Commutativity of generalized Boolean rings

By MURTAZA A. QUADRI and MOHD. ASHRAF (Aligarh)

We know that a ring R satisfying $x^2 = x$, for every $x \in R$ is Boolean which is necessarily commutative. Recently in a paper [7] we have weakened the condition for a semi-prime ring R and proved that if $(xy)^2 - xy$ is central for all x, y in R, then R must be commutative. In Section I of the present paper we generalize the above result which is an extension of the theorem of Herstein [2] which inturns generalizes the famous theorem of JACOBSON [5, Theorem 11]. In fact, we prove the following:

Theorem A. Let n>1 be a fixed positive integer and R be a semi-prime ring in which $(xy)^n-xy$ is central, for every x, y in R, then R is commutative.

It is also well known that every ring with unity 1 satisfying the identity $x^{n+1} = x^n$ is a Boolean ring and thus commutative. In Section II of this paper we deal with the commutativity of the rings in which $x^{n+1} - x^n$ is central, for all $x \in R$, n being a positive integer. This, at the same time generalizes the above referred result and includes the result due to HERSTEIN [2] for the case n=1. Indeed we prove the following:

Theorem B. Let n be a fixed positive integer and R be a ring with unity 1 in which $x^{n+1}-x^n$ is central, for all $x \in R$, then R is commutative.

In the end we provide two examples to show that existence of unity in the ring of the above theorem is rather essential.

In what follows, [x, y] stands for commutator xy-yx and Z(R) denotes the centre of an associative ring R.

Section I

In preparation for the proof of our Theorem A, we first establish the following lemmas:

Lemma 1.1. Let n>1 be a fixed positive integer and R be a prime ring in which $(xy)^n-xy\in Z(R)$, for all $x,y\in R$, then R contains no nonzero zerodevisors.

PROOF. It suffices to show that R is a reduced ring. Let a be an element of R such that $a^2=0$. Using the hypothesis of theorem for any $y \in R$ we get $\{(ay)^n - ay\}y = y\{(ay)^n - ay\}$. With y = ya, we have ayaya = 0 i.e. $(ay)^3 = 0$, for all $y \in R$. Thus a=0 by Lemma 1.1 of [4].

Lemma 1.2. Let n>1 be a fixed positive integer and R be a division ring in which $(xy)^n - xy \in Z(R)$, for all $x, y \in R$, then R is commutative.

PROOF. Using the hypothesis of the lemma, with $x=xy^{-1}$ we get $(xy^{-1} \cdot y)^n - xy^{-1} \cdot y \in Z(R)$, which implies that,

(1)
$$[x^n, y] - [x, y] = 0$$

Again on replacing y by $x^{-1}y$ in the identity $(xy)^n - xy \in Z(R)$ and combining (1), we get $[x^n, y] - [x, y^n] = 0$. By Kaplansky's theorem [6], R is finite dimensional over its centre Z(R). Since $[x^n, y] - [x, y^n] = 0$, for any $c \in Z(R)$ we have

$$(c^n-c)[x^n, y] = [c^n x^n, y] - [cx, y^n] = [(cx)^n, y] - [cx, y^n] = 0$$

If $[x^n, y]=0$, then the result follows from (1). If $[x^n, y]\neq 0$, then $(c^n-c)[x^n, y]=0$ implies $c^n=c$, for all $c\in Z(R)$. Obviously Z(R) is finite and then R is also finite. Hence R is commutative.

PROOF OF THEOREM A. Since R is semi-prime, in which $(xy)^n - xy$ is central, then R is isomorphic to a subdirect sum of prime rings R_{α} each of which as a homomorphic image of R satisfies the hypothesis placed on R. Hence it is sufficient to prove the theorem in the case when R is prime in which $(xy)^n - xy$ is central. Now by Lemma 1.1, R is reduced. As is well known prime reduced ring R is completely prime. According to S. A. Amitsur [1], R can be embedded in a division ring satisfying the same polynomial identity. Hence we can assume that R is a division ring in which $(xy)^n - xy$ is central. By Lemma 1.2, R is commutative.

Section II

The following lemma is due to HERSTEIN [3] which will be extensively used in the proof of our Theorem B.

Lemma 2.1. Let R be a ring and for every $x, y \in R$ there exists a polynomial $P_{x,y}(t)$ with integer coefficients which depends on x and y such that $[x^2P_{x,y}(x)-x,y]=0$. The R is commutative.

PROOF OF THEOREM B. Using the hypothesis of Theorem B, for any $y \in R$ we have

(1)
$$[x^n, y] - [x^{n+1}, y] = 0$$

Now replace x by (1+x) in (1), to get

(2)
$$[(1+x)^n, y] - [(1+x)^{n+1}, y] = 0$$

But since

$$[(1+x)^n, y] = n[x, y] + \sum_{i=2}^{n-1} {n \choose i} [x^i, y] + [x^n, y]$$

and

$$[(1+n)^{n+1}, y] = (n+1)[x, y] + \sum_{j=2}^{n} {n+1 \choose j} [x^j, y] + [x^{n+1}, y].$$

Thus (2), becomes

$$\left[\sum_{i=2}^{n-1} \binom{n}{i} x^{i} - \sum_{j=2}^{n} \binom{n+1}{j} x^{j}, y\right] - [x, y] = 0$$

i.e. $[x^2P(x)-x, y]=0$, where P(x) is the polynomial with integer coefficients. Hence by Lemma 2.1, R is commutative.

The following examples show that the ring in the hypothesis of Theorem B must contain unity.

Example 1. Let R be the subring generated by the matrices,

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

in the ring of all 3×3 matrices over Z_2 , the ring of integer modulo 2. For all integer n>1 and for all $x\in R$, $x^{n+1}-x^n\in Z(R)$. But R is not commutative.

Example 2. Let $R = \begin{cases} \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} / a, b, c$, are integers c. For all $n \ge 2$ and all $x \in R$, $x^{n+1} - x^n \in Z(R)$. However R is not commutative

References

- [1] S. A. Amitsur, On rings with identities, J. London Math. Soc. 30 (1955), 464-470.
- [2] I. N. Herstein, A generalization of Theorem of Jacobson, Amer. J. Math. 73 (1951), 755—762.
 [3] I. N. Herstein, Two Remarks on the Commutativity of Rings, Canad J. Math. 7 (1955), 411—
- [4] I. N. Herstein, Topics in Ring Theory (University of Chicago Press, Chicago, London 1969).
- [5] N. JACOBSON, Structure theory of algebraic algebras of bounded degree, Ann. of Math. 46 (1945), 695-707.
- [6] I. KAPLANSKY, Rings with a polynomial identity, Bull. Amer. Math. Soc. 54 (1948), 575-580.
- [7] MURTAZA A. QUADRI, MOHD. ASHRAF and M. A. KHAN, A Commutativity Condition for rings-II Bull. Austral. Math. Soc. Vol. 33 (1986), 71—73.

DEPARTMENT OF MATHEMATICS ALIGARH MUSLIM UNIVERSITY ALIGARH—202 001 (INDIA)

(Received November 29, 1985)