Prolongations of G-structures to the frame bundie
of second order

By MANUEL DE LEON and MODESTO SALGADO (Santiago)

Introduction

Let M be an n-dimensional differentiable manifold, 7M its tangent bundle
T" M its tangent bundle of order r, r=2, FM its frame bundle and F*M its frame
bundle of second order.

The theory of prolongations of G-structures on M to appropriate G-structures
on TM and T"M has been introduced by A. MormMOTO in [7] and [8], respectively.
Recently, L. A. CorDERO and M. DE LEON [1] has developed a similar theory for FM.

In this paper, we extend this theory for F2 M and show, by studying the prolonga-
tions of some classical G-structures on M, how the different definitions of lifts given
in [3], [4] and [13] fit nicely in this general framework.

In a forthcoming paper, we shall show that a similar theory can be developed
for the diagonal lifts of tensor fields on M to F2M introduced in [13].

§ 1. Preliminaires

1.1. The tangent bundle of n*-velocities.

Let M be an n-dimensional manifold. We denote by T3 M the setof all 2-jets
at 0 of differentiable mappings R"—~M. Let =ni: T;M—~M be the target projec-
tion, i.e., 7 (js f)=/1(0). In T; M we consider the following manifold structure (see
Mormorto [9]): Let N, denote the set of all n-tuplas v=(v,, ..., v,) of non negative
integers such that |v|=v,+...4v,=2. Every chart (U, x) on M induces a chart
((x)2(U)=T2U, xiyy: i=1,...,n; vEN,) on T2 M, called the induced chart, where

Orrttvy,

1 y 1
xw(sf) = = %] (**0f =0 = Wm(x' of )i=0

being (4, ..., #,) the natural coordinates of R" and v!=v,!...v,!.

The set N, has l+n+-§w elements which can be ordered by the fol-
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lowing bijection

If v=(v,...,v,) and A=(4,,...,4,) are two n-tuplas, then we writte v+i=
oV td) and v=24 if =4, for i=l,...,n

It is clear that x, ¢ (Jjs /)=x'(f(0)) and we shall denote these coordinates
x%o, ..o by x*. In the sequel, we shall denote by (x', x{;,, x},,) the induced coordinate

= th, ..

Manuel de Ledn and Modesto Salgado

N, - {0, | S D n+n(n—2+l)}

7(,...,0) =0,

¥Y@,..,1,..,00 =i (we place 1 in i-th position)

o | s PERORL, IR | =j+(2n—_2£_—-l—)-+n,
(we place 1 in i-th and j-th positions, i < j)

¥(,...,2,...,0) = i+(2—n_-i:)z(Lll+n,

(we place 2 in i-th position).

system in T; U, where A,vEN, with |i|=1, |v|=2.

Let (U, x') and (U, ') be two intersecting charts on M and the coordinate
transformation in UNU given by X¥'=x'(x). Then the transformation of induced

coordinates in TRUNTRU=T2(UNU) is given by

(1.1)

e B L ox!
=5 xl(z) = '5';;‘-"'('1); 4l =1,
& 92 xt dx!
X = x| Jé : X{v—2X(2) toF Xop V=2
AEN,

The Jacobian of (1.1) is given by the matrix

(1,2)

a 0 0
B, a,

~ 0 °

B, | PR

Chnt1 0 a

: *) PN
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being (*) the matrix

B,
oo
: * 0
0
2.0 B,
0 B,
ot 0
0 o
0 i
ot B,
B,
R A
o | | .
B, B,
0 By O
Bl Bu—l
0 B
where
pul
Y
25
B,‘ = &L’_BxTx;'m‘)]’ k= 1,...,?!,
1 PE
Cppmmocn = (3 57 Homro%h o+
’x X
tovoxr "5"(,+w+,) ] LB
2
and

Xy =1G) Xy - 1) = Xy-10) Xy -3y + Xy -18) X5 -1(j)

Definition 1.1. The differentiable manifold 77 M with projection = is called the
tangent bundle of n*velocities of M.

