Rees sublattices of a lattice

By JAROMÍR DUDA (Brno)

Rees congruences were introduced by D. REES [4] for semigroups. Recently R. F. TICHY [6] generalized this concept to arbitrary algebras as follows

Definition. Let B be a subalgebra of an algebra A, ω_A a diagonal on A. B is called a Rees subalgebra whenever $B \times B \cup \omega_A$ is a congruence on A. Any congruence of this form is called a Rees congruence.

Rees congruences on lattices were studied by G. Szász [5], namely an interesting characterization of Rees ideals was given in this paper. A characterization of Rees filters in implicative semilattices can be found in J. VARLET [7]. Since Varlet's result holds true for arbitrary lattices (see [2]), another description of Rees filters (Rees ideals) is obtained in this way. The present paper seeks to find suitable characterization theorems for arbitrary Rees sublattices of a given lattice. Further we study a remarkable relationship between Rees sublattices and arbitrary convex sublattices. Lattices having Rees sublattices only were already mentioned in the previous paper [1].

1. Characterization theorems

Theorem 1. A convexs ublattice M of a lattice L is a Rees sublattice if, and only if one of the following conditions holds for any 3-element subset $\{a, b, x\}$ $a, b \in M$, a < b, $x \in L \setminus M$:

(i) $\{a, b, x\}$ is a chain,

(ii) $\{a, b, x\}$ generates a pentagon.

PROOF. First suppose that M is a Rees sublattice of a lattice L. Choose arbitrary elements $a, b \in M$, a < b, and $x \in L \setminus M$. Assume further that $\{a, b, x\}$ is not a chain. Consider the following cases:

Case 1. Let $a \land x$, $b \lor x \in M$. Then the convexity of M implies $x \in M$, a contradiction.

Case 2. Suppose that $a \land x \in M$, $b \lor x \in L \setminus M$. Applying the elementary translation ι_x ($\iota_x(u) = u \lor x$, $u \in L$) to the pair $\langle a \land x, b \rangle \in M \times M$ we get

$$\langle \iota_x(a \wedge x), \iota_x(b) \rangle = \langle (a \wedge x) \vee x, b \vee x \rangle = \langle x, b \vee x \rangle.$$

By hypothesis $\langle x, b \lor x \rangle \in \omega_L$, i.e. $x=b \lor x$ and so b < x, a contradiction.

Case 3. Analogously we find that the assumption $a \land x \in L \setminus M$, $b \lor x \in M$ is impossible.

Case 4. Suppose that $a \wedge x$, $b \vee x \in L \setminus M$. Apply the elementary translation ι_x to the pair $\langle a, b \rangle \in M \times M$. Then $\langle \iota_x(a), \iota_x(b) \rangle = \langle a \vee x, b \vee x \rangle \in \omega_L$, i.e. $a \vee x = b \vee x$. Similarly the equality $a \wedge x = b \wedge x$ can be proved. Hence the elements a < b, x, $a \vee x = b \vee x$.

 $=b \lor x$, and $a \land x = b \land x$ form a pentagon, as claimed.

Conversely assume that arbitrarily chosen elements a, b, x, a, $b \in M$, a < b, $x \in L \setminus M$, satisfy one of the conditions (i), (ii) of our theorem. It suffices to verify that the equivalence relation $M \times M \cup \omega_L$ on L is compatible with the elementary translations ι_x and μ_x ($\mu_x(u) = u \wedge x$, $u \in L$) for any $x \in L \setminus M$. To do this take elements c, $d \in M$, $c \neq d$. Denote by $a = c \wedge d$ and $b = c \vee d$. Clearly than a < b. By hypothesis two possibilities may occur:

Case 1. If $\{a, b, x\}$ is a chain, say a < b < x, then

$$\langle \iota_x(c), \iota_x(d) \rangle = \langle c \wedge x, d \wedge x \rangle = \langle x, x \rangle \in \omega_L \subseteq M \times M \cup \omega_L$$

and

$$\langle \mu_x(c), \mu_x(d) \rangle = \langle c \wedge x, d \wedge x \rangle = \langle c, d \rangle \in M \times M \subseteq M \times M \cup \omega_L.$$

Evidently the same conclusion holds for x < a < b.

