A characterization of exponential polynomials
by a class of functional equations

By ZBIGNIEW GAJDA (Katowice)

1. Introduction
Let us consider a homogeneous linear differential equation
(D @S +8y OV +...4af =0,

where a,, ..., a, are some complex constants and f is an n-times differentiable
complex-valued function defined on the real line. Suppose /,,...,4; to be all
the distinct roots of the characteristic polynomial

P(A):=a,A"+a, "1 +...+a,.

From the general theory of linear differential equations it follows that any solution
f of equation (1) has the form of an exponential polynomial

2 J(x) = X e4*P(x), x¢€R,

P; being an arbitrary polynomial of degree less than the multiplicity of the root 4;
i=1, ..., k).

( Convez'scly, to each function f of form (2) one can assign a homogeneous linear
differential equation for which f'is a solution.

These facts seem to explain the importance of the concept of generalized expo-
nential polynomial introduced and studied recently by many authors (see e.g. [3],
[5], [6], and [8]). ) . o

In order to formulate the precise definition of this notion let us fix the necessary
terminology. In the sequel (G, +) will always denote an Abelian group and X
will stand for a linear space over a field K of characteristic zero.

For a given element h€G we define the difference operator 4, with the span £
as follows:

4,/(x):=f(x+h)—f(x), x€G, feXO.

The superposition of operators 4,, ..., 4, will be denoted by 4, , and if
hy=...=h,=h then we shall shortly write 4} instead of 4, _,.

——
n times
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A function p: G—X is called a polynomial function of degree less than n
(neN) if and only if

3) "p(x)=0 for all x, heG.

Additionally, we assume that Ajp:=p and by a polynomial of degree less than
zero we mean the function identically equal to zero.

It is well known (cf. [1], [4], and [7]) that any polynomial function p of degree
less than n admits the unique representation

n-1

C P= 2 N

where 7y, is a constant and y; (i=1, ...,n—1) is a diagonalization of a symmetric
i-additive function. The degree of the polynomial function p is the highest index
of a non-zero term in representation (4).

A function m: G—+K\ {0} is said to be an exponential (or multiplicative)
function if it is a homomorphism of the group G into the multiplicative group of
the field X, i.e.

m(x+y) = m(x)m(y), x, yeG.

Finally, we shall say that a function f: G—~X is a generalized exponential
polynomial if there exist exponential functions my, ..., m: G—~K\ {0} and poly-
nomial functions py, ..., ps: G—=X such that

) ) = iz mp(), *€G.

In connection with what has been mentioned at the beginning of this section
it is natural to conjecture that the functions of form (5) should yield the general
solution of a functional equation related in a certain sense to equation (1). In order
to obtain a suitable equation one might try to replace all the derivatives in (1) by
difference operators of the same order. This procedure leads, however, to an equa-
tion of the form

3 0, f(x+ih) =0, x,h€G
i=0

which has been examined extensively (cf. [2] and [7]) and fails to have more solu-
tions than equation (3).
On the other hand, equation (1) may also be expressed in Heaviside’s form

(6) eq*Dme~hx . ehXDme~4* f(x) =0, x€R

in which D" (i=1, ..., k) denotes the n;-th iteration of the differential operator.
We adopt here the convention that each operator D" acts on the whole expression
standing on its right-hand side.

Now, let us replace all the differential operators occuring in. (6) by difference
operators and the multiplication by e** and e~**-by operators A4,, and B,, defined
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as follows:

A, f(x):= m(x)f(x), x€G, feX©;
B, (x):'_" m(x)—lf(x)a x€G, fGXG:

m being an exponential function. Transforming (6) in such a way we obtain the fol-
lowing functional equation:

(7) (A, A3 By, ... A A3 B, ) f(x) =0, X, hy,..., KEG,

where the multiplication stands for the superposition of operators.
It turns out that generalized exponential polynomials can be characterized as
solutions of equation (7). In what follows we are going to prove this result.

