Rees sublattices of a lattice

By JAROMIR DUDA (Brno)

Rees congruences were introduced by D. REEs [4] for semigroups. Recently
R. F. TicHy [6] generalized this concept to arbitrary algebras as follows

Definition. Let B be a subalgebra of an algebra A4, w, a diagonal on 4. B is
called a Rees subalgebra whenever BXBUw, is a congruence on 4. Any congruence
of this form is called a Rees congruence.

Rees congruences on lattices were studied by G. SzAsz [5], namely an interesting
characterization of Rees ideals was given in this paper. A characterization of Rees
filters in implicative semilattices can be found in J. VARLET [7]. Since Varlet’s result
holds true for arbitrary lattices (see [2]), another description of Rees filters (Rees
ideals) is obtained in this way. The present paper seeks to find suitable characteriza-
tion theorems for arbitrary Rees sublattices of a given lattice. Further we study a
remarkable relationship between Rees sublattices and arbitrary convex sublattices.
Lattices having Rees sublattices only were already mentioned in the previous paper [1].

1. Characterization theorems

Theorem 1. A convexs ublattice M of a lattice L is a Rees sublattice if, and only
if one of the following conditions holds for any 3-element subset {a, b, x} a,bcM,
a<b, x€IL\M:

(i) {a, b, x} is a chain,

(i) {a, b, x} generates a pentagon.

Proor. First suppose that M is a Rees sublattice of a lattice L. Choose arbi-
trary elements a,b€M, a<b, and x€L\M. Assume further that {a,b, x} is
not a chain. Consider the following cases:

Case 1. Let alx, bVxéM. Then the convexity of M implies x€M, a con-
tradiction.

Case 2. Suppose that aAxeM, bV xc LN\ M. Applying the elementary trans-
lation 1, (1.(¥)=uVx, u€L) to the pair (aAx, b)e MXM we get
((@anx), 1.(b)) = {(aAx) vx, byx) = (x, byx).

By hypothesis (x, bV x)€w,, i.e. x=bVx and so b<x, a contradiction.

Case 3. Analogously we find that the assumption aAx€L\M, bVxeEM
is impossible.
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Case 4. Suppose that a/\x, bV xé LNM. Apply the elementary translation i, to
the pair {(a,b)e MXM. Then @.(a),1.(b))=(aVx, bVx)Ew,, ie aVx=bVx.
Similarly the equality aAx=b/\Xx can be proved. Hence the elements a<b, x, aVx=
=bVx, and aAx=b/Ax form a pentagon, as claimed.

Conversely assume that arbitrarily chosen elements a, b, x, a,beM, a<b,
x€ I\ M, satisfy one of the conditions (i), (i1) of our theorem. It suffices to verify
that the equivalence relation MXMUw, on L is compatible with the elementary
translations 7, and p, (u.(u)=u/x,ucL) for any x€L\M. To do this take ele-
ments ¢, déEM, c#d. Denote by a=c/Ad and b=cVd. Clearly than a<b. By
hypothesis two possibilities may occur:

Case 1. If {a, b, x} is a chain, say a<b=x, then
1(0)y 1,(d)) = (cAx,dN\x) = (x,x)€wp E MXMUw,
and
(0, () = e px, dAX) = (e, dYEMXM S MXMUwy.

Evidently the same conclusion holds for x<a<b.

Case 2. Suppose that {a, b, x} generates the pentagon

{a, b, x,aVx = bVx, aAx = bAx}.

Then we have also ¢Vx=dVx and cAx=dAx, ie.

(.(c), 1. (d)ew, S MXMUaw,
and
<‘I'.!x(C), Jux(d))€mf.. g MXMU(DL'

The proof is complete.

Making use of Theorem 1 another characterization of Rees sublattices can be
obtained. First we need some preliminaries.