Case 2. Suppose that $\{a, b, x\}$ generates the pentagon

$${a, b, x, a \lor x = b \lor x, a \land x = b \land x}.$$

Then we have also $c \lor x = d \lor x$ and $c \land x = d \land x$, i.e.

$$\langle \iota_x(c), \iota_x(d) \rangle \in \omega_L \subseteq M \times M \cup \omega_L$$

and

$$\langle \mu_{\mathbf{r}}(c), \mu_{\mathbf{r}}(d) \rangle \in \omega_{L} \subseteq M \times M \cup \omega_{L}.$$

The proof is complete.

Making use of Theorem 1 another characterization of Rees sublattices can be obtained. First we need some preliminaries.

Having two nonvoid subsets M, N of a lattice L denote by

$$M \vee N = \{m \vee n; m \in M, n \in N\}.$$

and, dually,

$$M \wedge N = \{m \wedge n; m \in M, n \in N\}$$

Lemma 1. Let R be a nontrivial Rees sublattice of a lattice L, $x \in L \setminus R$, and d < x < c. Then

- (a) $R \lor \{x\} = \{x\}$ if and only if $r \lor x = x$ for some element $r \in R$;
- (b) $R \land \{x\} = \{x\}$ if and only if $r \land x = x$ for some element $r \in R$;
- (c) $R \lor \{x\} = \{c\}$ and $R \land \{x\} = \{d\}$ if and only if $r \lor x = c$ and $r \land x = d$ for some element $r \in R$.

PROOF. Assertions (a), (b) are evident.

(c) Let $s \in R$, $s \ne r$. Then a < b for $a = s \land r$ and $b = s \lor r$. Apply Theorem 1 to the subset $\{a, b, x\}$: If a < b < x then r < x, i.e. $c = r \lor x = x$, a contradiction.

Similarly the case x < a < b is impossible. Hence $a \lor x = b \lor x$ and $a \land x = b \land x$ hold. Consequently $s \lor x = r \lor x = c$ and $s \land x = r \land x = d$ for any $s \in R$.

Theorem 2. A nontrivial convex sublattice M of a lattice L is a Rees sublattice if and only if one of the following conditions holds for any element $x \in L \setminus M$:

- (i) $M \vee \{x\} = \{x\},$
- (ii) $M \wedge \{x\} = \{x\},$
- (iii) The subsets $M \lor \{x\}$ and $M \land \{x\}$ are singletons.

PROOF. First suppose that M is a Rees sublattice of L. Choose elements $m \in M$ and $x \in L \setminus M$. If m and x are comparable apply Lemma 1 (a), (b). In the opposite case apply Lemma 1 (c).

The converse implication is evident.

Corollary 1. A nontrivial convex sublattice M of a modular lattice L is a Rees sublattice if and only if each element from M is comparable with every element from $L \setminus M$.

PROOF. Apply Theorem 1 and the Dedekind criterion for modular lattices, see e.g. [3].

As noted above, Rees ideals and Rees filters were already studied in [5], [7], and [2]. Our next theorem summarizes the former results.

Theorem 3. Let I be an ideal of a lattice L. The following conditions are equivalent:

- (1) I is a Rees ideal;
- (2) $L \setminus I$ is a set of upper bounds of I;
- (3) I is a nodal ideal, i.e. I is comparable with any other ideal in I.

PROOF. The equivalence (1)⇔(2) is due to G. Szász [5], (1)⇔(3) can be found in [2]. For the sake of completeness we present here a short proof of Theorem 3:

- (1) \Leftrightarrow (2). Take $x \in L \setminus I$. Then $i \land x \in I$ and $i \land x < x$ for arbitrary $i \in I$. Lemma 1 (a) implies (2).
 - (2)⇔(3). Immediate.
- (3) \Leftrightarrow (1). Choose an element $x \in L \setminus I$ and consider the principal ideal (x]. By hypothesis (3) the inclusion $(x] \supset I$ holds, i.e. we have $I \vee \{x\} = \{x\}$. Theorem 2 completes the proof.