Now, we shall recall some properties of the functor 72:

(A) Let f: M—~N be a map of a manifold M into another manifold N. Then
the map finduces a map T.f: T;M—~T; N defined by T:/(jsg)=j5(fog). More-
over, if f has maximal rank, then 7} f has maximal rank. Therefore, if fis an immer-
sion (resp. diffeomorphism) then 7;f is an immersion (resp. diffeomorphism), and
if fis a diffeomorphism then (73f)'=T2(fY).

(B) Let M and N be two arbitrary manifolds and M XN the manifold product.
Then T?(MXN) and T;MXT;N are canonically diffeomorphic.
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(C) Let G be a Lie group with multiplication u: GXG—G. Then T;G is a
Lie group with multiplication T;u: T;GXT;G—+T:G. Moreover, if h: G—~G’ is
a homomorphism of Lie groups then T;h: T;G—~T:G’ is so also. Therefore, if G
is a Lie subgroup of G’, then T;G is a Lie subgroup of T2G".

(D) If a Lie group G operates on a manifold M differentiably and effectively
then TG operates on T; M differentiably and effectively.

(E) If P(M, =, G) is a principal fibre bundle then T2P(T:M, T3in, T3G) is a
principal fibre bundle which be called the induced bundle. In fact, let U be a coor-
dinate neighbourhood on M; if ¢y: UXG—-n"1(U) is the local trivialization of P
then T3(py): TRUXT2G~Ti(n~*(U)) is the local trivialization of T3 P.

1.2. The frame bundle of second order.

Let M be an n-dimensional manifold. We denote by F2M the set of all 2-jets
at 0 of diffeomorphisms of open neighbourhoods of 0 in R" onto open subsets of M.
Let n%: FPM—~M be the target projection 72(j;f)=/(0). Then =n*: FPM—-M
is a principal fibre bundle with the structural group L} of all 2-jets with the source
and the target at 0 of local diffeomorphisms of R". The group L; operates on F?*M
on the right in the natural way ((jz/)(Jjsg)=Js (fog)), where jif and j;g belong to
F2*M and L;, respectively.

Let us remark that F2M is an open and dense subset of T; M. If f: M—N is a
local diffeomorphism then we define its prolongation f2: F*M—F*N by f*(jig)=
=js(fog), and it is clear that T2f|pp=/>.

Every chart (U, x) on M induces a chart ((z?)~2(U)=F2U, x},): i=1,...,n;
véN,) on F2M, where

; 1(0Y
T T G FEY W
We shall denote the induced coordinate system by (X', x{;), x{)), where 4, vEN,,
with |i]=1, |v|=2.

Now, we can consider the restriction to F2M of the y-lifts (y€N,) of tensor

fields on M to T; M (see [3], [4]):

(A) Lifts of fumctions.

If £ is a differentiable function on M, we define the O-lift, (A)-lift (v)-lift
(4, vEN,: |A|=1, |v|=2) as the functions f°, f®, f® on F2M given by

L=f7" =4
(1.3) S® = x{30.f,
SO = 3 xly-2xl00:0,/+x(,)0.f,
faot
) 4
Whel'e 3;_[-—- -a".

It is convenient to define /=0 if y¢N,.
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(B) Lifts of vector fields.

If X is a vector field on M, we define the complete lift (or 0-lift), (4)-lift and
(v)-lift to F2M as the vector ficlds on F2M given by

3
XC___ X v X (2) X; (v)
XY =+ Z( ) Bx’(j, +UEZN( ) Bx'(,,
|¢ll==1 11'|-2
(1.4 X® = (XY =5 Y,
REN, 3-x().+g)
ful=1
Ll
X0 = (X ,
(X9 o

where X' are the local components of X.
It is convenient to define X =0 if y¢N.,.

