Recurrent curvature tensors in Finsler spaces
with generalised connection

By IRENA COMIC (Novi Sad)

§ 1. Introduction. There are several papers in which the recurrent Finsler spaces
are examined. We note that recurrency in these papers is defined in different manner.
There exist a great number of Finsler spaces in which metric connection may be
defined. This possibility depends on the metric function F(x, X). Some authors
as R. B. MisHRA in 1 S. P. SINGH in [2] and others have considered some classes of
Finsler spaces supplied with the metric connections which satisfy certain recurrency
condition for a curvature tensor, as for example

Ropysix = AxRapys OF  Kigosiujoma, Kaprs-

The above equations can be considered as systems of partial differential equations
for the metric function F(x, X), because the tensors R and K are defined by the
connection coefficients I';}, and they are functions of the metric tensor g which
is determined by the F(x, x) in the form of (2.1). Only those Finsler spaces which
are constructed by the metric function F(x, x) satisfying one of the above equa-
tions allow the recurrent curvature tensor.

In the present paper we shall examine recurrent curvature tensors in certain
generalised Finsler spaces. A. MOOR in [3] gave a generalisation of Finsler spaces
in such a way that the metric tensor is not covariant constant, but only recurrent
i.e. (2.6c) and (2.6d) are satisfied. For 4;=0 and u;=0 we obtain the classical
Finsler spaces. In this paper we shall consider such kind of generalised Finsler
space F,, which coincides with Moor’s generalisation in the case of u;=0. The
difference between the Moér’s and our cases arises from the fact that 4,,, in [3]
is symmetric in its first two indices, but here in the first and last one. The purpose
of this paper is to examine such classes of F, in which one of the curvature tensors
is recurrent with respect to|x or|x defined by (2.4) and (2.5). The explicit solution
for F(x,x) satisfying the recurrency condition for one of the curvature tensors
K, R, P or S will not be given, we only obtain some conditions for the vectors A,
u and the vectors of recurrency.

§ 2. Some definitions and notations. We use the symbols and notations of [4]
and [5] without any explanation. Let F(x, X) be the metric function in the space
F,, then the metric tensor g is defined by

(2.1) gap (%, %) = 2729,0, F*(x, %)

as usual. If &*(x, X) are coordinates of a vectorfield homogeneous of degree zero
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in X, then

(2.2) D§* = d§*+Tgy 5P dx"+ A3, 5P DD,
DI" = dI"+I'g; dx"+ Ag, DI,

(23) DE* = &fp dxP +7, DU,

(2.4) &y = 0p&*— 0,85+ T3 %,

(2.5) E%p = FO,&(05 — AYy) + A% p ™.

The connection coefficients in F, are given in [4]. They satisfy the relations

a) Iz =T35  b) 4j, = A
(2.6)
C) Zapis = As8ap d) gupls = Hs8ap

and have the form
a) I'y; = T3 +T5,(8.4)

b) 4, = g§?+Q§v(g= ©)

where ;5 and Aj, are connection coefficients of the Cartan connection deduced
from Fi (x, x), i.e. 1f A;=0, u;=0. This space will be referred to as “ordinary Finsler
space”. T§,(g, 2), Q%,(g, p) are tensors which vanish for 2;,=0 and ;=0 respec-
tively. We shall use the relations [4]:

2.7

a.) Jﬂ]x = 2—1 Iﬁj‘x b) I"Bx | —-2_1I§Ax
(2.8)
©) lgle =2"gpy+hg, d) Pl =—2"11p,+hi,

where
hﬂx - gﬁx_IﬂIx hg -_ 55—131,‘.

The curvature tensors in F, are defined by

(2.9 271KE, = 0Tl — 0. T T+ T T,
(2.10) REs = Kb+ ALK,

(2.11) Py = FO, It (85— Al)— ALy, + ALX*D, TS,
(2.12) 271805 = FO, Alp, (35— Afoya) + Ak, Ay

These tensors are formed with connection coefficients of the recurrent Finsler
space P,. In case of an ordinary Finsler space (4,=0, u,=0) these connection
coefficients reduce to the corresponding connection coefficients of the not recurrent
Finsler space and the above defined curvature tensors become the wellknown curva-
ture tensors in the ordinary Finsler space (where Aj=0). The tensors defined
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by (2.9)—(2.12) satisfy the following relations [5]
(2.13) _Kaﬁri_xptré_mn Sa,ch'fw = u[ﬂé]gaﬂs
(2.14) —Pogys—Ppays — 8apix Ays+
+ FO, 8op[Ads), — (190, Ty +2712,87) (8 — Ap)] =
= (Ayli_'péh)gaj’

