition $\tilde{u}_i^2 = p_i \circ T_n^2 u$, i = 1, 2.

Lemma 6.6. $\tilde{u}_i^2 \in \bigotimes_2(R^N)^*$, that is, \tilde{u}_i^2 is bilinear, i=1, 2. Moreover, if u is symmetric (resp. skew-symmetric) then \tilde{u}_i^2 is also symmetric (resp. skew-symmetric) and if rank u=r, then rank $\tilde{u}_1^2=2r$ and rank $\tilde{u}_2^2=3r$.

PROOF. Suppose that (u_{ij}) is the matrix representation of u. Let be $j_0^2f, j_0^2g \in T_n^2R^n \cong R^N$ with the induced coordinates $(x^i, x^i_{(\lambda)}, x^i_{(v)})$ and $(y^i, y^i_{(\lambda)}, y^i_{(v)})$, respectively. Then, since $u_1^2(j_0^2f, j_0^2g) = p_i(j_0^2(u \circ (f, g)))$ and $u \circ (f, g)(t) = f^i(t)u_{ij}g^j(t)$, $t \in R^n$, we have

$$\begin{split} \tilde{u}_{1}^{2}(j_{0}^{2}f,j_{0}^{2}g) &= \sum\limits_{\substack{\lambda \in N_{2} \\ |\lambda| = 1}} (x_{(\lambda)}^{i}u_{ij}y^{j} + x^{i}u_{ij}y_{(\lambda)}^{j}) \\ \tilde{u}_{2}^{2}(j_{0}^{2}f,j_{0}^{2}g) &= \sum\limits_{\substack{\nu \in N_{2} \\ |\nu| = 1}} \left\{ x_{(\nu)}^{i}u_{ij}y^{j} + \sum\limits_{\substack{\lambda \in N_{2} \\ |\lambda| = 1}} x_{(\nu-\lambda)}^{i}u_{ij}y_{(\lambda)}^{j} + x^{i}u_{ij}y_{(\nu)}^{j} \right\} \end{split}$$

Therefore, the matrix representations of \tilde{u}_1^2 and \tilde{u}_2^2 are

(6.5)

$$\tilde{u}_{1}^{2} = \begin{pmatrix} 0 & (u_{ij}) \dots (u_{ij}) & 0 \dots 0 \\ (u_{ij}) & & & \\ \vdots & 0 & & 0 \\ (u_{ij}) & & & \\ 0 & & & \\ \vdots & 0 & & 0 \\ 0 & & & \end{pmatrix}, \quad \tilde{u}_{2}^{2} = \begin{pmatrix} 0 & 0 \dots 0 & (u_{ij}) \dots (u_{ij}) \\ 0 & (u_{ij}) \dots (u_{ij}) \\ \vdots & \vdots & \vdots & 0 \\ 0 & (u_{ij}) \dots (u_{ij}) \\ (u_{ij}) & \vdots & 0 & 0 \\ (u_{ij}) & & & \\ \vdots & 0 & & 0 \end{pmatrix},$$

respectively. Lemma 6.6 is now obvious. #

Proposition 6.7. Let G_u (resp. $G_{\tilde{u}_1^2}$) be the isotropy group of $u \in \bigotimes_2(R^n)^*$ (resp. $\tilde{u}_i^2 \in \bigotimes_2(R^N)^*$) with respect to the canonical representation of Gl(n) into R^n (resp. of Gl(N) into R^N), and denote $(G_u)^{(2)} = \varrho_n^2(T_n^2 G_u)$. Then

$$(G_u)^2 \subset G_{\tilde{u}_i^2}, \quad i=1,2.$$

PROOF. Direct from (6.5). #

Theorem 6.8. If M admits a G_u -structure, then F^2M admits a $G_{\overline{u}_1^2}$ -structure, i=1,2. Moreover, if the G_u -structure is integrable then the induced $G_{u_4^2}$ -structure is so also, i=1,2. #

Corollary 6.9. If M has an almost symplectic (resp. symplectic) structure then F^2M has two induced almost presymplectic (resp. presymplectic) structures. #