(C) Lifts if I-forms.

Similarly, if @ is an i-form on M, we can define the corresponding lifts @°,
O, @™ to F*M as the i-forms on F2M given by

6° =" = (n)*0

(1.5) OM = (@) dx{;+(0)" dx',
O™ =(8,)" dx{,)+ Z (©)°~" dx{yy +(0,)" dx',
lnl==1

where ©' are the local components of ©.
It is convenient to define @ =0, if y¢N,.
From (1.3), (1.4) and (1.5), we deduce

Proposition 1.2. Let X and @ be a vector field and I-form on M, respectively.
Then we have

0] ') =(ex), e'@w) =0 6e'xwM) =0,

(2 00X =(0(X)™, OV(XW) =54 o)), eNxX™)=0,

(3) O (X°) = (Q(X))(ﬂ)’ P (XW) = (9(){))(#-1), OB(XM) = yV(e(X))V,
where a, B, A, vEN,, with |a|=|A|=1, |f]=|v]|=2. =

(D) Lifts of tensor fields of type (1, 1).

If Fis a tensor field of type (1, 1) on M, we define the (y)-lift (yEN,;) of F to
F2M as the tensor field F™ of type (I1,1) on F2M given by

FO(XC) = (FX)™, FO(X®) = (FX)*-9,
for any vector field X on M, where {EN,, 1=|¢|=2.
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We shall denote F© 9 by FC€. FC€ is called the complete lift of F to F2M.
In [3], Gancarzewicz proved that F€ is completely characterized by the identity
F¢(X€)=(FX)C, for any vector field X on M.

(E) Lifts of tensor fields of type (0, 2).

Finally, let g be a tensor field of type (0,2) on M. Then we define the (y)-lift
of g to F?*M, y€N,, as the tensor field of type (0,2) on F*M given by

gNX®, YP) = (g(X, Y)Jr-*-P,
for any vector field X on M, where «, fEN,.

§ 2. Imbedding of T GL (n) into Gl (N), N=n [l +n+@] ;

Let R" be the n-dimensional euclidean space, and consider the tangent bundle
of n*-velocities T; R" of R". It is clear that T} R" is a vector space of dimension N. In
fact, for any two 2-jets ji / and j§ g, we define their sum by: j§f+Jjs g =ji (f+g), where
(f+8)(t)=f(t)+g(t), for t€R". For any ccR" we define the scalar multiplica-
tion of jif by c as follows: ¢-(j3f)=Jji(c-f), where (c-f)(t)=c-f(t), for t€R".

Let (#) be the natural coordinate system on R" and let (fy,: i=1, ..., n; aENy)
be the induced coordinate system on 73 R". Then the sum and scalar multiplication
in T2R" are as follows:

(rim)) +('t{a)) = (rim}"}_’lzs))’ c- (l{m}) - (C . r{a))'

Let GI(n) be the general linear group. Then 73GI(n) is a Lie group. Let
A€T?GI(n) be the 2-jet defined by the map A: R"—~Gl(n), and (A!(r)) the matrix
that represents to A(t) for each t€R". The element 4 can be identified to the
[1 +n+ "("2+ l)]—tupla

(a5 .. B, 5 .., €, L), P=1, =2,

where
a = (A4}(0)), acGl(n),

o= A{(2) o] . st

Cc™ = ;l’_ [[%]v (A{‘(:))LO, CMegl(n),

being gl(n) the Lie algebra of G/(n).
Now, let GI(n)X R"—~R" be the usual operation of the general linear group
GI(n) on R" and consider the induced operation

T2 Gl(n)XT2R" -~ TER"
(4,P)~A4-P

If A=j2A, P=j3 P, where A: R"—~Gl(n), P: R"—~R" are defined by A(r)=(4}(1)),
P(1)=(&"(1)), then A-P=j§(A-P), being A-P: R"~R" the map defined by
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(A-P)(t)=A(t)-P(r) for tcR". Therefore, if (A.P)(¢)=("&"(t), then *&"(t)= A¥(2)
g(z) for t€R". Let (t},) and ('#}) the induced coordinates of P and A4- P, resp-
ectively. Then we obtain