The relationship among Rees sublattices, Rees ideals and Rees filters can be expressed as follows

Corollary 2. A convex sublattice M of a lattice L is a Rees sublattice whenever the ideal (M] and the filter [M] are Rees.

If M is a nontrivial Rees sublattice of a modular lattice L then the ideal (M] and the filter [M] are Rees.

PROOF. The first assertion follows from the evident inclusions $M \times M \cup \omega_L \subseteq \Theta(M)$ and $\Theta(M) \subseteq \Theta((M)) \cap \Theta((M)) = M \times M \cup \omega_L$.

The second part of our corollary is a direct consequence of Corollary 1 and Theorem 3(2).

Remark 1. The assumption of modularity in the second part of Corollary 2 is essential and hence it cannot be omitted. Counterexample: Let L be a pentagon:

Then the interval [a, b] is Rees sublattice of L but neither (b] nor [a) have this property.

For classes of lattices closed under the formation of sublattices a sufficient condition for modularity can be obtained from Corollary 2. We formulate this fact for varieties of lattices.

Corollary 3. Let $\mathscr V$ be a variety of lattices. The following conditions are equivalent:

- (1) Any nontrivial convex sublattice M of a lattice $L \in \mathcal{V}$ is a Rees sublattice if and only if the ideal (M] and the filter [M] are Rees.
 - (2) V is a variety of modular lattices.

PROOF. (2) \Rightarrow (1) follows from Corollary 2. To prove the converse implication suppose that V is not modular. Then V contains a pentagon, by Dedekind criterion. Consequently (1) does not hold, see Remark 1.

2. Rees sublattices and arbitrary convex sublattices

Theorem 3 of the preceding section shows that a Rees ideal (Rees filter) is in a special position with respect to any other ideal (filter, respectively). Now we turn our attention to the relationship between a Rees sublattice and an arbitrary convex sublattice. For nondisjoint pairs of such sublattices holds

Theorem 4. Let R be a Rees sublattice of a lattice L. Then for any nondisjoint convex sublattice M of L one of the following possibilities occurs:

- (i) $M \subseteq R$,
- (ii) $R \subset M$,
- (iii) Elements from M\R are upper bounds of R,
- (iv) Elements from $M \setminus R$ are lower bounds of R.

Furthermore, the set union $R \cup M$ is a convex sublattice of L in any case.

PROOF. If $M \setminus R = \emptyset$ then $M \subseteq R$, i.e. (i) holds.

In the opposite case we apply Theorem 2 to the elements of $M \setminus R$: If $M \setminus R$ contains an element m such that $R \vee \{m\}$ and $R \wedge \{m\}$ are singletons then $R \lor \{m\} = \{a \lor m\}$ and $R \land \{m\} = \{a \land m\}$ for an element $a \in R \cap M$. Since $a \land m$, $a \lor m \in M$, the convexity of M implies $R \subset M$, i.e. the case (ii) occurs.

If $M \setminus R$ contains both lower and upper bounds of R then the case (ii) is again

obtained.

Finally if $M \setminus R$ consists of upper (lower) bounds of R only, then the case (iii)

((iv), respectively) follows.

It remains to prove that $R \cup M$ is a convex sublattice of L. Without loss of generality suppose that (iii) holds. Take elements $m \in M \setminus R$ and $r \in R$. Then r < m. Consider an arbitrary element $t \in [r, m]$ such that $t \notin R$. Since R is Rees Lemma 1 yields that t is an upper bound of R, namely a < t for any element $a \in R \cap M$. In this way we find that $t \in [a, m] \subseteq M \subseteq R \cup M$ which was to be proved.

For modular lattices we can state

Theorem 5. Let R be a nontrivial Rees sublattice of a modular lattice L. Then every convex sublattice M of L disjoint from R consits of upper (lower) bounds of R only.