2. Properties of the operator A, A,B,,

Let m,n: G-~K\{0} be two exponential functions and suppose f: G=X to
be an arbitrary transformation. On account of the multiplicativity of m and n we get

(8) Ap 43 B, f(x) = m(x)[m(x+h) 7 f(x+h)—m(x) 7 f(x)] =
= m(h) " f(x+h)—f(x), x, heG,
and hence
©) (Am 4y B,) (A4, 4, B,)f (x) = (4, 4, B) [n() 7 f(x+D—f(x)] =
=mm) ()7 f+h+D—mB) 7 f(x+h)—n()7f (x+D+f (),
x, h, I€G.
As an immediate consequence of the symmetry of (9) we have
(10) (4, 4,B,)(4,4,B,)f(x) = (4,4, B)(4,, 4, B,)f(x), x,h,I€G.
Moreover, in view of the following obvious relation:
(11)  (Andp,. s, B)f(x) = (4,4, B,) ... (4, 43, B)f(x), x,hy, ..., hEG,
applying (10) sufficiently many times, we deduce that
(12) (AmAny..0, Bu)(AnA1y..1,B) f (%) = (4,411, B,) (A Aby.., B f (%),
% B v B sl LEG

In view of (12), if we are given a system of k exponential functions my, ..., m;,
then instead of

(AmyBb, sy, B -+ (Amy By ..y, B )S (%)
we can write

( £gt1 Aﬂlr Aﬁt.r--hi,n' Bm,)f(x)
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without paying attention to the succession of the operators
Amtdkt.l-'-ki,n“aﬂt (l = 1, veny k).
Lemma 1. If my, ...,m;: G—~K\{0} are given exponential fumctions, then the
Jfollowing two equations are equivalent:

k
() ([T AmA2B,)f(x) =0 for all xh€G, i=1,...k;
i=1

(i) (i]k] A,,,,Ah_s_,_,,l._nlB,,,i) f(x) =0 for all

X hi,l sany hi.“‘EG, = l, sesy k.

PROOF. It is enough to prove that (i) implies (ii). According to Theorem 2
from [1], for each i=1, ...,k one can select a finite set J;, rational numbers r; ;
and elements u; ;,v; ;€G (dependent on A, ,, ..., i;,) such that

4;, 1-ohi, ,.lf(x) = Jé "i,jA:i,.f(x +v;,;), x€G.

Hence, with the aid of the notation
(13) T, f(x):=f(x+v), x,v€EG,

it follows that
(Am‘Ahg’l..*h"n‘BMi)f(x) =

= m;(x) jg rf,jA::.j(mf(x+vi,j)_lf(x+ ) =
= Jé: r, im0, ) 7 mi ()45 mi () 7 f(x+o;, )] =
= g "1.1m:(”&.})_l(ffmA::.,Bm)To,,,f(x), x€G.

Furthermore, if m is an exponential function, then
(A4 43 B) T, f(x) = m(h)~Yf(x+v+h)—f(x+v) =
= T,(m(h)"f(x+h)—f(x)) = T,(An4s B)f(x), x,v, heG.

Hence and from (11) we infer that for every positive integer n the operators 4,,4}B,,
and T, commute. As a result we derive

(‘é AmAM.r'-ki.u,BMi)f(x) e (1131 (Jé: r;’jm;(v,-._,)"A,,,‘A’.'.;’,B,,‘T,i,,))f(x) o

= 2 e 2 gy T gm0y 5) 70 e m(oy, )7 X
j;E Jx ;kE "k

Ry g ooy Ul B oo L BT
o

which ensures that (i) implies (ii), and completes the proof.
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Let us note that for exponential functions m,n: G—~K\ {0} and for an arbi-
trary transformation w: G—X the following formula holds:

(14) m(h+D[n(h) —m(h)) A, 4y11 By ©(x)—
—m(h)[n(h+1)—m(h+D] A, 4,B,o(x) = m(h)n(h+1)(4,4,B,) (4,4 B,) o(x)—
—m(h+Dn(h)(4,4,B,)(4,4,B,)o(x), x, h,IcG.

