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Lindeberg type central limit theorems on one
dimensional hypergroups

By HANSMARTIN ZEUNER (Dortmund)

Abstract. Let (R+, ∗) be a Sturm-Liouville hypergroup and Sn the randomized
sum of the n-th row of a triangular array (Xnj : 1 ≤ j ≤ kn) with values in the

hypergroup and with independent rows. We suppose that the adapted variances σ2
n :=

V∗(Sn) converge to∞ and that the Lindeberg condition σ−2
n
P

j E(X2
nj1{Xnj>εσn}) →

0 for all ε > 0 is satisfied. Then in the case of polynomial growth, Sn/σn converges in
distribution to the Rayleigh distribution ρα if α := limx→∞ xA′(x)/A(x) exists (A is the
Lebesgue density of a Haar measure). In the case of exponential growth Sn converges
(after a suitable normalization) to the standard normal distribution if

P
j E(Xnj)

2 =

O(σ2
n). The most important tool for the proofs is the Laplace representation ϕλ(x) =R x

−x exp(−t(ρ + iλ)) dνx(t) of the characters ϕλ of the hypergroup (R+, ∗), which is

shown to be valid for all (known) Sturm-Liouville hypergroups.

0. Introduction

Let (Xnj : n ≥ 1, 1 ≤ j ≤ kn) be a triangular array of random vari-
ables with values in the halfline R+ = [0,∞[, endowed with a hypergroup
convolution ∗, such that the variables in each row are independent. Then

the randomized sums Sn := Λ
kn∑

j=1

Xnj can defined as random variables hav-

ing the distribution PSn = PXn1∗PXn2∗. . .∗PXnkn
. Central limit theorems,

i.e. the question of the convergence in distribution of Sn after a suitable
normalization, have been studied in a number of articles. Most of them
are confined to the situation of a sequence Xnj = Xj , kn = n, for example
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in the work of Kingman [11], Finckh [7], Eymard and Roynette [6],
Zeuner [20], Gallardo [8], Voit [16], [17], [18], and Gallardo and
Bouhaik [3] (some of the results are valid for different classes of hyper-
groups), but there are also important contributions in the general case,
for example by Trimèche [13], [14] and Karpelevich, Tutubalin and
Shur [10].

There are three types of central limit theorems with different kinds of
limit distributions: The randomized sums of small random variables lead
(without the necessity of a normalization) to Gaussian limit distributions
which are characterized by the Fourier transform λ 7→ exp(−c(λ2 + ρ2))
and which are different for different hypergroups. In the case of polynomial
growth of the hypergroup it can be shown that for a suitable choice of
positive numbers σn, Sn/σn converges to a Rayleigh distribution ρα; here
the parameter α ≥ − 1

2 depends on properties of the hypergroup. The
Bessel-Kingman hypergroups [11] belong to both of these classes. Third, in
the case of exponential growth of the hypergroup the usual normalization
σ−1

n (Sn − µn) with suitable µn, σn > 0 gives the convergence towards
the standard normal distribution N0,1 on R; here the limit distribution is
the same for all hypergroups of this type (but the normalizing constants
depend on the convolution ∗ on R+).

In the first section we study the most important tool for these limit
theorems, the Laplace representation of the characters of the hypergroup
(R+, ∗) (an integral representation in terms of the characters t 7→ exp(iλt)
of (R,+)) which has been established by Chébli [4] for an important
class of hypergroups on R+, and slightly extended in [21]. Using Voit’s
modification procedure [15] it is now possible to prove this result for all
known hypergroups on R+. With this representation properties of the
moment functions mn can be derived which are characterized by the for-
mula

∫
mn dεx ∗ εy =

∑n
j=0

(
n
j

)
mj(x)mn−j(y) and are used to define the

adapted expectation and variance of random variables and the normalizing
constants in the central limit theorems. In section 2 we prove in the case of
exponential growth of the hypergroup a Lindeberg type central limit the-
orem for triangular arrays such that the Lindeberg condition and certain
growth conditions for the moments of the array are valid. In particular
these conditions are satisfied for a sequence of random variables. In the
last section the case of polynomial growth is considered. Here the proof of
a central limit theorem is much simpler and the only assumption except
the Lindeberg condition is that σn → ∞; this condition is necessary to
exclude the convergence to the Gaussian distribution as in the situation
treated in [13].
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1. One-dimensional hypergroups and
the Laplace representation of their characters

(1.1) Let (R+, ∗) be a hypergroup in the sense of [9]. A function
φ : R+ → C is called multiplicative if

∫
φdεx∗εy = φ(x)·φ(y) for x, y ∈ R+,

and it is called character of the hypergroup if it is in addition real valued
and bounded. We call (R+, ∗) a Sturm-Liouville hypergroup if there exists
a function α ∈ C1(R∗+) with a possible singularity of first order at 0 such
that all the characters φ are solutions of the Sturm-Liouville differential
equation φ′′ + αφ′ = sφ, φ(0) = 1 and φ′(0) = 0 with s ∈ R. In this case
it is always possible to write α = A′/A with A ∈ C1(R+) where A is the
Lebesgue density of a Haar measure of this hypergroup.