Having two nonvoid subsets M, N of a lattice L denote by

MV N = {mVn; meM, neN}.
and, dually,
MAN = {mAn; meM, ne N}

Lemma 1. Let R be a nontrivial Rees sublattice of a lattice L, x€L\R, and
d=x=c. Then

(@) RV {x}={x} if and only if r\'x=x for some element rcR;
(b) RA{x}={x} if and only if rAx=x for some element réR;

(c) RV {x}={c} and RA{x}={d} if and only if rNx=c and rAx=d for
some element réR.

PrOOF. Assertions (a), (b) are evident.

(c) Let s€R, s#r. Then a<b for a=sAr and b=sVr. Apply Theorem 1
to the subset {a, b, x}: If a<b<x then r<x, ie. ¢=rVx=x, a contradiction.
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Similarly the case x<a<b is impossible. Hence a\/x=bVx and aAx=bAx hold.
Consequently sVx=rVx=c and sAx=rAx=d for any s€R.

Theorem 2. A nontrivial convex sublattice M of a lattice L is a Rees sublattice
if and only if one of the following conditions holds for any element x€ LN\ M:

() MV {x}={x},
(i) MA{x)={x),
(iii) The subsets MV {x} and MAM{x} are singletons.

Proor. First suppose that M is a Rees sublattice of L. Choose elements meM
and x€I\M. If m and x are comparable apply Lemma 1 (a), (b). In the opposite
case apply Lemma 1 (c).

The converse implication is evident.

Corollary 1. A nontrivial convex sublattice M of a modular lattice L is a Rees
sublattice if and only if each element from M is comparable with every element from
INM.

Proor. Apply Theorem 1 and the Dedekind criterion for modular lattices,
see e.g. [3].

As noted above, Rees ideals and Rees filters were already studied in [5], [7],
and [2]. Our next theorem summarizes the former results.

Theorem 3. Let I be an ideal of a lattice L. The following conditions are equiv-
alent:

(1) Iis a Rees ideal;
(2) I\ is a set of upper bounds of I;
(3) 1 is a nodal ideal, i.e. I is comparable with any other ideal in I.

ProoF. The equivalence (1)<(2) is due to G. Szdsz [5], (1)<(3) can be found
in [2]. For the sake of completeness we present here a short proof of Theorem 3:

(1)<>(2). Take x€ L\I. Then iAx€I and iA\x=x for arbitrary i€ J. Lemma 1 (a)
implies (2).

(2)=(3). Immediate.

(3)<>(1). Choose an element x€ILN\J and consider the principal ideal (x]. By
hypothesis (3) the inclusion (x]>7 holds, i.e. we have IV {x}={x}. Theorem 2
completes the proof.

The relationship among Rees sublattices, Rees ideals and Rees filters can be
expressed as follows

Corollary 2. A convex sublattice M of a lattice L is a Rees sublattice whenever
the ideal (M) and the filter [M) are Rees.

If M is a nontrivial Rees sublattice of a modular lattice L then the ideal (M]
and the filter [M) are Rees.
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PrOOF. The first assertion follows from the evident inclusions MXMUw, S
COe(M) and
oM) S O(M)NO(M)) = MXMUaw,.

The second part of our corollary is a direct consequence of Corollary 1 and
Theorem 3(2).

Remark 1. The assumption of modularity in the second part of Corollary 2
is essential and hence it cannot be omitted. Counterexample: Let L be a pentagon:

1

0

Then the interval [a, b] is Rees sublattice of L but neither (b] nor [a) have this
property.

For classes of lattices closed under the formation of sublattices a sufficient
condition for modularity can be obtained from Corollary 2. We formulate this fact
for varieties of lattices.

Corollary 3. Let V" be a variety of lattices. The following conditions are equiv-
alent:

(1) Any nontrivial convex sublattice M of a lattice L€Y" is a Rees sublattice
if and only if the ideal (M) and the filter [M) are Rees.

(2) ¥ is a variety of modular lattices.

PROOF. (2)=(1) follows from Corollary 2. To prove the converse implication
suppose that ¥ is not modular. Then V contains a pentagon, by Dedekind criterion.
Consequently (1) does not hold, see Remark 1.