Indeed, keeping in mind relations (8) and (9) we can perform the following
calculations:

m(h+D[n(h)—m(h)] A, 4,41 Buo(x)—m(h) [n(h+D)—m(h+D]A,, 4, B,0(x) =
= m(h+D[n(h)—mB)][mt+Do(x+h+)—-o(x)] -
—m(B)la(h-+D—m(h+ DI (h) o (x-+h) ()] =
= [n(h)—mMW)]o(x+h+D+[mt+D—nh+D]w(x+h)+
+mMnth+D—mM+Dnh)]o(x) =
=mm)ynth+H[mM)*n(D*ox+h+D)—mMh)*o(x+h)—
—n()ox+)+o(x)]—
—mh+Dn()[mO 7 n(H)ox+h+D)-—m()o(x+) -
—n(h)'o(x+h)+o(x)] =
= m(h)n(h+1)(4,4,B,)(4,,4,B,) o(x)—
—m(h+Dn(h)A,4,B,)(A4,,4,B,) o(x),

which was to be shown.
Finally, observe that if the function @ is identically equal to a constant ¢, then

(15) A, 4,B,0(x) = m(h)lo(x+h)—o(x) = (m(h)*-1)c, x£G.

The foregoing formulas will play an essential role in the proof of our main
result which we are going to present in the next section.

3. A characterization of exponential polynomials

Theorem 1. Suppose that my, ...,m;: G~K\{0} are pairwise different expo-

nential functions and let ny, ..., n, be non-negative integers. Then a function f: G+X
satisfies the equation

(a)"l*k (11-?1 Am,AﬂjB,')f(x) - 0? Xy h;eG, i - 1: by k
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if and only if f is of the form
Bl f= Zmp,

where p;: G=+X (i=1, ..., k) is a polynomial function of degree less then n;.

PRrOOF. First we shall prove that (b),,..., implies (@),,..n,-
If n, is a non-negative integer and f=m,p, with a polynomial function p, of
degree less than n,, then we have

Ay, A2 B, f(x) = my(x)47: p,(x) =0, x, l€G.

This proves that (b),, implies (a),, .
Now suppose that (b),, .. ,, implies (a),,.. , for some k=1 and all non-negative
integers m,, ..., n,. Choose arbitrarily integers n,, ...,m4,;=0 and assume that

k+1

f= Z m; Pis
i=1
where my, ..., m;,, are exponential functions and

4ipi(x) =0, x,h€G, i=1,..,k+1.
For a fixed element /,,,€G put

M2 Me+1)  my(hy,,)
= (=1 H-;[ ]_A__ Y
:(x) J;:' (=1)™ j MeraUtess) pi(x+jhg+y)

el 1=1..;:k
and
g(x):= 4, , 4xB,, . f(x), x€G.

+1

It is readily seen that g; is a polynomial function of degree less than n; (i=1, ..., k)
Moreover,

g(x) = mk+1(x)dﬂ:1}mk+1(x)_1(21 mOpi(x)) =

k
= mt+1(x)4:::ipx+1(x)+mk+1(x)43::} 2 m(xX)my 1 (x) 71 pi(x) =

=1

k
- Zl' My 51 (X)AR 1 m ()M, (X) 7 pi(x) =

. L Mes1)  my(x+jhgyy
= my 1 (x) (=1)x+1—d [ . J -
ig]‘. chiz Jg:l J My iy (6 +jhgsy)

Pi(x+jhy ) =

TR T T e
_ém:(x)g(—l) 1 J'[j ]mh(x'l')hxu)—

= Zt; m;(x)g;(x), x€G.
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Thus, by hypothesis, we have

(1) (I AnABa)I®) = ([T AnABa)s) =0, %, hys o HEG,

Since A4, has been fixed arbitrarily, (16) yields (a),,...,,.,- Induction guarantees
that (b),,...,, implies (a),,.., forany k=1.
The proof of the converse implication will also run by induction.
Suppose m, to be an exponential function and let n, be such a non-negative
integer that
my A By f(x) =0, x, h€G.

Setting py:=mif we obtam f =m,p, and
A pi(x) = 432 B, f(x) =0, x,he€G,

which shows that (a),, implies (b),,,

Further, suppose that the implication (a),,...,,=>(b)s,...n, holds true for a k=1
and all n,, ..., m,=0. As aresult, (a),.. mF’( Dny....mesy 18 valid for all my, ..., 1, =0
and nH,—O. In order to continue the induction with respcct to m 4, let us assume
that (a),,.. .., implies (b),, ... ,, for arbitrarily chosen n,,...,7,=0 and M1 =n
with some n=0. Without loss of generality we may also assume that all the »;’s
(i=1, ..., k) are strictly positive, otherwise we would return to one of the pre-
vious cases.