‘t*t = att
(2.1) “thy = B +altl,, 14 =1,
"ty = (CONt'+ 21; (BY-ty+attl,y, vl =2,
, r3
[a]=1

from where deduce that T2Gl(n) operates on 72 R" as a group of linear transforma-
tions. So, each element 4=jA4€ T2Gl(n) can be identified to a linear automorphism
of T3?R"==R™. Therefore, we deduce the following proposition.

Proposition 2.1. There is a canonical homomorphism ¢, of T;Gl(n) into GI(N)
which is given by the following equality:

a
B, 0 - -0 0
: a,
5 : ;
2.2 2(4) = {On : %
22) ad=|c et b
: o, :
C,.+ﬁ§12ﬂ 0 ~0a
where (*) is the following matrix
B,
A
-
0
B, 0 B,
0 B
WS
0 L
B, ‘B,
B
g 1an D
G
Bn Bk
B.l—l 0
0 Bﬂ Bn-—l
0. -8,



28 Manuel de Leén and Modesto Salgado

being
B = B0,-1,-:,0)
(we place 1 in th-position)

C ol X C‘"""'l""'l"""”
J'+(_=n ‘1(' 1)+H

(we place 1 in i-th and j-th position, j<i)

C N — C(Oa""ﬁ""'")
’+(2.n .l';(l l)+n

(we place 2 in i-the position).

§3. Imbedding of T, FM into FF* M.

Let FM(M, my,, GI(n)) be the frame bundle of M, T FM (T M, Tiny, T:GI(n))
the induced bundle and FT;M (T3 M, nrim, GI(N)) the frame bundle of T;M.

Theorem 3.1. There exists a canonical injective homomorphism of principal bundles
jie: T2FM —~ FT: M
over the identity of T:M, with associate Lie group homomorphism g3: T;Gl(n)—
—~GI(N).
Proor. Let U be a coordinate neighbourhood in M, and

@u: TEUXTEGI(n) ~ TEFU, Yy: TEUXGI(N) — FTRU

the local trivializations of T, FM and FI, M, respectively. Then we define
Jau: T3 FU~FT;U as the composition jiju=Yvo(lriuXepo@y'. In order to
prove Theorem 3.1 it is sufficient to check the following identity

(3.1 Jov = @2 T:Jyp on TEIUNTEU,

where Jyp: UNU—~GI(n) and Jyp: TRUNT2U-GI(N) denote the Jacobian
matrices of change of coordinates in M and T} M, respectively. %

Let (x') and ()) be the coordinate functions in U and U, respectively. We
assume that y'=f"(x/) in UNTU. Let jige T; UNT;U=T3(UNU) and (¥, x{;y, x},))
be the induced coordinates. Then T:J(jig)=Jj;(Jog) is the 2-jet corresponding to

the composition (Jog)(?)= [W] loy- Therefore, j§(Jog) is identified to the

[l+n+ ﬂ'("‘,:'1)]4111;»1&

(a; sesg BU-J’ seed weey C("r )’
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where
_for =
a= [3—xf|x), x = g(0),
32 i
g b i Ofi .
- [?Wlx 52 -t i ¥o) s 11 =2
|i]|=1

Now, from (3.2) one gets that the matrix g3(j3(Jog)) coincides with the Jacobian
matrix (1.2). This proves the equality (3.1).

Now, let 77 F* Mgy be the restriction of T; F*M to the open submanifold
F2M of TSM Remark that the restriction FT‘M | 18 canonically isomorphic to
the frame bundle FF2M of F*M. Then, from Theorem 3.1, we deduce

Theorem 3.2. j3; induces a bundle homomorphism of T”FMIF,M into FF*M
over the identity of F* M and with associate Lie group homomorphism g;.

