Morita equivalence for a larger class of rings

By M. PARVATHI and A. RAMAKRISHNA RAO (Madras)

In [10] it was observed that two rings S and R with unities are Morita equiv-
alent if and only if there exists a gamma ring with right and left unities such that
its right and left operator rings are isomorphic to S and R. This has been extended
to rings with local units [11]. In this paper we extend this result to rings satisfying
the conditions 1) S*=S and ii) aS=0 or Sa=0 implies that a=0, ac S which
include rings with unities and rings with local units.*) We also prove that any ring
satisfying the above conditions is equivalent to a division ring if and only if it is
simple and completely reducible, thus obtaining an extension of Wedderburn theo-
rem for simple Artinian rings.

1. Preliminaries

Let 4 and I' be additive abelian groups. Then following BARNES [3] we say
A is a I'-ring if there exists a map f: AXI'XA—~A with f(x, «, y)=xay such that

1) fis additive in each variable, and

i) (xay)Bz=xa(ypz) for all x,y,z€A and «a, Ber.

Consider the maps [«, x]: y—yax and [x,a]: y—xxy x€A4, acI’ and for all
y€A. Clearly [x,a],[x, x] belong to the endomorphism group End (4). The
bilinearity of the map I'XA-End A(AXI'=End A) given by (%, a)—~[x, d]
((a, x)~[a, o]) gives rise to a linear map from I'®;4—~End 4(A® ;I ~End A)
given by

; x®a; -~ Z" [, a;] (;' a;Q@u; - ‘?,' [a;, “i]),

;€' and @;€ A. The image of I'®;A(A®zI') in End A is an associative ring
denoted by R(A,I')—L(A,TI') and call it the right (left) operator ring of 4. Ring
multiplication in R(A4,I') and L(A,T') is given by the rule,

Z:' [o, al];[ﬁp bj] = g [’Ih“.‘ﬁjbj]s

(19?‘3)) See about T. W. AnpersoN—K. R. FuLLER, Rings and Categories of Modules, Springer
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and

‘? [a;, 2] ? [b;, B;] = %' [a!aibja B;l-

A is clearly a faithful R(A, I')—L(A4, ') bimodule.
For further details on I'-rings and for literature on ring theory we refer to
[3], [6), [7], [10] and [2], [5] respectively.

2. Throughout this paper we denote a I'-ring by (4, I') or A, right and left
operator rings by R(4,I') or Rand L(A4,I') or L respectively. All rings considered
satisfy the gamma conditions namely,

(i) S2=S5,
(i) Sa=0 or aS=0 implies a=0, acS.

Definition 2.1 [12). A I''ring A is said to be weekly semiprime if [x, I']=0
and [I', x]#0 for all 0#x€A4 and A'A=A.

Remark. A is weakly semiprime implies R(A,TI'), L(A, I') satisfy the gamma
conditions. Any ring with unity satisfies the gamma conditions, Fuller’s rings with
“enough idempotents” and more generally a ring with local units [1] satisfy the gamma
conditions.

The following is a ring which satisfies the gamma conditions but does not
contain unity or idempotent and hence has no local units.

Let BC €]0, 1] be the set of all continuous real valued functions on the interval
[0, 1] which vanish in a neighbourhood of 0. B is a commutative ring under the
pointwise addition and pointwise multiplication. The ring B can be easily checked
to satisfy the gamma conditions.

Now we state the results which are needed for our purpose.

Lemma 2.2. [12]. Let A be a weakly semiprime I'-ring, L and R its operator
rings. Then A is simple if and only if R(L) is simple.

Theoremn 2.3. (Theorem 1 of [9].) Let A be a weakly semiprime I'-ring, L and
R be its operator rings. Then L and R are Morita Equivalent.

We now prove the converse. But first we need the following lemma

Lemma 2.4. Let R and S be two associative rings satisfying the gamma condi-
tions and R be Morita equivalent to S. Suppose that

H: @K)—"gs and T:%’s—"%’x

are category equivalences with HT=1,_  and TH=1¢,. Then sT(S)g and g H(R)s
are canonical bimodules and

(1) H and T are full and faithful;

(2) (H,T) and (T, H) are adjoint pairs of functors;

(3) H == (Homg (T(S), —))S, T=(Homg(H(R), —))R;

(4) S= (Endg (T(5)))S:

(5) T(S) is an R-generator in €g and H(R) is an S-generator in €.

*) @r denotes the subcategory of right R-modules with spanning conditions, MR=M and
mR=0 implies m=0, meM.
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ProoF. 1) and (2) can be proved as in [2], (3) Let Mc%,. We define a map
n: M — (Homg (R, M))R by
m - n(m) such that (y(m))(r) = mr.