The largest class of functions α admitting a Sturm-Liouville hyper-
group known up to date has been described in [21] and contains the hy-
pergroups of Chébli-Trimèche and Levitan. Apart from minor technical
conditions α belongs to this class if there exists a C1-function β : R+ → R
with β(0) ≥ 0, β ≤ α such that α − β and 2β′ − β2 + 2αβ are decreasing
functions on R∗+. It has been proved in [21] that ρ := 1

2 lim
x→∞

A′(x)
A(x) ≥ 0

exists and that the characters are the solutions of the initial value problem

ϕ′′λ +
A′

A
ϕ′λ = −(ρ2 + λ2)ϕλ

ϕλ(0) = 1, ϕ′λ(0) = 0 for λ ∈ K̂ := i[0, ρ] ∪ R+.

We first study the asymptotic behavior of the characters at ∞.

(1.2) Lemma. lim
x→∞

φ′iλ(x)
φiλ(x)

= λ− ρ for all λ ≥ 0.

Proof. It follows from [21], Proposition (4.2) that φiλ > 0. The
function ψ := φ′iλ/φiλ satisfies the differential equation ψ′ + ψ2 + A′

A ψ =
λ2 − ρ2. Let ε > 0 and choose x0 > 0 such that |A′A − 2ρ| < ε and
|(A′

A )2 − 4ρ2| < ε2

2 on [x0,∞[. Then for x ≥ x0 it follows from ψ(x) >

λ − ρ + ε that ψ′(x) < −λε − ε2

8 and so eventually ψ must stay smaller
than λ− ρ + ε. A similar argument holds for a lower bound.

The following important representation of the multiplicative functions
on a Sturm-Liouville hypergroup has been proved by Chébli under certain
convexity conditions on the function A (see [21], (2.2) and (4.8)).
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(1.3) Theorem. (Chébli, [4], Proposition 1-IV) For every x ∈ R+

there exists a probability measure νx ∈M1([−x, x]) such that

ϕλ(x) =
∫

e−t(ρ+iλ)νx(dt) for all λ ∈ C.

If ρ = 0 then νx is symmetric.

Proof. We consider the case ρ = 0 first. Then Chébli’s proof [4],
Proposition 1-IV carries over to the more general situation in [21], (2.1).
We will give a simplified version of his proof:

Let the function A ∈ C1
+(R+) of the hypergroup satisfy A′ ≥ 0 and

lim
x→∞

A′(x)
A(x) = 0. It follows from ρ = 0 that for every λ ∈ C the function

u : R+
2 → C with u(x, y) = cos(λx) · ϕλ(y) satisfies `[u] = 0 where

`[u](x, y) := A(y)uxx(x, y)−A(y)uyy(x, y)−A′(y)uy(x, y).

It follows from Chébli’s maximum principle [4], Théorème (III-1) (which
we may apply on ` because of A′ ≥ 0) that every solution u of this
Cauchy problem with u ≥ 0 and uy = 0 on R+ × {0} is non negative
in {(x, y) ∈ R+ : 0 ≤ y ≤ x}. Therefore for all (x, y) in this set there ex-
ists a positive measure µxy on [x−y, x+y] with u(x, y) =

∫
u(t, 0) dµxy(t)

and in particular

ϕλ(y) · cos(λx) =
∫

cos(λt) dµxy(t)

for all 0 ≤ y ≤ x.
Now let ∗R be the usual convolution on R and y ≥ 0. Then the

(possibly signed) measure θy := µy,y ∗R (εy + ε−y)− µ2y,y has the support
[−y, 3y] and satisfies

ϕλ(y) = 2ϕλ(y) cos2(λy)− ϕλ(y) cos(2λy) =
∫

cos(λt) dθy(t).

Let σ1 ∈ Mb(R+) be the measure θy shifted to the right by 3y and σ2 ∈
Mb(R+) be the result of the shift of θy to the left by 3y and a subsequent
reflection at the origin. Then we have

∫
cos(λt) d(1

2σ1 + 1
2σ2)(t) = ϕλ(y) ·

cos(3λy) =
∫

cos(λt) dµ3y,y(t) for all λ and it follows from the uniqueness
theorem of the cosine transformation that 1

2σ1 + 1
2σ2 = θy. Since σ1
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is supported by [2y, 6y] and σ2 by [0, 4y] it follows that σ1 cannot have
mass on ]4y, 6y] and therefore the support of θy must be contained in
[−y, y]. If νy denotes the symmetrization of θy then we still have ϕλ(y) =∫

cos(λt) dνy(t) =
∫

exp(−iλt) dνy(t). If we repeat the arguments from
above we see that µ3y,y is equal to the measure νy shifted to the right by
3y and so νy must be a probability measure.