§ 4. Prolongations of G-structures to F*M.

Let G be a subgroup of GI(n), and denote G® =p2(T2G). Then G® is a Lie
subgroup of GI(N) isomorphic to 72G. Let P(M, n, G) be a G-structure on M.
Then we have

’I‘t(le)orem 4.1. If M has a G-structure P, then F*M has a canonical G*®-struc-
ture P,

Proor. Taking into account Theorem 3.2, it suffices to set P® =j5 (77 Ppry)-
4

Definition 4.2. P® will be called the prolongation of the G-structure P on M
to the frame bundle of second order F=M.

Let M and M’ be n-dimensional manifolds, f: M—-M’ a diffeomorphism
and f1: FM—~FM’ the induced isomorphism of principal bundles (see [1]). Then
we have

Theorem 4.3. The jollowing diagram is commutative
Theorem 4.3. The following diagram is commutative

T2 FM — ji—- FT:M
730 | i

.
dp ik T JM+ 7T A4 Ay vk

4
#

Theorem 4.4. Let P and P’ be G-structures on M and M’, respectively, and
f: M—=M’ a diffeomorphism. Then f is an isomorphism of P to P’ if and only if f*
is an isomorphism of P® 1o P'®.
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PROOF. Suppose that fis an isomorphism of P to P’. Then by virtue of Theo-
rem 4.3 and since T3 (f")(T7 Pipaag) =T P |p2ae, We have

IHP®) = (' (1 (T3 Prres)) = B (T3N3 Pipead) = T3 P jpen) = PO
Conversely, if
(FHP®) = P, then (f*)'(ji (T Pir,a0) = Jie(T3 Plean)-
On the other hand,
(I (G3(T2 Prpad)) = Jiae (T M) (T3 Pipen))-

Then, since j§ is injective, we deduce that 77 (f")(T7 Pjpy) =T, P’ \pry. Hence
SY(P)=P’ thatis, fis an isomorphism of P to P’. s

Corollary 4.5. Let P be a G-structure on M and let f be a diffeomorphism of M
into itself. Then f is an automorphism of P if and only if f* is an automorphism of

PO, &

Corollary 4.6. A vector field X on M is an infinitesimal automorphism of a G-struc-
ture P on M if and only if X€ is an infinitesimal automorphism of the prolongation P\®
of Pto F?M.

Proor. It is a consequence of the following result gsee Gancarzewicz [3]): If
@, is the local 1-parameter group generated by X then ¢f is the local 1-parameter
generated by X€. i

§ 5. Integrability of the prolongation of G-structures

In this section, we shall prove that the prolongation of an integrable G-struc-
ture is also integrable, and viceversa.

Definition 5.1. Let P(M,n, G) be a G-structure on M. P is said to be inte-
grable if for each point x¢M there is a coordinate system (U, x') with x€U such

0 J
that the frame ], o, €P for every yeU

Theorem 5.2. Let (U, x') be a coordinate system in M, and let ®: U—~FM
be a cross-section given by ®(x)= (d‘j (x) -(%—i-ll] , X€U. Define P*=jyoT;P: T U~
—~FT: M. Then ®* is also a cross-section which is given at pe T2 U, with n2(p)=x, by
(5.1) *(p) = (X, X{P,. Xip), i=1,..,n; L,vEN, |4 =1, |v| =2,

lp

xc€U, and XF,

x

where X, is the local vector field given on U by X;),=®|(x) —3%

XP, X are the complete lift, (2)-lift and (v)-lift of X; to T2 M.
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ProOOF. From Theorem 3.1, one easily prove that #* is a cross-section. Now,
putting f(x)=(®}(x))Gl(n), for x€U, then we have ¢g'o®=(ly,f), where ¢y
is the local trivialization of FM. Hence