Now, let my, ..., m; ., be given pairwise different exponential functions and let
f: G—+X be a solution of the equation

(a)m---!lk.ﬂ"‘l (Amk-i-l :;!;11 l'luﬂ)(HAﬂl :‘Bml)f(x) =0, ux h].! reey hk+1€G-

For i=1, ...,k put
D;:= {h€G: my 1 (h) # m;(h)}.

Since, by hypothesis, m,., does not coincide with m; for i=1, ..., k, none of the
sets D; is empty.
We define a function I': G"*1XDhX...XDix—~X by

(17.) r(x’yl:r cees Vns hl s T Rad 1 nl! cend hk,l: ---:hk.nk):=

m; (hl. )

1 LI
= "_(IIL '”1 mk-l-l(h.i.j)_mi(hi.j))x

k ny
XA.F!"'?ankQI( .ﬂ; JHI Aﬂldﬁ:,jBM{)f(x)’

X V15 Ya€G, i=1.,k j=1..,m,

with the agreement that for n=0, I is a function of the variables x and 4, ; only.
It is clear that for n=1, I is symmetric with respect to y,, ..., ¥,. We shall
show that I' is additive with respect to the first, and in view of the symmetry, in
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each of these variables. Indeed, let us fix elements % ,£D;, i=1, ...k, j=1,...,m
and let

R my(h;, ;)
o f”ug M1 (hy ) —m; G’.J)

kE m
o(x):= B,,,m(ﬂ!_-]1 _;]=I1 Ap Ay, Bn)f(x), x€G.
Then

F(x! Yiseees Vs hl.l! sasy hl,n;; ceny hk,h ey hk,n,,) = ad,l,,,,"go(x), Xy Vs oees yrxGGs
so the additivity of I' with respect to y; results from the fact that by (a),..s.n+1>
Lemma 1 and (11) we have

4y iy s, @X) =4y, 0(X)—4y,  , 0(x) =

k §
A.vl YirYa.. y.w(x) A.v; Y Va.o Mku( II I A, Ahi.:Bmi)f(x) =0

i=1j=1
X, y;s y!. ] y2: weey ynGG'
Next, observe that I' is constant as a function of x with the remaining variables
arbitrarily fixed. In fact, with the above notations the following relation holds:

dy,. 5. 0x+2)—4,, , 0(x) =4, ,. .0(x)=

E %
= An...y,,.zBmk+;(£'Il jgl Am‘Ah;';Bnq)f(x) = 0: Vis ees Vns ZEG-

Finally, we are going to prove that I' does not depend on the variables 4; ;,
i=1, ..., k,j=1, ..., m;. To begin with, let us choose a pair (r, s) such thatr¢ {1, ..., k},
s€{l,...,n} and fix h, ;€D; for all (i,j) with 1=i=k, 1=j=n, (i,))#,s).
Introducing the following notations:

ﬁ ﬁ mi(ht, j)

n! izyj=1 My (hy ) —my(hy ) ;

0@i= ( IT T Ans, Bad 1G), 3G

GDAC
we can rewrite (17) in the form
r(x1 Yis ees Vas hl.l& seesy hl.ﬂl;"°; hl.ls vevy ht.ak) =

mr(hr. s)
My (hr.s) o mr(hr.

X, yl.! snay ynEG’ hr,sEDr‘

=b

s) AJ’:-——?.. ‘Blm; +1(A m,.‘dll,, .Bm..)a)(x)’
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To prove that I does not depend on the variable 4, it is sufficient to check that
for arbitrarily fixed x, yy, ..., ¥,6G the function Q defined by

A(h
Q(h):= v (';:)_1"’ Ty Ao1e-on B (A, Ay B JO ), hEG

is constant on D,. For, take elements A, I¢G such that h, h+IleD,. Applying (14)
with the substitution m:=m,, n:=m,,, we obtain

1
(a2 h £ D) —m, (i £ D] () =, ()]

XA4y,... 30 B [ (B+ D (my 1 (h) *‘mr(h))Am..AaH-Bm,w(x) o
—m,(h)(mg41(h+1)—m, (h+1) A, A4,B, o(x)] =

m,(h)my . (h+1)
[mt+l(h+’0 —m,(h+D)my;,(h)— mr(h)]

Qh+1)—Q(h) =

my(h+ Dy ()
e B O ) = o D=, Gt Dl s = ]

Xdy, ..y, 48Buy ., Am, 41 By, @(X).