We now consider the case ρ > 0. Then the multiplicative function φ0

is positive by [21], (4.2) b) and we can construct the modified hypergroup
(R+, ?) with

εx ? εy :=
φ0

φ0(x)φ0(y)
· εx ∗ εy

as in [15]. It has the Haar measure Ã ·λR+ where Ã = φ2
0 ·A. By [21], (4.6)

and (2.11) it satisfies Ã′ ≥ 0. Moreover we have ρ̃ = 1
2 limx→∞ Ã′(x)/Ã(x)

= limx→∞ φ′0(x)/φ0(x) + ρ = 0 by (1.2) and hence we can use the above
to obtain a Laplace representation for the characters of (R+.∗), φ̃λ(x) =∫

exp(−iλt) dν̃x(t) for all λ ∈ C, x ∈ R+. Since φ̃λ = ϕλ/φ0 we obtain
ϕλ(x) =

∫
exp(−iλt)φ0(x) dν̃x(t).

For λ := iρ we have 1 =
∫

exp(ρt)φ0(x) dν̃x(t) and hence the mea-
sure νx with density t 7→ exp(ρt)φo(x) with respect to ν̃x is a proba-
bility measure for every x ∈ R+. Therefore we have proved ϕλ(x) =∫

exp(−t(ρ + iλ)) dνx(t).

(1.4) The moment functions mn : R+ → R+ of this hypergroup can
be defined as mn(x) := ∂

∂µn φi(ρ+µ)(x)
∣∣
µ=0

. They are the solutions of the
differential equation

m′′
n +

A′

A
m′

n = 2nρmn−1 +n(n−1)mn−2, mn(0) = m′
n(0) = 0 for n ≥ 1,

with m0 := 1,m−1 := 0. The defining equation
∫

mn dεx ∗ εy =
n∑

j=0

(
n

j

)
mj(x)mn−j(y)

follows by Leibniz’s rule. It should be noted that for ρ = 0 only the
functions mn with n even are non zero.

Using the Laplace representation it is now very easy to prove the
following properties of the moment functions which will be important in
the proof of the central limit theorems:
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(1.5) Corollary. a) ‖ϕλ‖∞ = 1 for all λ ∈ C with |=λ| ≤ ρ.
b) mn(x) =

∫ x

−x
tn dνx(t) for n ≥ 1 and x ∈ R+. From this it follows

that mk(x)n ≤ mkn(x) ≤ xkn for k, n ≥ 1 and x ∈ R+.
c) In the case ρ > 0 m′

1(x) converges to 1 and mn(x)/xn → 1 as
x →∞.

d) Let ρ = 0. Then we have 1 − λ2

2 m2 ≤ ϕλ ≤ 1 − λ2

2 m2 + λ4

24 m4.
Furthermore, if supx>0 xA′(x)/A(x) is finite then there exists γ > 0 with
m2(x) ≥ γx2 for all x ≥ 0.

Proof. Most of these properties have been proved in [19] (4.3), (5.7)
and (6.5).

a) For these λ the modulus of the integrand in the Laplace represen-
tation (1.3) is bounded by exp(−tρ), and the integral over this function
gives φiρ = 1.

b) This follows from Jensen’s inequality and the fact that the support
of νx is contained in [−x, x].

c) The last assertion is a consequence of the first and b).
d) The cosine function satisfies 1 − x2

2 ≤ cos(x) ≤ 1 − x2

2 + x4

24 for
all x ∈ R. Therefore we have 1 − λ2

2 m2(x) =
∫

(1 − λ2

2 t2) dνx(t) ≤∫
cos(λt) dνx(t) = ϕλ(x) ≤ ∫

(1 − λ2

2 t2 + λ4

24 t4) dνx(t) = 1 − λ2

2 m2(x) +
λ4

24 m4(x).

(1.6) We can now use the moment functions m1 and m2 to define the
adapted moments of a random variable X with values in the hypergroup
(R+, ∗):

E∗(X) := E(m1(X))

and, in the case of E∗(X) < ∞,

V∗(X) := E(m2(X))− [E∗(X)]2

= E
(
m2(X)− 2m1(X)E∗(X) + [E∗(X)]2

) ≥ 0.