It is straightforward to prove that 5 is an R-module isomorphism.
Also H(M)e%s. Hence using the above isomorphism we have

H(M)= (Homg (S, H(M)))S = Homs (T (S), M)S

So H=(Homyg (7(S), —))S. Similarly we prove T=(Homg(H(R), —))R.
(4) By (iii) of above, we have,

H(T(S)) = (Homg (T (S), T(S)))S = Endg (T(S))S.
(5) Let Mc%,. We define a map
w: RM —~ M by
Pimyt oo+ Tome = Myl + oo+ M1y,

Since MR=M,  is an epimorphism and R generates €.

Next let Nc%g, then there is an epimorphism R®) -T(N)—0 in %, where
X 1s an indexing set. Since H is a category equivalence, it preserves epimorphisms
and direct sums and hence we have an epimorphism (H(R))®—~H(T(N))—~0 in
%s. So H(R) generates €.

Similarly it can be shown that T(S) is an R-generator.

This completes the proof of the lemma.

From (3) of Lemma 2.4, we have 7'(S)=(Homg (H(R), S))R as right R-mod-
ules and H(R)==Homg (S, H(R))S as right S-modules. We observe that H(R)=
=Homg (S, H(R))S as left R-modules also. To see this, we define (7f)(s)=rf(s),
reR, feHomg (S, H(R))S and if ©@: H(R)=-(Homg (S, H(R)))S denotes the iso-
morphism as abelian groups, given by 21— (h), then (rh)—~© (rh)such that (@ (rh))(s)=
=(rh)(s)=r(hs)=r(©(h))(s). Hence H(R)=(Homs (S, H(R)))S as left R-modules.

Again we have ¥: Homg(7(S), R)~Homg (S, H(R)) is an abelian group
isomorphism given by ¥ (f)=H(f) ns where fé Homg (7(S), R) and ns: S—~HT(S)
is an isomorphism. We show that ¢ is a left R-module isomorphism. We define, for
SfeHomg (7(S), R), g€ Homg (S, H(R)), r€R,

N = r(f(x)), x€T(S) and (rg)(s) = H(e,)g(s),

s€S and g,: R—~R is left multiplication. Combining these we get H(R)é

£ (Homg (T(S), R))S is a left R and right S bimodule isomorphism.
We are ready to prove the converse.

Theorem 2.5. Let R and S be two rings, satisfying the gamma conditions, which
are Morita equivalent. Then there exists a weakly semiprime gamma ring such that
its right and left operator rings are isomorphic to R and S respectively.

5*



68 M. Parvathi and A. Ramakrishna Rao

Proor. In the notations of Lemma 2.4, we denote the canonical bimodules
ST(S)R and (I‘lomk (T(S), R))S by SAR ST(S)R and Rrs'—(HDmR (T(S) R))S
We give a I'-ring structure to 4 by defining

AXI'XA ~ A by
(a,f, ') - af(a).
Similarly we define a map from
I'XAXI - T by
(fsa,.f) = fla)f

This defines on I, the structure of a A-ring. Clearly (4, I') and (I', A) are weakly
semiprime gamma rings.

Now we prove that R is isomorphic to the right operator ring of the gamma
ring (A4, TI). But first we show that RH(R)=R. To see this let g,: R—~R denote
the left multiplication by elements of R, for every r€ R. Now we have epimorphisms

@ R22.R-0 and & H(R)2Ee, H(R)—~0,

réR réR
since H is a category equivalence. So every x¢ H(R) can be writtenas > r;x{, r€R,
]
x;€ H(R). Hence RH(R)=H(R). This in view of the bimodule isomorphism
@: H(R) -~ (Homg(T (S), R))S implies that RI =T.

Similarly it can be proved ST(S)=T(S).
We define a map
o:[IL,T(S)]= R by

0(2“ [fidi, x]) = Zi' (fid)(x) = Z' Si(dix;).

Clearly ¢ is a well defined ring homomorphism. If Z fi(d; x;)=0, then
Z (f:d))(x;)=0. This implies 2’[ fid;, x;]=0. Hence o is mjectlve

Next, since T(S) is an R-generator in €z an element r€R can be written in
the form r=2 fi(#) where ficHomg(T(S),R) and #€T(S). Again we have
i

ST(S)=T(S). Hence ;=2 d;y;, 6;,€S, y;€T(S). So
J

r=2 M5y = Z 1) = Z Ui)0y.