@* = Yo(lzzp XD T (1y, f) = Yuo (173 X (@30 T3 1)),

where ¢y is the local trivialization of T FM.
If j§heT; U has coordinates (x', x{;, X{)) then T;f(jih) has coordinates

0P 1 0*%; O ]
i J X i) X J
[¢j(x)s af |x () ] axaxg |x|1%{ (v—j,)xfj)"‘_ax' |x x'('\,)
Al=

Then, from Proposition 2.1, one deduces (5.1). 3
Actually, if ¢: U-FM is a cross-section, then the restriction &= ®* pay: F2U~
—FF*M is also a cross-section locally expressed by

(52)  &(p) = (X5 X, X)), i=1,..n; V€N, |2l=1,W=2,
where X;=¢{%in U.

Proposition 5.3. Let P be a G-structure on M. Then P is integrable if and only if
the prolongation P is integrable.

Proor. Suppose that P is integrable. From Definition 5.1 and Theorem 5.2
we deduce that P® is integrable.

Conversely, suppose that P® is integrable. Let x, be an arbitrary point in M,
(U, x*) a coordinate system with x,cU, and ®: U—~P a local cross-section of P
over U. Now, let p,€ F2U be with coordinates (x'=x'(x,), x{s)=0%®, x{,,=0).
Since P® is integrable there exists a coordinate system (U, %, yi;), ¥{y): i=1, ..., n;
|A]=1, |v|=2) in F2U with p,cU, Uc F2U, such that, if we define &, by

0 0 0
&) = (2r) » , )
: ' Wnl® s
then &, is a cross-section of P® over U. Now, since @ and &, are both cross-sec-
tions of P® over U, there exists a map g: U~G®=02(T2G) such that &y (p)=
=®&(p)-g(p) holds for pcl. Then, using similar arguments as in the proof of

Proposition 5.5 [7], Proposition 10. [8] and Proposition 4.5 [1], we deduce that P
is integrable.

§ 6. Prolongations of classical G-structures

Let P be a G-structure on M, (U, x') a local coordinate system in U, and
@: U—~P a cross-section. Then @ defines a local field of frames {Xi, ..., X,}

adapted to P and given by X, = &/ % . Hence thelocal field of coframes {¢, ..., 6"}

dual to {Xi, ..., X,} is given by
(6'1) BJ = Wl‘ dxis
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where (4) denotes the inverse matrix of (®%). Then & induces a cross-section
@: U~P® given by (5.2). There & defines the Jocal field of frames adapted to P®
given by {X€, X, XM i=1,...,n; i, vVEN,, |A|=1, |v|=2}. From (6.1), we deduce
that the dual}loca! ﬁcld of coframes is {@), (P, H™: i=1,...,n; A, vEN,,
1A=1, |v|=2

(I) G-structures defined by tensor fields of type (1, 1)

Let o: GI/(n)—~Aut (R") be the canonical representation of GI(n) into R,
uc¢End (R") an arbitrary element and G, the isotropy group of u# with respecs to
0. Let w*=TucEnd (R"). RV identified to T7R" the induced ma! defined by
w2(j3g)=j3(uog), isg€ TR R". Let ('x',’x{y), Yl(v)) and (xi x(l)!x(v)) the induced

coordinates of jj(xog) and jig, respectively. If u= (u) is the matrix representation
of u, then we obtain
’xi = u}x], ,xl;l) = u}x{i)v ’xi(\') = H}JC{‘,), ;', "Est |;| =1, ]vl =2,
and therefore the matrix representation of #* is

(uj.) 0
(6.2) w? = .
0 ()
From (6.2) we deduce
Lemma 6.1. Let ®=T; ucEnd (R") be the linear map induced by ucEnd (R").
If rank u=r, then rank 1*=r [1 +n+i"2ﬂ] . Moreover, if u satisfies a poly-
nomial equation Q(u)=0, then u® satisfies the same equation, that is, Q(u*)=0. 4

Proposition 6.2. Let G, be the isotropy group of u* with respect to the canonical
representation of GI(N) into R, and denote (G,)®=03(T?G,). Then (G,)*cC
= G”l . 3

Theorem 6.3. If M admits a G,-structure, then F*M admits a G .-structure.
Moreover, if the G-structure in M is integrable, then the induced G,-structure on
F2M is so also.