Similar to the classical situation we have a Chebyshev inequality:

(1.7) Lemma. If E∗(X) is finite, then P{|m1(X)− E∗(X)| ≥ ε} ≤
V∗(X)/ε2. In particular, if m1(a) > E∗(X) then we have

P{X ≥ a} ≤ V∗(X)
(m1(a)− E∗(X))2

.
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2. Moment conditions

(2.1) Definition. Let (Xnj : n ≥ 1, 1 ≤ j ≤ kn) be a triangular array
of random variables with values in R+ such that E(X2

nj) < ∞ for all n, j.
We assume that the random variables of each row are independent and

denote by Sn their randomized sum Λ
kn∑

j=1

Xnj (for the definition of this

random variable having the distribution PXn1 ∗ · · · ∗PXnkn
see [2], 7.1.5 or

[21]). We use the notations

µnj := E∗(Xnj) = E(m1(Xnj)),

µn := E∗(Sn) =
kn∑

j=1

µnj ,

σ2
nj := V∗(Xnj) = E(m2(Xnj))− (E(m1(Xnj)))2 and

σ2
n := V∗(Sn) =

kn∑

j=1

σ2
nj

To avoid division by 0 we exclude the trivial case that all Xnj in some row
are 0 almost surely; since m2 −m2

1 > 0 on ]0,∞[, this implies σn > 0 for
all n ≥ 1.

Then we say that the Lindeberg condition is satisfied if

(L) σ−2
n

kn∑

j=1

E
(
X2

nj · 1{Xnj≥εσn}
)
→ 0 as n →∞ for every ε > 0.

(2.2) Remark. This condition—and the classical Lindeberg condition,
which limits the deviation from the expected value E∗(Xnj), all the less—
is not sufficient to imply the convergence in distribution of σ−1

n (Sn − µn)
towards a standard normal distribution N0,1. On the one hand it follows
from the results of Trimèche [13] that if σn, µn and some higher moments
remain small, Sn itself converges in distribution to the Gaussian distribu-
tion of the hypergroup which in general is different from N0,1.

On the other hand consider the Sturm-Liouville hypergroup with
A(x) = cosh(x)2 where the randomized sum x+Λy takes the values |x−y|
and x+y with probabilities cosh(x−y)

2 cosh(x) cosh(y) and cosh(x+y)
2 cosh(x) cosh(y) respectively.

Then m1(x) = x tanh x, m2(x) = x2 and V∗(x) = x2/ cosh(x)2. If Xnj



56 Hansmartin Zeuner

is the constant random variable 2j (for 1 ≤ j ≤ kn = n) then σ2
n =∑n

j=1

(
2j

cosh 2j

)2 is bounded and µn =
∑n

j=1 2j tanh 2j ∼ 2n+1. The classi-
cal Lindeberg condition is clearly satisfied (although (L) is not) but it is
not hard to show that Sn − 2n+1 converges to the distribution

(1− e−2)−1
∞∑

j=0

e−2j · ε−2j−1

on R.
If for the same convolution we set Xnj := 1

2 ln j for 1 ≤ j ≤ n then
we have µn ∼ n

2 ln n, σ2
n ∼ 1

3 (lnn)3, and it is clear that the Lindeberg
condition (L) in (2.1) is satisfied. It is not hard to show that in this case

2√
n ln n

(Sn − 1
4n(lnn)2) converges in distribution to the standard normal

law N0,1. Therefore σ−1
n (Sn − µn) cannot converge in distribution. (This

phenomenon that the central limit theorem is valid with different norm-
ing constants also happens in the classical situation (see for example [5],
exercise 7.2.10).)

It is therefore necessary to impose some additional conditions on the
random variables of the triangular array (but none on the hypergroup):

(2.3) Definition. Let (Xnj : 1 ≤ n, 1 ≤ j ≤ kn) be a triangular array
and µnj , µn and σn be defined as in (2.1) . Then we impose the following
conditions:

(I1) σn → ∞ for n →∞,

and

(I2)
kn∑

j=1

µ2
nj = O(σ2

n) for n →∞.

(2.4) Remark. These conditions, including the Lindeberg condition
(L), are all satisfied if Xnj = Xj comes from a sequence of identically
distributed random variables since

∑n
j=1 µ2

nj and σ2
n are proportional to

kn = n and by [1], Example 51.1. More generally, in the case that the
triangular array consists of the beginning parts of an arbitrary independent
sequence, condition (I1) is clearly fulfilled if (L) is valid since the sum in
(L) increases with n.

In order to prove a central limit theorem we need some auxiliary
results. Some of them are the same as in the classical situation, for example
that the Lindeberg condition implies the Feller condition:
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(2.5) Lemma. Suppose that the array (Xnj) satisfies the Lindeberg
condition (L). Then

a) σ−1
n maxj≤kn µnj converges to 0 for n →∞.

b) σ−1
n maxj≤kn σnj converges to 0 for n →∞.

Proof. Let ε > 0 be arbitrary. For every j we have

µ2
nj + σ2

nj ≤ E(m2(Xnj)1{Xnj<εσn}) + E(m2(Xnj)1{Xnj≥εσn})

≤ m2(εσn) +
kn∑

k=1

E(m2(Xnk)1{Xnk≥εσn}).

Therefore σ−2
n maxj=1,...,kn(µ2

nj +σ2
nj)≤ε2 +σ−2

n

∑kn

k=1E(Xnk1{Xnk≥εσn});
the first summand can be made arbitrary small and the second converges
to 0 for every ε > 0 by (L). This implies a) and b).