Let be $u \in \bigotimes_2(R^n)^*$, P a G_u -structure on M, and $\widetilde{P}_i^{(2)}$, i=1,2, the induced $G_{\widetilde{u}_i^2}$ -structure on F^2M , and g (resp. $\widetilde{g}_i^{(2)}$, i=1,2) the tensor field of type (0,2) on M (resp. on F^2M) associated to P (resp. to $\widetilde{P}_i^{(2)}$, i=1,2). Then we have in U

$$g = g_{ij} dx^i \otimes dx^j = u_{ij} \theta^i \otimes \theta^j$$

and from (6.5) and (6.6), we have in F^2U

$$\tilde{g}_{1}^{(2)} = \sum_{\substack{\lambda \in N_{2} \\ |\lambda| = 1}} \{u_{ij}(\theta^{i}) \otimes (\theta^{j})^{(\lambda)} + u_{ij}(\theta^{i}) \otimes (\theta^{j})^{V}\},$$

$$\tilde{g}_{2}^{(2)} = \sum_{\substack{\mathbf{v} \in N_{2} \\ |\mathbf{v}| = 2}} \left\{ u_{ij}(\theta^{i})^{V} \otimes (\theta^{j})^{(\mathbf{v})} + \sum_{\substack{\lambda \in N_{2} \\ |\lambda| = 1}} u_{ij}(\theta^{i})^{(\mathbf{v} - \lambda)} \otimes (\theta^{j})^{(\lambda)} + u_{ij}(\theta^{i})^{(\mathbf{v})} \otimes (\theta^{j})^{V} \right\}$$

Then one easily deduces

(6.7)
$$\tilde{g}_{1}^{(2)} = \sum_{\substack{\lambda \in N_{2} \\ |\lambda| = 1}} g^{(\lambda)}, \quad \tilde{g}_{2}^{(2)} = \sum_{\substack{v \in N_{2} \\ |v| = 2}} g^{(v)}.$$

Remark. Let π_1^2 : $F^2M \to FM$ be the projection defined by $\pi_1^2(j_0^2f) = j_0^1f$. Then, from (6.7) one obtains that $\tilde{g}_1^{(2)} = (\pi_1^2)^*g^C$, where g^C is the complete lift of g to FM defined by Mok [5].

As in [1], [7] and [8] one can obtain prolongations of Gl(V, W) and Sl(n, R)-

structures on M to F^2M .

§ 7. Lifts of G-connections to F^2M

Let G be a Lie subgroup of Gl(n), $P(M, \pi, G)$ a G-structure on M and ∇ a linear connection on M. Let U be an arbitrary coordinate neighbourhood on M and $\{X_i\}$ a local field of frames adapted to P. Then, for any vector field Y on M assume that

$$\nabla_{\mathbf{y}} X_i = Y^k \Lambda_{ki}^h X_h$$

holds, the matrix $(Y^k \Lambda_{ki}^h)$ belonging to the Lie algebra \underline{G} of G, where $Y = Y^k X_k$. Under these assumptions, ∇ is said to be a G-connection relative to the G-structure P and the coefficients Λ_{ki}^h in (7.1) are called the components of ∇ with respect to the adapted frame $\{X_i\}$.

Now, we consider the so called complete lift ∇^C to T_n^2M of a linear connection ∇ on M, which is defined as the unique linear connection on T_n^2M verifying

$$\nabla^{\mathcal{C}}_{Y(\alpha)}Y^{(\beta)} = (\nabla_{Y}Y)^{(\alpha+\beta)},$$

for any vector fields X and Y on M, α , $\beta \in N_2$ (see Morimoto [9]). Now, we consider the restriction of ∇^C to F^2M , also denoted by ∇^C . Then ∇^C is characterized by the following identities

(7.2)
$$\nabla_{X^{C}}^{C}Y^{C} = (\nabla_{X}Y)^{C}, \quad \nabla_{X^{C}}^{C}Y^{(\lambda)} = \nabla_{X^{(\lambda)}}^{C}Y^{C} = (\nabla_{X}Y)^{(\lambda)},$$

$$\nabla_{X^{C}}^{C}Y^{(\nu)} = \nabla_{X^{(\nu)}}^{C}Y^{C} = (\nabla_{X}Y)^{(\nu)}, \quad \nabla_{X^{(\lambda)}}^{C}Y^{(\mu)} = (\nabla_{X}Y)^{(\lambda+\mu)},$$

$$\nabla_{X^{(\lambda)}}^{C}Y^{(\nu)} = \nabla_{X^{(\nu)}}^{C}Y^{(\lambda)} = \nabla_{X^{(\nu)}}^{C}Y^{(\eta)} = 0,$$

for any vector fields X and Y on M, and every λ , μ , ν , $\eta \in N_2$ such that $|\lambda| = |\mu| = 1$, $|\nu| = |\eta| = 2$.

Definition 7.1. ∇^{C} is called the complete lift of ∇ to $F^{2}M$.