On account of (@),,. .n+1, Lemma 1 and (11), both the minuend and subtrahend
in the last difference vanish.

According to what has been shown so far, a function y: G—~X may unambig-
vously be determined by the following formula:

xd’l-- J’nA B”'k-rl

?(.v) r(xsy)- Vs hl 1,...,}11.”1;-..; hk,l'r ---hk,nk’ _}'GG,

which is independent of a particular choice of elements x€G, i ;€D;, i=1, ..., k,
Jj=1, ...,m. If n=0, yis simply a constant, whereas for n=1 yis a dlagonahza-
tlon of' a symmetric n-additive function.

Put
g(x):=f(x) —my 1, (x)y(x), x€G.

Our next aim is to show that g satisfies equation (a),, . ,,.,» Which, in virtue of Lemma 1
and (11), is equivalent to

(18) Amk”'dhku m‘k+l(n HAIII[AJHJ m;)g(x) 0

- J:
X, hi+11 hi,jEGs i= 19 veey k, J o l'r R

First we confine ourselves to the case where h; ;€D;, i=1, ..., k, j=1,...,m.
Setting

m;(x):= ml(x)mk-l-l(x)"l! x€G, i=1,..,k
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and making use of (15) and Lemma 2 from [1], we infer that

:;‘H-Bm.ﬂ(iljl éAm‘Ah;',Bm(mt-i-!(x)?(x)) =

a.m(ﬂ II B iiloidy Budy Jy(a) &

i=1j
k n;
(iq HA ’A’i[ JBM‘)Abgq‘;?(x) ¥

i ANt et oo (M (i) ] :
= I [ Onithy == )mtytheen) = [T JF (22D 1) i
Xr(x’ hk+1’ ey hk+1; hl.lg sany hl,h’oto; hk’l’ ey hk,nk) -
e— —

hu Nn:(” HAmAh”B )f(x)

I. J-

This implies (18) under the assumption that A; ;€D;, i=1, ...k, j=1,..,m. It
remains to check that this restriction is actually redundant.

To start with, suppose that for some re{l, ..., k} and s€{l,...,n,}, A, ,belongs
to G\D,, while h; ;€D; for i=1,....k, j=1,...,m, (i,j)#(r,s). Take an arbi-
trary element h'€D, and put h”:=h, ;—h’. Then

mk-i—l(h”) - mk+1(hr.s_h') = mk+l(hr,;) ,nr(h') ik mr(h’)
mr(h”) mr(hr,s " h') mr(hr,s) lr'l+‘l.('h"') My 4 l(h’)

whence h”¢D, and h, ,=h"+h". If we choose an h,,,€G and put

# 1,

k ny;
‘b(x):= Aﬂlln-l :kd»lekd-l(__HlJﬂl Amldki,iji)g(x)’ xeG’

(i, ))=(r, 5)

then the left-hand side of equation (18) is equal to
(A, B4, , Bu W (%) = m, () Ay 410 (m, () 1Y (%)) =
= m, ()4 (m, (x+1") 7Y (e + b)) +m, (x) 4y (m, (x) Y () =
= m,(h") " 'm,(x +h") 4y (m,(x +h") Y (x+h")+m,(x) 4y (m, (x) Y (x)) =

= m,(h") " Ty (A Ay By W (x) + (A, 41 By 2 (%), X€G,

where both summands in the last sum vanish identically on account of what has
been established before.