(2.6) Remark. We have seen in (2.2) that the conditions (I1), (I2) and
(L) are essential for the validity of the central limit theorem. It should
also be noted that these conditions are independent from each other. Let
us consider the hypergroup with A := sinh2. It is an easy calculation that
V∗(x) = 1 − x2

sinh2(x)
and this converges to 1 as x → ∞. Therefore if we

define the sequence Xn := k ln k if n = k3 and Xn := 1 for all other n, we
have σn ∼ c · √n and

∑n
j=1 µ2

nj ∼ n
27 (lnn)2 whence all conditions except

I2 are satisfied (and even the stronger Lyapounov condition).
On the other hand, if we consider the sequence Xn := 2k/2 if n = 2k

and Xn := 1 for n which are not of this form, then σn ∼ c · √n and∑n
j=1 µ2

nj = O(n). Therefore (I1) and (I2) are valid. Since the Feller
condition (2.1) a) is violated, (L) is also not valid.

Finally, if Xnj = 1
n and kn := n2, then σn → 1√

3
and (I2) and (L) are

satisfied, but (I1) is not.

The following properties of the moments µnj and σnj will be used in
the proof of the central limit theorem.

(2.7) Lemma. a) If (I2) is satisfied then µn = O(σ2
n).

b) Let (I2) and the Feller conditions (2.5) be valid. Then

lim
n→∞

σ−k−l
n ·

kn∑

j=1

µk
njσ

l
nj = 0

for all k, l ∈ N such that k + l ≥ 3.
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Proof. a) Only the case ρ > 0 has to be proved. Since m1,m2

and their first derivatives at 0 vanish whereas the second derivatives are
positive, the function m2/m1 is continuous and strictly positive on R+

and converges to ∞ by (1.5) c). Therefore there exists a lower bound
c > 0, i.e. m2 ≥ c ·m1 on R+. This implies σ2

nj = E(m2(Xnj)) − µ2
nj ≥

µnj(c−µnj). For every n, j with µnj ≤ c/2 it follows µnj ≤ 2
c ·σ2

nj , and for
the others we have µnj < 2

c · µ2
nj . Combining these inequalities we obtain∑

j µnj ≤ 2
c ·

(∑
j σ2

nj +
∑

j µ2
nj

)
. By (I2) there exists a number K > 0

with
∑

j µ2
nj ≤ Kσ2

n and hence
∑

j µnj ≤ 2
c · (K + 1) · σ2

n.

b) If k ≥ 2 then

σ−k−l
n ·

∑

j

µk
njσ

l
nj ≤ σ−2

n

∑

j

µ2
nj · σ−k+2

n max{µk−2
nj } · σ−l

n max{σl
nj}

and by the assumptions all of the factors are bounded and at least one of
them converges to 0. A similar but simpler argument holds in the case
l ≥ 2 since σ−2

n

∑
j σ2

nj = 1.

3. The case of exponential growth

We now consider the case ρ > 0 of exponential growth. The next
result has been proved in [20] in the special case of Chébli hypergroups.
The possibility that A′/A can now be smaller than 2ρ (this happens, for
example, in the case A = cosh2) makes the general situation more difficult.

(3.1) Lemma. Let A satisfy ρ > 0. Then for every a ≥ 0 we have

sup
x∈[0,r2a]

∣∣∣∣φiρ−λ/r(x)− exp
[
iλ

r
·m1(x)

]∣∣∣∣ → 0 for r →∞.

Proof. Let ζr(x) := φiρ−λ/r(rx)·exp
[− iλ

r ·m1(rx)
]

for x ∈ R, r > 1.
It follows from (1.5) a) that ‖ζr‖∞ = ‖φiρ−λ/r‖∞ = 1 and therefore as in
the proof of [20], Lemma (4.1) we obtain from the differential equation for
ζr that

|ζ ′r(x)|2 + 2r ·
∫ x

0

A′(rt)
A(rt)

|ζ ′(t)|2 dt ≤ 2λ2 ·
∫ x

0

|1−m′
1(rt)

2| · |ζ ′r(t)| dt



Lindeberg limit theorems on hypergroups 59

and since m′
1(x) converges to 1 as x →∞ (see (1.5) c)), the right hand side

is not larger than c1 ·
∫ x

0
|1−m′

1(rt)| · |ζ ′r(t)| dt where c1 := 2λ2(1+‖m′
1‖∞).

We now use the notations Mr(x) :=
∫ x

0
|1−m′

1(rt)|2 dt and Zr(x) :=∫ x

o
|ζ ′r(t)|2 dt. Using Hölder’s inequality we obtain

|ζ ′r(x)|2 + 2r ·
∫ x

0

A′(rt)
A(rt)

|ζ ′(t)|2 dt ≤ c1 ·
√

Mr(x)Zr(x).