215) = Supys— Spars—2F* 05 8ap Dps Aty — 0, Aly Alojs) = 2py)8p-
From the above equations using (2.1) after contraction with /* we obtain

(2-16) = Kogya —Kgn-,a = (j'yiﬁ ";-ah)lp,

(2.17) = Popys—Ppoys = lghe Ass+ (A)s— s, ),

2.18) —Sopya—Spoya = (Pyla—#aly)fp-

The contraction of (2.16)—(2.18) with /# yields:

(2.19) —2Ko0ys = Ayja— a1y

(2.20) —2Pgoys = ApjsAyst+Asls— sy

(2.21) _250075 = ﬂyh_#aly-

§ 3. The \x recurrent curvature tensors in ¥

Definition 3.1. If for some tensor T::: in F, exists a vectorfield a,(x, %)
homogeneous of degree zero in X, such that

(3.1 Titje=a,T:::
then the tensor T'::: is \x recurrent with vector of recurrency a,.

Lemma 3.1. If T}, is a tensorfield in F, homogeneous of degree zero in % and if
it is \x recurrent with vector of recurrency t, i.e.

(3.2) TSy = 1,TE,,

then

(3.3) Topyorx = (L + 20T o055
(3.4) Thoix = (t,—2712)Ths,
(3.5 Topys1x = (271 2,)Top,s,
(3.6) Tpoysix = (Le+271 20 Tgoys
3.7 Tooys)x = txTooys-

Proor. From (3.2), (2.6¢) and

(3.8) Topys = 8epTapy



86 Irena Comié

we obtain (3.3). From (3.2), (2.8b) and
(3.9) Téﬂlx = ,‘?,.;I,,F+T,f,,ff,
follows (3.4). From (3.3) and (2.8b) follow (3.5), (3.6) and (3.7).

Theorem 3.1. If Kf; in F, is \x recurrent, then also A, 5—2y, is % recurrent
with the same vector of recurrency kx.

Proor. From the condition of theorem we have
(3.10) Kls1x = kuKlys.
Using Lemma 3.1 we obtain
Kopysix = (kx+27'4,)Kop,5,  Kpoys = (ke +2712,)Kp0y5-

The sum of the above two equations gives
(3.11) (Kopys+ Kpoya)x = (K t+2712,)(Kogys + Kgoya)-
Using (2.16) we obtain from (3.11)

[y =251 )] 1 = (K272 1) (25— 231 ) g -
Using (2.8a) we get

U«ﬂa—;"-an)uf.s = kx()-m*laly)fg-

Contraction of this equation with /# gives

(3.12) (lﬂa—im)u = k,(l,“—l',,,).
A shorter proof is the following: (3.10)A(3.7)=
(3.13) Kooysjx = ki Kooys

(3.13) A(2.19) = (3.12).

Theorem 3.2. If P is % recurrent, then also 1|;—ps),+2, A5s is % recurrent
with the same vector of recurrency p,.

Proor. From the condition of the theorem we have

(3.14) Plysix = P Plys.

Substituting in Lemma 3.1 T/,; and 7, by Pf; and p,, we obtain

(3.15) (Popys +Ppoys)ix = (Px+271 4,0 Pogys + Ppoys)-

Substituting (2.17) into (3.15) and using (2.8a) we get

(3.16) (Ayls—tspy+ 2. A%8)\xlp = Pu(Pgls—Hayy+ A A3s)lp.

Then contraction with /? proves the theorem, i.e.
(Ayls—Hayy+ 2 A58) 1 x = Pu(yls—Hajy+2e As)
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Theorem 3.3. If Sf; is % recurrent, then also p)|;—p,l, is (» recurrent with
the same vector of recurrency s,,.

Proor. From the condition of the theorem we have
(317) Sgyalx T Sssfm-

Using Lemma 3.1, and substituting 77, and 7, with S%,; and s, respectively, we
obtain

(3.18) (Spoyat Sopya)ix = (S +2722,) (Spoys+ Sopya))-
Substituting (2.18) into (3.18), and using (2.8a) we get
(3.19) (5l —psl D lp = s (tyls— sl Dl
A contaction of (3.19) with /? proves the theorem, i.e. (3.17)=
(3.20) (1yls =5l ) 1 = 8 (tyls— pal,)
§ 4. The |x recurrent curvature tensors in F,.