Thus r€R corresponds to the element Z[ fi%;,y;] in [, T(S)]. Hence ¢ is an

epimorphism. That is R=R(7(S), I').
Before we proceed to establish the isomorphism between L(7(S),I') and S,
we show that S=(End T(S)g)S as rings. We define a map

@: S -~ Homg (T(S), T(S)) S

6(5) = T('IS_I)T(Q-;,(;)),

by
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where s€S and ns: S—~HT(S) is a right S-module isomorphism and g,y is left
multiplication.
If 5,,50€8, then

Onsisy) Ns K @ns(s) = Qnglsy) sy

To see this, let s'€S. Then
(Qq_g(n) "S_l aq,(n))(s’) - qu(tl)("il(qS(SS)s’)) = ’Is(sl)szs’
and
(Ons(s) 0 (5) = Ms(51)s25".
So
: (’?E : Ons(sy) Qu) = T(”E y: Qqs(.u)) i (’?E . Qnsisy)

and hence @ is a ring homomorphism.
This together with Lemma 2.4 (4) establishes the required ring isomorphism
between S and (End T(S)g) S.
The inverse isomorphism
©~1: (End T(S)g)S - S is given by
9"(Zi'fzsi) = Zi ns ' H(f)ns(s)-
Now we define a map
2: [T(S),I') - S as the composition of
[T(S), %~ (End T(5))S2>~ S
#(Z" [%:, gisi]) #(2{' [t:s g5)) = 2 ns* H(u([1;, g)ns(s)

where
(4?' (%, gisi)() = z [t:s g5, t’€T(S).

That is, 1(2:' [%:, glsi]) = 9“‘#(? [, gisi]) = Z;' ns *H(u(l%;, gi))’?s(st)-
But ﬂ(; [t g)) (1) = Z [t, gt = Z Lgi(t) = Z 0., 8i(t)
and hence (;’ [1;, gisd)) = .?? ns H(e,)H(g)ns(s))-

This is clearly a well defined ring monomorphism.

To see that A is onto it suffices to check on generators.

Since H(R) is an S-generator and RI'=TI, s€ S is given by finite sum of elements
of the form fr(gs), freHomg (I, S)R and gs€I'=Homg (7(S), R)S. Now if ¢
denotes the right R-module homomorphism 7'(S)-Homg (Homg (7(S), R) S, S)R,
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then for any fre Homg(Homg (T(S), R)S, S)R, there exists a t€T(S) such that
Y (2)(gs)=fr(gs). But by definition,

Y (0)(gs) = ns* H(e)H(2)ns(s),

which by the definition of 4 implies that 1([! gs])=fr(gs). Hence fr(gs)€S cor-
responds to [z, gs]€[7(S), I'l and so A is an epimorphism and hence an isomorphism.
This completes the proof.

Combining Theorems 2.3 and 2.5, we have the main theorem of this paper.

Theorem 2.6. Let R and S be two rings satisfying the gamma conditions. Then R
is Morita equivalent to S if and only if there exists a weakly semiprime gamma ring
such that its right and left operator rings are isomorphic to R and S respectively.

The first Wedderburn theorem for rings with unities can be interpreted in
Morita language as “A ring is simple Artinian if and only if it is Morita equivalent
to a division ring”. As an application of Theorem 2.6 we have an extension of the
Wedderburn theorem as follows.

Theorem 2.7. Any ring satisfying the gamma conditions is Morita equivalent to
a division ring if and only if it is simple and completely reducible.

PRrROOF. Since a division ring has unity it satisfies the gamma conditions. So
any ring Morita equivalent to it is I'-context equivalent to it by Theorem 2.6. Sup-
pose S is the ring I' context equivalent to the division ring D and (4, ') be the
gamma ring such that L(4,I)=S and R(4,I=D. If Iis a nonzero left ideal
of A, then I*={deD/AdSI} is a nonzero left ideal of D and hence /*=D. It
follows that A=1I. Hence A is a faithful irreducible S-module. That is S is primitive.
Now SSEnd (4p). Let /= Z[n,ai]ES Then I(a)= Z[x,‘,a,]a Z‘x,[rx;, a) for

every a€ A. This implies that IA is finite dimensional. Hencc S contams a nonzero
linear transformation of finite rank [5] and since S is simple by Lemma 2.2, S must
coincide with Soc. S, the socle of S.

Conversely suppose S is simple and completely reducible and S=& 7, where
each I, is a minimal left ideal of S. Then I,=Se, for some idempotent e,£1,.

Se, can be given a I-ring structure (I'=e,S) and it can be easily checked
that R(Se,,e,S)=D=e, Se,, a division ring.

It remains to show that L(Se,, e, S)=S. Define a map

o: L(Se,,e,S) - S by
0(‘IZ' [Ii’ea9 eall‘]) = ; [;eali'

o is clearly a ring monomorphism. We show ¢ is onto. Since Se, and Se,; are minimal
and S is simple we have Se,=Se; and given by ¢,(xe,)=e;, x€S. It follows
that e;=xe,ye; for some y€S. Hence ley=lej #(e,xe,)(e“ye,) Hence o is onto.

Se, can be easily checked to be a weakly semiprime gamma ring. Se, is a faith-
ful S-module follows from the simplicity of S. So by Theorem 2.6, S is Morita
equivalent to a division ring. This completes the proof.
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