It follows from [21], (2.1) that A′(x)/A(x) converges to 2ρ for x →∞.
Therefore we can choose x0 > 0 with A′/A ≥ ρ on [x0,∞[. In the case
t ≤ x0/r we have |ζ ′r(t)|2 ≤ c1

√
Mr(t)Zr(t) ≤ c1

√
Mr(x0/r)Zr(x0/r) and

hence r
∫ x0/r

0
|ζ ′r(t)|2 dt ≤ r · x0

r · c1

√
Mr(x0/r)Zr(x0/r). On the other

hand, for x > x0/r we have r
∫ x

x0/r
|ζ ′r(t)|2 dt ≤ r

ρ

∫ x

x0/r
A′(rt)
A(rt) · |ζ ′r(t)|2 dt ≤

c1
2ρ

√
Mr(x)Zr(x). Combining these two inequalities we obtain for all x ≥

x0 > x0/r

rZr(x) ≤ x0c1

√
Mr(x0/r)Zr(x0/r) +

c1

2ρ

√
Mr(x)Zr(x)

≤ c1(x0 +
1
2ρ

)
√

Mr(x)Zr(x)

which implies
r2Zr(x) ≤ c2Mr(x) for all x ≥ x0.

From this it follows using Hölder’s inequality in the same way as in the

proof of [20], Lemma (4.1), that |1−ζr(t)|≤[x ·Zr(x)]1/2≤
√

c2

√
x
r

√
Mr(x)

r

and hence

sup
t∈[0,r2a]

∣∣∣∣φiρ−λ/r(t)− exp
[
iλ

r
·m1(t)

]∣∣∣∣

= sup
x∈[0,ra]

|ζr(x)− 1| ≤ sup
x≤ra

√
c2

√
x

r

√
Mr(x)

r

≤
√

c2a

√
Mr(ra)

r
.

In order to prove the assertion it is therefore sufficient to show Mr(ra)/r →
0 for every a ≥ 0. We have Mr(ra)

r = 1
r

∫ ra

0
|1 − m′

1(rx)|2 dx =∫ a

0
|1 − m′

1(r
2t)|2 dt. The integrand is bounded and converges to 0 for
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all t > 0 ((1.5) c)) and the assertion follows from Lebesgue’s theorem of
bounded convergence.

The next Lemma is a well known fact from calculus (see the inequality
after (51.12) in [1]).

(3.2) Lemma. Let anj , bnj ∈ C satisfy lim
n→∞

∑
j |anj − bnj | = 0 and

∏

j

max(anj , 1),
∏

j

max(bnj , 1) ≤ K for all n.

Then lim
n→∞

∏
j anj exists if and only lim

n→∞
∏

j bnj exists and in this

case the limits are equal.

(3.3) Theorem. Let (Xnj : n ≥ 1, 1 ≤ j ≤ kn) be a triangular array,

and Sn := Λ
kn∑

j=1

Xnj . Suppose that (I1), (I2) and the Lindeberg condition

(L) are satisfied and µ̃n := m−1
1 (µn). Then σ−1

n (Sn − µ̃n) converges in

distribution to the standard normal distribution N0,1.

Proof. In the first part we will prove that the distribution of
σ−1

n (m1(Sn) − µn) converges to N0,1 by using Lévy’s continuity theorem
on R and showing the convergence of the characteristic functions for each
λ ∈ R. In the following equations the expression an ≈ bn means that the
sequences (an)n and (bn)n have the same limit; we will first give an outline
of the proof and fill in the details for each ≈ afterwards:

E
(
exp

(
iλ

m1(Sn)− µn

σn

))

= exp(−iλµn/σn) · E
(
exp

( iλ

σn
·m1(Sn)

))

≈ exp(−iλµn/σn) · E(φiρ−λ/σn
(Sn))

=
kn∏

j=1

exp(−iλµnj/σn) · E(φiρ−λ/σn
(Xnj))

≈
kn∏

j=1

(
1− iλµnj

σn
− λ2µ2

nj

2σ2
n

)
· E(φiρ−λ/σn

(Xnj))
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≈
kn∏

j=1

(
1− iλµnj

σn
− λ2µ2

nj

2σ2
n

)
·
(
1 +

iλµnj

σn
− λ2(µ2

nj + σ2
nj)

2σ2
n

)

≈
kn∏

j=1

(
1− λ2σ2

nj

2σ2
n

)

≈
kn∏

j=1

exp
(
−λ2σ2

nj

2σ2
n

)

= exp(−λ2/2)

= N̂0,1(λ).

