On the product of distributions and the change of variable

By BRIAN FISHER (Leicester)

In the following we let N be the neutrix, see van der Corput [1], having domain
N’={1,2,...,n, ...} and range N” the real numbers, with negligible functions linear
sums of the functions #*In'~'n, In'n for 2=0 and i=1, 2, ..., and all functions
which converge to zero as n tends to infinity.

It follows that if

f(n) =n*+2Inn+4+2+n"?

then the neutrix limit as » tends to infinity of f(n) exists and

N —lim f(n) = 2.

f==oo

We will also use the neutrix R having domain R’={l, 2, ...,r, ...} and range
R” the real numbers, with negligible functions linear sums of the functions 7* In*-* r,
Infr for A=0 and i=1,2, ..., and all functions which converge to zero as r tends
to infinity.

Now let ¢ be a fixed infinitely differentiable function having the properties

(1) e(x) =0 for |x| =1,
(i) e(x) =0,

(iii) o(x) = o(—x),
1

(v) [ e@adx=1.

-1

We define the function é, by J,(x)=no(nx) for n=1,2,.... It is obvious that
{0,} is a regular sequence converging to the Dirac delta-function 4.
The following definition for the product of two distributions was given in [3].

Definition 1. Let F and G be distributions and let G,=G#%dJ,. We say that
the neutrix product FoG of F and G exists and is equal to the distribution H on
the open interval (a,b) if

(1) N;&m (FG“, (P) = (H’ 9")

for all test functions ¢ with compact support contained in the interval (a, b).
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Note that if we put F,=F%J, and use the neutrix R we have

(FG,, ) = R:Eﬂ] (F,G,,0)
and so equation (1) could be replaced by the equation

2 N —1lim [R:ﬂljm (F.G,, 0)] = (H, @).

R~

The next definition for the change of variable in distributions was given in [4].

Definition 2. Let F be a distribution and let f be a locally summable function.
We say that the distribution F(f) exists and is equal to the distribution /# on the
open interval (a, b) if

N—lim [ F(fe)p(x)dx = (h, 0)

for all test functions ¢ with compact support contained in the interval (a, b), where
F,=F%é,.

This definition was considered in [5] for the case where f is an infinitely dif-
ferentiable function.

We now consider the problem of defining a neutrix product of the form
F(f)oG(g), where F and G are distributions and f and g are locally summable
functions.

Let us suppose that the distributions F(f) and G(g) exist and are equal to F;
and G, respectively on the open interval (a, 5). Then if the neutrix product FoG,
exists and is equal to H, on the open interval (a, b), we have on using equation (2)

N —lim [R - lim(F,, Gyy, 9)] = (Hy, 9)

for all test functions ¢ with compact support contained in the interval (a, b), where
F,,=F;*6, and G,,=G,#9,.

However, we should not necessarily expect the neutrix product F,0G, to be
equal to the neutrix product F(f)oG(g). The distribution F(f)=F, is defined
by the sequence {F,(f)}, using the neutrix R, and the distribution G(g)=G, is
defined by the sequence {G,(g)}, using the neutrix N. On taking the the neutrix
limits as » and » tend to infinity, we are just picking out the finite parts of the limits
and omitting the divergent parts. These divergent parts should be taken into account
when defining the neutrix product F(f)oG(g). It is therefore more reasonable to
use the sequence {F,(f)} rather than the sequence {F,,} to define the distribu-
tion F(f)=F, and the sequence {G,(g)} rather than the sequence {G,,} to
define the distribution G(g)=G,, when defining the neutrix product F(f)oG(g).

This leads us to the following definition for the neutrix product F(f)oG(g).

Definition 3. Let F and G be distributions, let f and g be locally summable
functions and let F,=F%d, and G,=G#%J,. We say that the neutrix product
F(f)oG(g) of F(f)and G(g) exists and is equal to the distribution H on the open
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interval (a, b) if F,(f)G,(g) is a locally summable function on the interval (a, b)
and if

3) = N—lim [R—-lim [ F,(f()G.(s(x)(x) dx] = (H, ¢)

for all test functions ¢ with compact support contained in the interval (a, b).
Note that for the particular case f(x)=g(x)=x, equations (2) and (3) are
identical. Definition 3 then reduces to definition 1.
In the following x7% is the locally summable function defined by

» x2=0
x ={o
;o e
for A=—1.
Example 1. Let F=x{*, G=¢’, f=x% and g=x,. Then

@ F(/)oG(g) = 5.

Proor. We notice that the sequence {F,(x)=x%*%J,(x)} is a sequence of con-
tinuous functions which is pointwise convergent to the continuous function x¥*.
It follows that the sequence {F,(x*)} is a sequence of continuous functions which is
pointwise convergent to the continuous function F(f)=x..