Proof. Apply Corollary 1.

Pairs of Rees sublattices

Finally only pairs of Rees sublattices are considered. For nondisjoint pairs of Rees sublattices holds

Theorem 6. Let R_1 , R_2 be nondisjoint Rees sublattices of a lattice L. Then $R_1 \cup R_2$ is a Rees sublattice of L.

PROOF. As was already proved in Theorem 4, $R_1 \cup R_2$ is a convex sublattice of L. Take elements $a \in R_1 \cup R_2$ and $x \in L \setminus (R_1 \cup R_2)$. Since R_1 , R_2 are Rees sublattices Lemma 1 yields the possibilities:

(i) $(R_1 \cup R_2) \vee \{x\} = \{x\},$

(ii) $(R_1 \cup R_2) \land \{x\} = \{x\}$, (iii) $(R_1 \cup R_2) \lor \{x\}$ and $(R_1 \cup R_2) \land \{x\}$ are singletons.

Theorem 2 completes the proof.

It remains clarify the relationship between two disjoint Rees sublattices.

Theorem 7. Let R_1 , R_2 be disjoint Rees sublattices of a lattice L. Then one of the following possibilities occurs:

- (i) Elements from R_2 are upper bounds of R_1 ,
- (ii) Elements from R_2 are lower bounds of R_1 ,
- (iii) The subsets $R_1 \vee R_2$ and $R_1 \wedge R_2$ are singletons.

PROOF. First suppose that R_1 (R_2) contains an element x_1 (x_2) which is an upper or lower bound of R_2 (R_1 , respectively). For instance let $x_1 \in R_1$ be a lower bound of R_2 . Then $x_1 < x_2$ hold for every $x_2 \in R_2$. Since R_1 is a Rees sublattice Lemma 1 (a) yields that x_2 is an upper bound of R_1 for any $x_2 \in R_2$. Hence (i) holds. Similarly (ii) can be obtained.

In the opposite case Theorem 2 states that subsets $R_1 \vee \{x_2\}$, $R_1 \wedge \{x_2\}$ and $R_2 \vee \{x_1\}$, $R_2 \wedge \{x_1\}$ are singletons for any $x_1 \in R_1$, $x_2 \in R_2$. Fix $a_1 \in R_1$, $a_2 \in R_2$. Then

$$R_1 \vee R_2 = \bigcup_{x_2 \in R_2} R_1 \vee \{x_2\} = \bigcup_{x_1 \in R_2} \{a_1 \vee x_2\} = \{a_1\} \vee R_2 = \{a_1 \vee a_2\},$$

and

$$R_1 \wedge R_2 = \bigcup_{x_2 \in R_2} R_1 \wedge \{x_2\} = \bigcup_{x_2 \in R_2} \{a_1 \wedge x_2\} = \{a_1\} \wedge R_2 = \{a_1 \wedge a_2\}$$

proving (iii).

References

- [1] I. CHAJUA, J. DUDA, Rees algebras and their varieties, Publ. Math. (Debrecen) 32 (1985), 17-22.
- [2] J. Duda, Congruences generated by filters, Comm. Math. Univ. Carolinae 21 (1980), 1-9.

[3] G. GRÄTZER, General Lattice Theory, Akademie-Verlag, Berlin 1978.

[4] D. Rees, On semigroups, Proc. Cambridge Phil. Soc. 36 (1940), 387—400.
[5] G. Szász, Rees factor lattices, Publ. Math. (Debrecen) 15 (1968), 259—266.

- [6] R. F. TICHY, The Rees congruence in universal algebras, Publications de l'Institut Math. 29 (43) Beograd (1981), 229-239.
- [7] J. C. VARLET, Nodal filters in semilattices, Comm. Math. Univ. Carolinae 14 (1973), 263-277.

Author's address: JAROMÍR DUDA 616 00 BRNO 16, KROFTOVA 21 CZECHOSLOVAKIA

(Received December 10, 1985)