We will now give the arguments for the validity of each ≈:
≈1: Let r > 0. Then

∣∣E(
exp

(
iλ
σn

m1(Sn)
)) − E(φiρ−λ/σn

(Sn))
∣∣ ≤

2P{Sn > rσ2
n}+E

(∣∣exp
(

iλ
σn

m1(Sn)
)−φiρ−λ/σn

(Sn)
∣∣1{Sn≤rσ2

n}
)
. The first

term is smaller than 2σ2
n/(m1(rσ2

n)− µn)2 by (1.7) as soon as m1(rσ2
n)−

µn > 0; but because of (2.7) a) this can be achieved for large enough r > 0.
Furthermore this upper bound can be made arbitrary small if we choose r
big. On the other hand, by (3.1) the second term converges to 0 for every
r > 0 and hence the first ≈ is valid.

≈2:
∑

j

∣∣exp
(− iλµnj

σn

) − (
1 − iλµnj

σn
− λ2µ2

nj

2σ2
n

)∣∣ ≤ λ3

3σ3
n

∑
j µ3

nj as soon
as maxj σ−1

n λµnj ≤ 2 (which happens for large n by (2.5) a)). But this
upper bound converges to 0 by (2.7) b). The second condition of (3.2)

follows from
∏

j

∣∣1− iλµnj

σn
− λ2µ2

nj

2σ2
n

∣∣ =
∏

j

(
1+ λ4µ4

nj

4σ4
n

)1/2≤ exp
(

λ4

8σ4
n

∑
j µ4

nj

)

and again using (2.7) b).
≈3: We have

∑
j

∣∣E(φiρ−λ/σn
(Xnj))−

(
1+ iλ

σn
µnj− λ2

2σ2
n
(µ2

nj+σ2
nj)

)∣∣ ≤∑
j E(|r3(λ/σn, Xnj)|) where r3 is the remainder term in the Taylor ex-

pansion φiρ−δ(x) = 1+iδm1(x)− δ2

2 m2(x)+r3(δ, x). From [19], 4.3 we con-
clude that |r3(λ/σn, x)| ≤ λ3

6σ3
n
m3(x) and hence we obtain the upper bound

∑
j E

(
λ3

6σ3
n
Xnjm2(Xnj) · 1{Xnj≤εσn}

)
+

∑
j E

(
r3(λ/σn, Xnj) · 1{Xnj>εσn}

)

where ε > 0 can be chosen arbitraryly. The first number is smaller
than λ3ε

6σ2
n

∑
j(µ

2
nj + σ2

nj) which is bounded by a multiple of ε because
of (I2) and hence can be made arbitrarily small. The second number
is not larger than

∑
j E

((
2 + λ

σn
m1(Xnj) + λ2

2σ2
n
m2(Xnj)

)
1{Xnj>εσn}

) ≤
σ−2

n

(
2
ε2 + λ

ε + λ2

2

) ·∑j E(X2
nj1{Xnj>εσn}), and this converges to 0 by the

Lindeberg condition (L). We can therefore apply (3.2).
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≈4: Since the terms of order ≤ 2 cancel, the condition to check in
(3.2) leads to

∑
j

λ3

2σ3
n
µnj(2µ2

nj + σ2
nj) + λ4

4σ4
n
µ2

nj(µ
2
nj + σ2

nj). Here we can
again apply (2.7) b).

≈5: Finally
∑

j

∣∣(1 − λ2σ2
nj

2σ2
n

) − exp
(−λ2σ2

nj

2σ2
n

)∣∣ ≤ ∑
j 2λ4σ4

nj

8σ4
n

→ 0 by
similar arguments as for ≈2.

Now let ∆(x) := m−1
1 (x) − x. In the final part of the proof we will

show that the difference σ−1
n (∆(m1(Sn))−∆(µn)) between σ−1

n (Sn − µ̃n)
and σ−1

n (m1(Sn) − µn) converges to 0 in probability. This implies the
assertion of the theorem.

We have ∆′(x) → 0 as x →∞ by (1.5) c). Therefore for every ε > 0
we can choose xε > 0 such that |∆(x)−∆(y)| ≤ ε3/2·|x−y| for all x, y ≥ xε.
With a similar argument as in ≈1 we see that P{m1(Sn) < 2xε} converges
to 0 as n → ∞. Hence µn = E∗(Sn) = E(m1(Sn)) ≥ xε if n is large
enough. But then by (1.7)

P{σ−1
n |∆(m1(Sn))−∆(µn)| ≥ ε}
≤ P{m1(Sn) < xε}+ P{m1(Sn) ≥ xε, |∆(m1(Sn))−∆(µn)| ≥ σnε}
≤ P{m1(Sn) < xε}+ P{|m1(Sn)− µn| ≥ σnε−1/2}
≤ P{m1(Sn) < xε}+ ε.