Now, if X_i is a local field of frames on U adapted to a G-structure P, then $\{X_i^C, X_i^{(\lambda)}, X_i^{(\nu)}\}$ is a local field of frames on F^2U adapted to the prolongation $P^{(2)}$ of P to F^2M . Hence, from (7.1) and (7.2), we obtain

$$\begin{split} \nabla^{C}_{X_{i}^{C}}X_{j}^{C} &= (\Lambda^{h}_{ij})^{V}X_{h}^{C} + \sum_{\substack{\lambda \in N_{2} \\ |\lambda| = 1}} (\Lambda^{h}_{ij})^{(\lambda)}X_{h}^{(\lambda)} + \sum_{\substack{\nu \in N_{2} \\ |\nu| = 2}} (\Lambda^{h}_{ij})^{(\nu)}X_{h}^{(\nu)}, \\ \nabla^{C}_{X_{i}^{C}}X_{j}^{(\lambda)} &= \nabla^{C}_{X_{i}^{(\lambda)}}X_{j}^{C} = (\Lambda^{h}_{ij})^{V}X_{h}^{(\lambda)} + \sum_{\substack{\mu \in N_{2} \\ |\mu| = 2}} (\Lambda^{h}_{ij})^{(\mu)}X_{h}^{(\mu+\lambda)}, \\ \nabla^{C}_{X_{i}^{C}}X_{j}^{(\nu)} &= \nabla^{C}_{X_{i}^{(\nu)}}X_{j}^{C} = (\Lambda^{h}_{ij})^{V}X_{h}^{(\nu)}, \\ \nabla^{C}_{X_{i}^{(\lambda)}}X_{j}^{(\nu)} &= \nabla^{C}_{X_{i}^{(\nu)}}X_{j}^{(\lambda)} = \nabla^{C}_{X_{i}^{(\nu)}}X_{j}^{(\eta)} = 0. \end{split}$$

Therefore, we deduce

Theorem 7.2. Let ∇ be a G-connection relative to a G-structure P on M. Then the complete lift ∇^C of ∇ to F^2M is a $G^{(2)}$ -connection relative to the prolongation $P^{(2)}$ of P to F^2M . #

References

 L. A. Cordero and M. De Leon, Prolongations of G-structure to the frame bundle, Ann. Mat. Pura Appl. (IV), Vol. CXLIII. (1986) 123—141.

[2] L. A. Cordero and M. De Leon, Lifts of tensor fields to the frame bundle, Rend. Circ. Mat. Palermo, (2) 32 (1983), 236—271.

[3] J. GANCARZEWICZ, Complete lifts of tensor fields of type (1, k) to natural bundles, Zeszyty Naukowe UJ 23 (1982), 51—84.

[4] J. GANCARZEWICZ, Liftings of functions and vector fields to natural bundles, Dissertationes Mathematicae CCXII (1983).

[5] K. P. Mok, Complete lifts of tensor fields and connections from a manifold to the linear frame bundle, Proc. London Math. Soc. 38 (1979), 72—88.

[6] A. Morimoto, Prolongations of geometric structures, Lec. Notes Math. Inst. Nagoya Univ., 1969.

[7] A. Morimoto, Prolongations of G-structures to tangent bundles, Nagoya Math. J. 32 (1968), 67—108.

[8] A. Morimoto, Prolongations of G-structures to tangent bundles of higher order, *ibidem* 38 (1970), 153—179.

[9] A. MORIMOTO, Liftings of some types of tensor fields and connections to the tangent bundles of p^r-velocities, ibidem 40 (1970), 13—31.

[10] A. Morimoto, Prolongations of connections to the tangential fibre bundles of higher order, ibidem 40 (1970), 85—97.

tbidem 40 (1970), 85—97.
 [11] A. MORIMOTO, Liftings of tensor fields and connections to tangent bundles of higher order, ibidem 40 (1970), 99—120.

[12] A. Morimoto, Prolongations of connections to bundles of infinitely near points, J. Diff. Geom. 11 (1976), 476—498.

[13] M. DE LEON and M. SALGADO, Diagonal lifts of tensor fields to the frame bundle of second order Act. Sci. Math. 50 (1986), 67—86.

[14] K. Yano and S. Ishihara, Tangent and cotangent bundles, Marcel Dekker Inc., New York 1973.

Authors address: DEPARTAMENTO DE GEOMETRÍA Y TOPOLOGÍA FACULTAD DE MATEMÁTICAS UNIVERSIDAD DE SANTIAGO DE COMPOSTELA SPAIN

and

CECIME Consejo Superior de Investigaciones Cientificas SERRANO, 123, 28006 MADRID SPAIN

(Received October 29, 1985)