Commutativity of generalized Boolean rings

By MURTAZA A. QUADRI and MOHD. ASHRAF (Aligarh)

We know that a ring R satisfying x*=x, for every x€R is Boolean which is
necessarily commutative. Recently in a paper [7] we have weakened the condition
for a semi-prime ring R and proved that if (xy)*—xy is central for all x, y in R,
then R must be commutative. In Section I of the present paper we generalize the
above result which is an extension of the theorem of Herstein [2] which inturns
generalizes the famous theorem of JACOBSON [5, Theorem 11]. In fact, we prove the
following:

Theorem A. Let n=1 be a fixed positive integer and R be a semi-prime ring
in which (xy)"—xy is central, for every x, y in R, then R is commutative.

It is also well known that every ring with unity 1 satisfying the identity x"+!=x"
is a Boolean ring and thus commutative. In Section II of this paper we deal with
the commutativity of the rings in which x"+!—x" is central, for all x€R, n being
a positive integer. This, at the same time generalizes the above referred result and
includes the result due to HERSTEIN [2] for the case n=1. Indeed we prove the
following:

Theorem B. Let n be a fixed positive integer and R be a ring with unity 1 in
which x**'—x" is central, for all x€R, then R is commutative.

In the end we provide two examples to show that existence of unity in the ring
of the above theorem is rather essential.

In what follows, [x,y] stands for commutator xy—yx and Z(R) denotes the
centre of an associative ring R.

Section I

In preparation for the proof of our Theorem A, we first establish the following
lemmas:

Lemma 1.1. Let n=1 be a fixed positive integer and R be a prime ring in which
(xy)"—=xy€Z(R), for all x,ycR, then R contains no nonzero zerodevisors.

Proor. It suffices to show that R is a reduced ring. Let @ be an element of R
such that a®>=0. Using the hypothesis of theorem for any y€ R we get {(ay)"—ay}y=
=y {(ay)"—ay}. With y=ya, we have ayaya=0 i.e. (ay)’=0, for all y¢R. Thus
a=0 by Lemma 1.1 of [4].
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Lemma 1.2. Let n>1 be a fixed positive integer and R be a division ring in
which (xy)'—xy€Z(R), for all x,y<R, then R is commutative.

Proor. Using the hypothesis of the lemma, with x=xy~! we get (xy~1.-y)"—
—xy~t.yeZ(R), which implies that,

Q) [, y]1-[x, ] =0

Again on replacing y by x~'y in the identity (xy)"—xy€Z(R) and combining (1),
we get [x", y]—[x, »"]=0. By Kaplansky’s theorem [6], R is finite dimensional over
its centre Z(R). Since [x", y]—[x, »"]=0, for any c¢€Z(R) we have

(c"=o)x", y] = [¢"x", y]—=[ex, y"] = [(ex)", y] =[x, y"] = 0

If [x", ¥]=0, then the result follows from (1). If [x", ¥]#0, then (c"—c)[x", y]=0
implies ¢"=e¢, for all ¢€Z(R). Obviously Z(R) is finite and then R is also finite.
Hence R is commutative.

PROOF OF THEOREM A. Since R is semi-prime, in which (xy)"—xy is central,
then R is isomorphic to a subdirect sum of prime rings R, each of which as a homo-
morphic image of R satisfies the hypothesis placed on R. Hence it is sufficient to
prove the theorem in the case when R is prime in which (xy)"—xy is central. Now
by Lemma 1.1, R is reduced. As is well known prime reduced ring R is completely
prime. According to S. A. AMITSUR [1], R can be embedded in a division ring sat-
isfying the same polynomial identity. Hence we can assume that R is a division ring
in which (xy)"—xy is central. By Lemma 1.2, R is commutative.

Section 11

The following lemma is due to HERSTEIN [3] which will be extensively used in
the proof of our Theorem B.

Lemma 2.1. Let R be a ring and for every x,ycR there exists a polynomial
P, ,(t) with integer coefficients which depends on x and y such that [x* P, ,(x)—x, y]=0.
The R is commutative.

ProOOF OF THEOREM B. Using the hypothesis of Theorem B, for any y€R
we have

(1) [-’f"s.}’]"'[sty]:O
Now replace x by (1+x) in (1), to get

(2) [(1+x), y]-[(1+x)"*, y]=0
But since

(+ar 1= nbe o1+ 3 ()10
and

n +1
@+t 51 = e Dl o1+ 3 (7714 e 0
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Thus (2), becomes

3 ()e-A(") )o]man=o

Jj=2
ie. [x*P(x)—x, y]=0, where P(x) is the polynomial with integer coefficients. Hence
by Lemma 2.1, R is commutative.
The following examples show that the ring in the hypothesis of Theorem B
must contain unity.

Example 1. Let R be the subring generated by the matrices,

010)]f001})f{0O00O0
000]j000}J00O01
000)l0O0O0)(0OO00O

in the ring of all 3X3 matrices over Z,, the ring of integer modulo 2. For all integer
n=1 and for all xR, x"*'—x"€Z(R). But R is not commutative.

Oab
Example 2. Let R= 1|0 0 cl/a, b, c, are integers;. For all n=2 and all

000
XER, x**1—x"¢ Z(R). However R is not commutative.
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