Definition 4.1. If for some tensor T ::: in F, exists a vectorfield a, (x, ¥) homo-
geneous of degree zero in X, such that

4.1 L W R i
then the tensor 7':::is |% recurrent with the vector of recurrency a,.

Lemma 4.1. If T/ is a tensorfield in F, homogeneous of degree zero in X, and
if it is |% recurrent with vector of recurrency i, i.e.

42) Thole = 1,Thys,

then

4.3) Topyslx = (Lt 1) Topyss

4.4 Topyale = (Bet27 e = 1) Topys+ Tpyas
4.5) Tpoysle = (Be+27 e = 1) Tpoys + Tpuyss
(4.6) Tooysle = (Fe—21,)Tooys+ Toys + Touys-

Proor. From (4.2) and (2.6d) follows (4.3). From (4.3) and (2.8d) follow (4.4)
and (4.5). From (4.4), or (4.5) and (2.8d) follows (4.6).

Lemma 4.2. If TZ; is |x recurrent in F,, and if exist vectorfields w,(x, X) and
wy(x, X) homogeneous of degree zero in % such that

(4"7) T, xpyd = Wi Togyd ]
(4' 8) T‘xya = W:‘ Tﬁl)rh
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then Typ,s and Tyq,; are |x recurrent and we have

4.9 Topyslx = (Bu+27 =L +w,) Topyss
(4.10) Tpopale = (Be+27 = L+ W) Tpoys,
(4.11) Tooyslx = (B =21+ W+ W) To0yas
(4.12) Toys+ Toxys = (Wt W) Tooys.

Proor. Substituting (4.7) and (4.8) into (4.4) and (4.5) we obtain (4.9) and
(4.10). Contraction of (4.7) and (4.8) with /# gives

(4'13) Txﬂﬂ = Wy Twﬁ’
(4- 14) TDN?J = W; TOO?J .

Substituting (4.13) and (4.14) into (4.6) we obtain (4.11). The sum of (4.13) and
(4.14) gives (4.12).

Lemma 4.3. If K[ is |x recurrent, then also Ky, is | recurrent with the same
vector of recurrency k,.

Proor. Since
(4°15) K:rdlx —= E,,K:,;

it follows from Lemma 4.1 that (4.2)—(4.6) remain valid if we write K and k in
place of T and 7 respectively. Now (4.4) has the form

Kopyple = (Re+272pt— Kopgys+ Kugys-
Contracting this equation with /%, and using (2.8d), we obtain
Kooyslx = (k=210 Kooys+ (Kyoy5+ Koxys)-
With respect to (2.16) and (2.19) we get
(4°16) Kwrélx = Eu Kno-;a-
So we proved that (4.15)=(4.16).

Lemma 4.4. If K2,; is |x recurrent with vector of recurrency k,, and there exist
vectorfields &, and &), such that

(4-17) prw = éxKOﬁris

(4-18) Kﬂxy& = C;Kpoya,

then Kyz,5 and Ky, ; are |x recurrent:

(4.19) Kopyslx = (K272 pt— 1, + &) Kogyss
(4.20) Kyopsle = (But- 272 = Lo+ E) Kpeye,
and

(4.21) &xt &y = 2L,
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ProoOF. From Lemma 4.2, (4.17) and (4.18) follows that (4.7)—(4.14) are valid
provided we substitute 7, 7, w and w’ with K, k, ¢ and ¢’ respectively. (4.19) and
(4.20) are the new form of (4.10) and (4.11). (4.12) has now the form:

wad + Ko:ﬂ = (cx + &::)Kooya .
Using (2.16) and (2.19) we obtain
2":: Kuoya — (¢x+€;)Kooﬂ
from which follows (4.21).

Theorem 4.1. If K, in F, is |x recurrent, then also A,;—72s, is |% recurrent
with the same vector of recurrency k, i.e. (4.15)=

(4.22) (Aylb"')'éjy)lx = Ex()"sla"l&[y)-
ProoF. From (4.15) and Lemma 4.2 follows

(Kapyst Kpayo)lx = (Kt 1) (Kopys+ Kpaya)-
Substituting (2.13) into this equation we obtain

[(lﬂé"'}-#[y)guﬂ + Fas gcj -K(fw]]x = (Ex +yx)[('1y|6 _)'&]?)gup + Fa& ga,ﬂ Kl;rd]'
Contracting with /* and /%, and using (2.8d), we arrive to (4.22).