ProoF. From Theorem 4.1 we deduce that F2 M admits a (G,)®-structure, which,
by virtue of Proposition 6.2, can be extended to a G,:-structure. The assertion on
the integrability follows from Proposition 5.3. 3

Let P be a G,-structure on M, and let F be the tensor field of type (1,1) on
M associated to P. If (U, x) is a coordinate system in M, and if {X;}, {0'} are
the local field of frames and coframes induced by a cross-section @: U—P, then
F is locally given by

(6.3) I AL

ox'
Similarly, let F® be the tensor field of type (1,1) on F2M associated to P®,

®dx" = UJX;@G"
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extension of the prolongation P® of P (Theorem 6.3). Then, from (5.2) and (6.2),
we have

64  FO=uXfe@+ = MEXPe@)@+ > 5uXPe ).
[A[=|#]=1 [v|=|n|=2

From (6.4), one easily deduces that F® =F¢,
Summing up, we can state

Theorem 6.4. Let be ucEnd (R"), P a G,-structure on M, and F the tensor
field of type (1, 1) induced by P on M. Then the complete lift F€ of F to F*M defines
the G ,-structure on F*M given in Theorem 6.3. 3

From Lemma 6.1 and Theorem 6.4, we deduce

Corolary 6.5. [3]. If F defines on M a polynomial structure of rank r, then F€
nn+1)
2

defines on F* M a polynomial structure of rank r [l +n+ ] and same struc-

tural polynomial. 4

(II) G-structures defined by tensor fields of type (0, 2)

Let be u€®,(R").,* Tiu: T?R'"XT:R"-T:R, the induced map, and let
P1s P2t TER=RY"+R be the maps defined by

n(jig) = 2 Cuwy» p:(i3g) = o Dy,
|'}1|E£.~’{ 1‘?&”&

respectively, where (g(0), C(;, D)) are the induced coordinates of jig€T:R,
g: R"—=R. Then we define

#;: R"XRY - R
as the composition @#f=p;o Tru, i=1, 2.

Lemma 6.6. #7¢ ®,(RY)*, that is, @f} is bilinear, i=1,2. Moreover, if u is sym-
metric (resp. skew-symmetric) then @} is also symmetric (resp. skew-symmetric) and
if rank u=r, then rank #;=2r and rank =3r.

PROOF. Suppose that (y;;) is the matrix representation of wu.
Let be j3f, jggETER';R" with the _induoed coordinates (x, x{;,, xiy)) and
(', Yia)» Viw)»  respectively. Then, since #5(jif.js8)=p{Jjs(uo(f, g)) and
uo (f. g)()=f'(t)u;g’(t), t€R", we have
B (jsf.jsg) = ‘Z}: (x‘(a) “u}""*‘x‘"u}‘{z))
i
0(jsf. jsg) = g.;; {xlny iy + A%'r Xy —nythiiyin +Xuyln}
V=1 j2]=1
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Therefore, the matrix representations of #f and #3 are

(6.5)
(0 (uy)...(u) 0...0) 0 B B hk) i
("u) 0 ("u) v (135)
5 0 0 : : : 0
ﬂ% = (uij) ’ ﬂ§ gr= 0 (ui}) o (uij) ’
0 (ufj)
: 0 0 : 0 0
| 0 L("u)

respectively. Lemma 6.6 is now obvious. 3

Proposition 6.7. Let G, (resp. G ) be the isotropy group of uc ®,(R")* (resp.

e ®(RY)*) with respect to the canomca! representation of Gl(n) into R" (resp.
of GI(N) into RY), and denote (G,)® =02 (12G,). Then

(G“sCG‘:, i=1,2.
Proor. Direct from (6.5).