The function G,(x.) is the continuous function defined by

(), x=0,
0, x=0.

Ga(x) = {

The function F,(x*)G,(x.) is therefore continuous and so locally summable. Further,
the sequence {F,(x*)G,(x,): r=1,2, ...} is pointwise convergent to the continuous
function x, G,(x.).

Now let @ be an arbitrary test function with compact support. Then

1/n

(F(9G,(x:),0) = [ (5@ (x) dx

and so
1/n

R —lim (F,()Ga(x+), ¢) = lim [ F,(x)3,(x)p(x)dx =

1/n

— [asi00dx = — [ To()+x0/@10,(3) dx =

0
1/n

= — [ [p@)+0(1/n)]5,(x) dx.
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Thus
n/l

N—lim [R—lim (F,(x)G,(x.), ¢)] = =lim [ [¢(0)+0(1/m)]5,(x) dx =
0

N=> oo

= —500)=—5(,0)

and equation (4) follows.
We have noted in this example that F(f)=F,=x,.. Further G(g)=G;,=

(%)= % d’, see Theorem 5 of [4]. Thus

FIOG1 = %x+05' = —';'-5,

see Theorem 5 of [2]. It follows that in this example
F(f)oG(g) = F10G;.
Example 2. Let F=x3;Y?, G=46, f=x and g=x%*. Then
(5) F(f)oG(g) = 6.

ProOF. The sequence {F,(x)=F,(f)=x3"*#%4,(x)} is a sequence of continuous
functions which is pointwise convergent to the locally summable function x;'/2
for x=0.

The function G,(x'/?) is the continuous function defined by

&0 x>0,
Gm={"
ng(0), x=0.
The function F,(x)G,(x"/?)is therefore a locally summable function and the sequence
{F,(x)G,(x¥*): r=1,2, ...} is pointwise convergent to the summable function

x32G,(x%), for x=0. . _
Now let ¢ be an arbitrary test function with compact support. Then

1/n?

(FX)G,, 0) = [ F(x)8,(x")o(x)dx
[
and so

1/n?

R —lim (F,(x)G,(x¥*), @) = lim [ F,(x)3,(x"/) (x) dx =

1/n? 1/2

= [ x725,(*)o(x)dx =2 [ 5,()e () dy =
0 0

1/2

=2 [ [p(+0(n=315,() dy,
0
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where the substitution x=)? has been made. Thus

1/n

N—lim [R ~ lim(F,(x)G, (¥, )] = 21im [ [p(0)+O0(n~3]8,() dy =
0

f—=ca

= ¢(0) = (3, 9)

and equation (5) follows.
Now let us consider the distribution é(x%/*). Then for arbitrary test function ¢
we have

1/n® 1/n

@.0) = [ 66Me@dx =2 [ 35, dy = O(n™).
0 o

Thus
N;' !lm (‘sn(x!iz)s (P) =0
and so d(x/*)=0. It follows that in this example
F(f)eG(g) # F10G,

even though f(x)=x.
We do however havethe following theorem.

Theorem. Let F and G be distributions, let f be a locally summable fimction and
let g be an infinitely differentiable function. Then if the distributions F(f)=F, and
G(g)=G, exist and the product F(f)oG(g) exists on the open interval (a,b)

(6) F(f)oG(g) = F;°G(g)
on the interval (a,b). In particular, if g(x)=x
@) F(f)oG(g) = F1oG,

on the interval (a,b).

PrROOF. Let ¢ be an arbitrary test function with compact support contained in
the interval (a, b). Then from Definitions 2 and 3 we have

R:Em (F,.(f), (P) B (F(.r)9 ‘P) = (F1, ),
N —lim (G,(2), 9) = (G(2), ¢) = (Gs, ),
(8) N—lim [R—1lim (F,(/)G,(2). ¢)] = (F(/)°G(2), ¢).

=00

Since g is an infinitely differentiable function, G,(g) is an infinitely differentiable
function and so G,(g)¢ is a test function with compact support contained in the
interval (a, b). Thus

R~ lim(F,(/)G,(g), ¢) = R ~lim (E,(/), G,(8)o) =
e ('F(f)ﬁ Gu (S)O‘P) = (Fl Gn(g)’ 1;0),
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Equation (8) implies that '
exists and

©) N-—lim (F,G,(g), ¢) = F((/)>G(g), ¢).

Now let us consider the product F,oG(g). Putting F,,=F,*d, and using
Definition 3 we have

(FIOG(g)s (,0) o N”___!}_m [R:Em (FIrGu(g)s (9)] —
= Nn':lim (FlGn(g)! ‘P) e (F(f)OG(g)s ‘P)

on using equation (9). Equation (6) now follows.
When g(x)=x, we have G(g)=G, and equation (7) follows. This completes
the proof of the theorem.
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