Lemma 4.5. If PZ; is |x recurrent, then Py, is |% recurrent with the same
vector of recurrency p,,.

ProOF. In view of
(4'23) Pf;rd‘x — ﬁx P:}J

it follows from Lemma (4.1) that (4.2)—(4.6) remain valid if we write 2 and p in
place of T and 7 respectively. (4.3) now has the form

Patﬂyalx — (ﬁx+.|ux)P¢ﬁ?5'

Contracting the above equation first with /* and then with /?, and using (2.6d)
we get

Pooyslx = (Px—21,)Pooys+ (Posys+ Proys

Substituting the corresponding values from (2.17) and (2.20) into the above equation
we obtain

(4'24) POD)'élx — ﬁx POO'M'

Lemma 4.6. If Pl; is |z recurrent with vector of recurrency p,, and if exist
vectorfields n, and n, such that

(425) Pxﬁ}ré — quOﬁ;ﬁi’
(4.26) Ppuys = Ny Ppoyss
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then Pyg,; and Py,,; are also |x recurrent:

(4.27) Pogyslx = (Put+27" e — L +1:)Pogyss
(4.28) Pyoysl = (P27 e — L1020 Ppoyss
and

(4.29) et = 21,

PRrOOF. (4.27) and (4.28) are consequence of (4.25), (4.26) and Lemma 4.2.
Contracting (4.25) and (4.26) with /%, and substituting these equations into (2.17)
we get

_(qx""f:t)PODrJ = Ix(ﬂ-eA;a‘*'}wh—'Pah)-
Substituting the value of (2.20) into the above equation we obtain (4.29).

Theorem 4.2. If PJ; is |x recurrent, then also A Als+A|5— g, is |% recurrent
with the same vector of recurrency p,.

PrOOF. From (4.23) and Lemma 4.1 we obtain
(Paﬂva'l'PBw&)!x = (ﬁx+px)(P¢3?5+Pﬁ¢?J)‘
Contracting the above equation with /%, and using (2.8d) we get
(Pogys+ Ppoya)lx — (Pupys — Ppays) = (Px+27 i —1,) (Pogys + Ppoys)-
Contracting again with /%, and using (2.8d), (2.17) and (2.20) we arrive to
(4.30) (Aed3s+Ayls —Hop)lx = PR A35+Ayls —Hs)y)s
ie. (4.23)=(4.30)

Lemma 4.7. If S}, is |x recurrent, then also Sy, is |% recurrent with the same
vector of recurrency s3,.

PRrROOF. Since
(4'31) Sg}’&lx — §xS£yJ
we have from Lemma 4.1
(432) Suoyﬂx - (Ex _zzx)soord +(quya +S0xr6)‘
Substituting from (2.18) and (2.21) into this equation we obtain
(4-33) Sooyalx = 5§, Suoya-

Lemma 4.8. If S2; in F, is |x recurrent with vector of recurrency ., and if there
exist vectorfields {,, and {, such that

(4.34) Sxﬂra = {x Snpya,
(4‘35) Spnra o C;Spora,
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then Syg,5, Spoys are |% recurrent i.e.

(4.36) Sopals = a2 ts—Le+-L.)Sopna,
4.37) Spoyelx = Gu+27 =L+ Spoys
and

(4.38) L.+ =2L.

PrOOF. (4.36) and (4.37) are consequences of (4.34), (4.35) and Lemma 4.2
(formulae (4.10) and (4.11)). Contracting (4.34) and (4.35) with /%, and substituting
these equations into (2.18), we get

-(Cx'l'c;)sooﬁ = (ﬂrlﬂ_lualy)rx°
Substituting (2.21) into this equation we obtain (4.38).

Theorem 4.3. If S2; is |% recurrent, then also u,|;—p,l, is | recurrent with
the same vector of recurrency §,.

PROOF. Substituting (2.18) and(2.21) into (4.32) we obtain

(4'39) (ﬂyld-”dir)]x = gx(urlé_ﬂélr)s
ie. (4.31)=(4.39).
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