4. The case of polynomial growth

In this part we suppose that A′(x)/A(x) → 0 as x → ∞. Since
in the case of hypergroups there is no dichotomy between exponential
and polynomial growth as in the group case, and since in the case of
subexponential but not polynomial growth the asymptotical behavior of
random walks is much more complicated (see [18], Theorem 3.5) we have
to impose the additional assumption that

lim
x→∞

x ·A′(x)/A(x) = 2α + 1

where α ≥ − 1
2 . This number (which is used instead the more natural

number 2α + 1 ≥ 0 because of its significance as a parameter of the Bessel
functions) determines the limit distribution in the central limit theorem.
The corresponding hypergroups are of polynomial growth since the Haar
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measure ω of these hypergroups satisfies ω([0, x]) = o(xβ+1) as x →∞ for
every β > 2α + 1.

The most important cases of hypergroups of polynomial growth are
the Bessel-Kingman hypergroups with parameter α ≥ − 1

2 . They are
determined by the characters ϕλ(x) = jα(λx) where jα(x) := Γ(α +
1)(2/x)αJα(x) are modified Bessel functions. Here A(x) = x2α+1 (and
so the function xA′(x)/A(x) from above is constant). As limit distribu-
tion in the central limit theorem we will obtain the Rayleigh distribution
ρα which has the density x 7→ cα · x2α+1 exp(−x2/2) on R+. This is the
Gaussian distribution of this hypergroup; its Fourier transform (which is
the Hankel transform in this case) is the function λ 7→ ∫∞

0
jα(λx) dρα(x) =

exp(−λ2/2).

(4.1) Lemma. If 2α+1 := limx→∞ xA′(x)/A(x) exists then for every

a > 0
sup

x∈[0,ra]

∣∣φ1/r(x)− jα(x/r)
∣∣ → 0 as r →∞.

Proof. It is easily checked that the proof of [20], Lemma 5.3 gener-
alizes to this situation since A′(x) ≥ 0 (see [21], Corollary (2.11)).

(4.2) Theorem. Let limx→∞ xA′(x)/A(x) = 2α + 1, and (Xnj : 1 ≤
j ≤ kn) be a triangular array such that σn → ∞ and the Lindeberg

condition (L) in (2.1) are satisfied. Then the randomized sums Sn of each

row satisfy σ−1
n Sn → ρα in distribution.

Proof. Let ε > 0. Then we can choose r > 0 such that P{Sn >

rσn} < ε and by Lemma (4.1) and σn →∞ we find n0 ≥ 1 such that

∣∣∣jα

(λx

σn

)
−φλ/σn

(x)
∣∣∣ < ε for all x ∈ [0, rσn], n ≥ n0.

Thus
∣∣∣E(jα(

λ

σn
Sn))− E(φλ/σn

(Sn))
∣∣∣

≤ E
(∣∣jα

( λ

σn
Sn

)− φλ/σn
(Sn)

∣∣ · 1{Sn≤rσn}
)

+ 2P{Sn ≥ rσn}
< 3ε .
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This implies

lim
n→∞

E
(
jα

( λ

σn
Sn

))
= lim

n→∞
E(φλ/σn

(Sn)) = lim
n→∞

kn∏

j=1

E(φλ/σn
(Xnj)).

It follows from (1.5) d) that for all ε > 0

kn∑

j=1

∣∣∣E
(
φλ/σn

(Xnj)
)− 1 +

λ2

2σ2
n

E
(
m2(Xnj)

)∣∣∣

≤
kn∑

j=1

E
( λ4

24σ4
n

m4(Xnj) · 1{Xnj≤εσn}
)

+
kn∑

j=1

E
( λ2

2σ2
n

m2(Xnj) · 1{Xnj>εσn}
)
.

By the Lindeberg condition the last sum converges to 0. It follows from
(1.5) that m4(x) ≤ x4 ≤ x2m2(x)/γ and hence the first sum on the right
hand side is not larger than

kn∑

j=1

E
( λ4

24γσ4
n

ε2σ2
nm2(Xnj)

)
=

λ4ε2

24γσ2
n

E(m2(Sn)) =
λ4ε2

24γ
.

This can be made arbitrary small and hence

kn∑

j=1

∣∣E(φλ/σn
(Xnj))− 1 +

λ2

2σ2
n

E(m2(Xnj))
∣∣ → 0.

It follows from (3.2) that

lim
n→∞

kn∏

j=1

E(φλ/σn
(Xnj)) = lim

n→∞

kn∏

j=1

(
1− λ2

2σ2
n

E(m2(Xnj))
)

.

By (2.5) b), condition (i) in [5], Lemma 7.1 is satisfied and thus the

above limit is equal to
∏kn

j=1 exp
(−λ2σ2

nj

2σ2
n

)
= exp

(−λ2

2

)
. Therefore we

have proved

lim
n→∞

E
(
jα

( λ

σn
Sn

))
= exp(−λ2/2)
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and this is the Hankel transform of the Rayleigh distribution ρα at λ. By
the continuity theorem of this transform the assertion follows.
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Berlin, New York, 2nd edition 1974.

[2] W. Bloom, H. Heyer, Harmonic analysis of probability measures on hypergroups,

de Gruyter, Berlin, New York, 1995.
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