Now it becomes apparent that, by induction with respect to the number of ele-
ments A; ; lying outside D;, one can prove that (18) is valid for all ; ;€G,i=1, ..., k,
j — 1, veey M
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Since, by hypothesis, (a),,....,.» implies (b),,.., .., there exist polynomial func-
tions py,...,p; of degrees less than n,, ..., n, respectively, and a polynomial
function p., of degree less than n such that

k+1
£ ;; m; p;.
Consequently,

k
f=g+m,y= iz; m; pi+my 1 (Ppsr +7),

where p,.,+7 is a polynomial function of degree less than n+1. Thus we arrive
at a decomposition (b),,..n.n+1 ©Of the function f, which completes induction on
Mg+, . Induction with respect to k ends the proof of the whole theorem.

If my,...,m, are exponential functions, then by (11) and Lemma 1 equation
(@)n,...n, 18 equivalent to

kE m
(a’)ll---l'l'k (ig]_ jg], Am;Aﬁg.ij.‘f(x) = 0'
X, hl'JEG, i= 1, ceeg k, j = I, vaay My

Moreover, on account of (8), equation (a’),,. , may be written in the following
equivalent form:

@,.m (T IT (miChy )Ty~ D)) = 0,

im] j=1
x’ hiDjEG’ l' - I’ ey k: j - l’ waey "i’.

where T, is defined by (13) and 7 denotes the identity operator.

In general, neither equation (a),, ..., nor (@'),,. . force the functions m,, ..., m,
to be multiplicative without assuming this from the very beginning. For example
the equation

A, 4,B,.f(x) =0, x,heG

is fulfilled by any m: G-K\ {0} and f: G-X such that % is a constant func-
tion. In this respect equation (a”),,. ., appears to have an essential advantage.

A solution f: G—+X of equation (a”),. ., Wwill be called reducible if there
exist integers i, ...,m;, 0=m=n,, ...,0=m,=n, such that n/<n; for at least
one i€{l, ..., k} and f satisfies equation (a"),,;_,_,,;. Otherwise, we say that the
solution is irreducible.

In terms of irreducible solutions of equation (a”), ., We are able to give
a complete characterization of the class of generalized exponential polynomials.

Theorem 2. Fix positive integers ny, ...,n,. Let a fimction f: G—+X and some
pairwise different functions my, ..., m: G~K\{0} satisfy equation (a”),, .. ., . Sup-
pose f to be an irreducible solution of this equation. Then the fimctions my, ..., my
are multiplicative and there exist polynomial functions p,, ...,p.: G—X of degrees
m—1, ...,n.—1, respectively, such that

k
S= 2 m;p;.

=]
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Proor. It suffices to check the multiplicativity of the function m,, for instance.
Since f is an irreducible solution of the equation considered, one can find ele-
ments x% AP ;€G, i=1, ..., k, j=1,...,n, (i,j)#(, 1) such that

('{II g(m (B ) T, —1))f(x°) # 0

(i, !)#(1 1)
With the use of the notation

o(x): —(H H(mi(hc Dl 1Th° "‘I))f(x), xcG

D=
we have
(19) e(x°) # 0
and
(20) my(h)e(x+h)—p(x) =0, x, heG.

Hence, in particular,
@(x°+h) = my(h) p(x°), heG,
or, equivalently,

(21) @(h) = m(h—x) o (x°), heG.
Substituting (21) to (20) we derive
(my(x+h—x%—my(h)ym, (x—x%)@(x°) =0, x, heG,

which, in view of (19), means that m, is multiplicative.
The rest of the assertion of Theorem 2 is now a consequence of Theorem 1
and the fact that f is an irreducible solution of the equation considered.

4. Concluding remarks

Let us restrict ourselves for a moment to the case where G:=R, X=K:=C and
my(x):=e4*, x€R, i=1,...,k.

Then, either of equations (a),,.. , and (@),,..., is equivalent to equation (6) in the
class of n-times differentiable solutions J: R—=C, where n:=n;+...+n,. This
fact results on differentiating both sides of equation (@),,...», With respect to each
of the variables #; ;, i=1,...,k, j=1, ..., n;, successively. From this point of view,
the theory of cquatlons dealt thh in Sectlon 3 contains the theory of homogeneous
linear differential equations.

On the other hand, the equations proposed in our paper do not impose any
differentiability properties on their solutions; it is known that there exist generalized
exponential polynomials from R into C which are discontinuous and even non-
measurable. Therefore these equations provide a method of introducing a substitute
for homogeneous linear differential equations in abstract spaces without any dif-
ferential structure.
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