2. Rees sublattices and arbitrary convex sublattices

Theorem 3 of the preceding section shows that a Rees ideal (Rees filter) is in
a special position with respect to any other ideal (filter, respectively). Now we turn
our attention to the relationship between a Rees sublattice and an arbitrary convex
sublattice. For nondisjoint pairs of such sublattices holds

Theorem 4. Let R be a Rees sublattice of a lattice L. Then for any nondisjoint
convex sublattice M of L one of the following possibilities occurs:

(i) MER,

(i) RcM,
(iii) Elements from M\ R are upper bounds of R,
(iv) Elements from M\ R are lower bounds of R.

Furthermore, the set union R\UM is a convex sublattice of L in any case.
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Proor. If M\ R=0 then MR, i.e. (i) holds.

In the opposite case we apply Theorem 2 to the elements of M\ R: If M\ R
contains an element m such that RV{m} and RA{m} are singletons then
RV {m}={aVm} and RA{m}={a\m} for an element acRMNM. Since aAm,
a\/meM, the convexity of M implies Rc M, i.e. the case (ii) occurs.

If M\ R contains both lower and upper bounds of R then the case (ii) is again
obtained.

Finally if M\ R consists of upper (lower) bounds of R only, then the case (iii)
((iv), respectively) follows.

It remains to prove that RU M is a convex sublattice of L. Without loss of
generality suppose that (iii) holds. Take elements mé M\ R and réR. Then r<m.
Consider an arbitrary element 7€[r, m] such that 74 R. Since R is Rees Lemma 1
yields that 7 is an upper bound of R, namely a<t for any element acRMNM. In
this way we find that 7€[a, m]SMSRUM which was to be proved.

For modular lattices we can state

Theorem 5. Let R be a nontrivial Rees sublattice of a modular lattice L. Then
every convex sublattice M of L disjoint from R conmsits of upper (lower) bounds of
R only.

Proor. Apply Corollary 1.

3. Pairs of Rees sublattices

Finally only pairs of Rees sublattices are considered. For nondisjoint pairs of
Rees sublattices holds

Theorem 6. Let R,, R, be nondisjoint Rees sublattices of a lattice L. Then R, U R,
is a Rees sublattice of L.

PrROOF. As was already proved in Theorem 4, R, UR, is a convex sublattice
of L. Take elements a€R,UR, and x¢L\(R,UR,). Since R,, R, are Rees sub-
lattices Lemma 1 yields the possibilities:

() (RUR)V {x}={x}, '-
(ii) (R,UR,)A {x}={x},
@iii) (R,UR,)V {x} and (R,UR,)A{x} are singletons.
Theorem 2 completes the proof.
It remains clarify the relationship between two disjoint Rees sublattices.

Theorem 7. Let R,, R, be disjoint Rees sublattices of a lattice L. Then one of
the following possibilities occurs:

(1) Elements from R, are upper bounds of R,,
(ii) Elements from R, are lower bounds of R,,
(iii) The subsets R,V R, and R,\R, are singletons.

Proor. First suppose that R, (R,) contains an element x; (x,) which is an
upper or lower bound of R, (R,, respectively). For instance let x;€R; be a lower
bound of R,. Then x;<x, hold for every x,€R,. Since R, is a Rees sublattice
Lemma 1 (a) yields that x, is an upper bound of R, for any x,€R,. Hence (i) holds.
Similarly (ii) can be obtained.

6
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In the opposite case Theorem 2 states that subsets R;V{x,}, R;A{x,;} and
R,V {x;}, R\ {x,} are singletons for any x,€R;, x,€ R,. Fix @&,€R,, a;€R,. Then

RIV.RS = U R1V {xg} = U {01V xg} = {al}V .Rg = {al\/ ag},
sk x3€Ry X3€ERy
RiARy = x,LeJn RiMxe} = U {aiAxp} = {a,}ARy = {a,\as}

X, ER,

proving (iii).
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