Theorem 6.8. If M admits a G,-structure, then F*M admits a Ggz-structure,
i=1,2. Moreover, if the G,-structure is integrable then the induced G,z-structure is
so also, i=1,2. 3

Corollary 6.9. If M has an almost symplectic (resp. symplectic) structure then
F®*M has two induced almost presymplectic (resp. presymplectic) structures. 3

Let be u€ ®,(R")*, P a G,-structure on M, and P®, i=1,2, the induced
Gj2-structure on F*M, and g (resp g®, i=1,2) the tensor field of type (0,2) on

M (resp on F2M) associated to P (resp. to P{®, i=1,2). Then we have in U
g = gydx'®@dx’ = u;0'Q¥
and from (6.5) and (6.6), we have in F*U
gY = 2 {u;(0)® (0D +u;;(0)2 (6)"},

=3
g = Z {uij(el)V@’ @)™ + Z "u(g')("a)® (6D 4 u,; (YR (09}
Mot il
Then one easily deduces
6.7 g = MZ'I\r g, M= Z g

1d]=1 | [-3
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Remark. Let ni: F*M—~FM be the projection defined by #3(j3f)=jif. Then,
from (6.7) one obtains that g{® =(n})*g%, where g€ is the complete lift of g to FM
defined by Mok [5].

As in [1], [7] and [8] one can obtain prolongations of GI(V, W) and Si(n, R)-
structures on M to F2M.

§ 7. Lifts of G-connections to FM

Let G be a Lie subgroup of GI/(n), P(M, n, G) a G-structure on M and V a linear
connection on M. Let U be an arbitrary coordinate neighbourhood on M and {X;}
a local field of frames adapted to P. Then, for any vector field Yon M assume that

(7-1) VYXE=Y*A2"X"

holds, the matrix (Y*A},) belonging to the Lie algebra G of G, where Y=Y*X,.
Under these assumptions, V is said to be a G-connection relative to the G-structure
P and the coefficients A}; in (7.1) are called the components of V with respect to
the adapted frame {X;}.

Now, we consider the so called complete lift V€ to T2 M of a linear connec-
tion V on M, which is defined as the unique linear connection on T2 M verifying

ViY@ = (VyY)+P),

for any vector fields X and ¥ on M, a, fEN, (see Mormoro [9]). Now, we con-
sider the restriction of V€ to F*M, also denoted by V€. Then is characterized
by the following identities

VEcYC = (Vi Y)°, VY@ =V, YE = (VyY)W,
(7.2) VY =V YC = (Vg Y)M, V§auY® = (VxY)3+8),
VﬁmY“’) = VE(.-) Y('l] o Vﬁ(v} YO = 0,

for any vector fields X and Y on M, and every 4, u, v, n€ N, such that |A]=|u|=1,
VI=Inl=2.

Definition 7.1. V€ is called the complete lift of V to F2M.

Now, if X; is a local field of frames on U adapted to a G-structure P, then
{XE, XM, X} is a local field of frames on F?*U adapted to the prolongation P®
of P to F?*M. Hence, from (7.1) and (7.2), we obtain

VicXf = (A Xf+ Z (AP XD + F (4™ XM,
i AEN VEN,
|2j=1 Ivi=3
vﬁf P = Vi‘mX}’ = (Ah)’ X+ GZN (Af®@ X(r+2),
fui=t
Vi'cX}') = v‘cggﬂxf = (Afj)VXP)s
vf’:“)xj’) - Vﬁ:,, X}") = vg-'(vl X}") = 0.

3
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Therefore, we deduce

Theorem 7.2. Let V be a G-connection relative to a G-structure P on M. Then
the complete lift V€ of V to F*M is a G®-connection relative to the prolongation P®
of Pto F*M. 4
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